L(s) = 1 | − 3-s + (−2.13 + 0.658i)5-s + (3.54 − 3.54i)7-s + 9-s + (0.707 + 0.707i)11-s + 1.18i·13-s + (2.13 − 0.658i)15-s + (−2.63 + 2.63i)17-s + (−5.21 − 5.21i)19-s + (−3.54 + 3.54i)21-s + (1.86 + 1.86i)23-s + (4.13 − 2.81i)25-s − 27-s + (2.17 − 2.17i)29-s − 2.39i·31-s + ⋯ |
L(s) = 1 | − 0.577·3-s + (−0.955 + 0.294i)5-s + (1.34 − 1.34i)7-s + 0.333·9-s + (0.213 + 0.213i)11-s + 0.329i·13-s + (0.551 − 0.170i)15-s + (−0.639 + 0.639i)17-s + (−1.19 − 1.19i)19-s + (−0.774 + 0.774i)21-s + (0.388 + 0.388i)23-s + (0.826 − 0.562i)25-s − 0.192·27-s + (0.403 − 0.403i)29-s − 0.430i·31-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(0.0290+0.999i)Λ(2−s)
Λ(s)=(=(960s/2ΓC(s+1/2)L(s)(0.0290+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
0.0290+0.999i
|
Analytic conductor: |
7.66563 |
Root analytic conductor: |
2.76868 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(943,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :1/2), 0.0290+0.999i)
|
Particular Values
L(1) |
≈ |
0.702965−0.682808i |
L(21) |
≈ |
0.702965−0.682808i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 5 | 1+(2.13−0.658i)T |
good | 7 | 1+(−3.54+3.54i)T−7iT2 |
| 11 | 1+(−0.707−0.707i)T+11iT2 |
| 13 | 1−1.18iT−13T2 |
| 17 | 1+(2.63−2.63i)T−17iT2 |
| 19 | 1+(5.21+5.21i)T+19iT2 |
| 23 | 1+(−1.86−1.86i)T+23iT2 |
| 29 | 1+(−2.17+2.17i)T−29iT2 |
| 31 | 1+2.39iT−31T2 |
| 37 | 1+0.910iT−37T2 |
| 41 | 1+8.26iT−41T2 |
| 43 | 1+10.6iT−43T2 |
| 47 | 1+(5.06+5.06i)T+47iT2 |
| 53 | 1−3.52T+53T2 |
| 59 | 1+(−10.2+10.2i)T−59iT2 |
| 61 | 1+(−4.49−4.49i)T+61iT2 |
| 67 | 1−1.27iT−67T2 |
| 71 | 1−3.56T+71T2 |
| 73 | 1+(2.47−2.47i)T−73iT2 |
| 79 | 1+3.89T+79T2 |
| 83 | 1+9.99T+83T2 |
| 89 | 1+5.16T+89T2 |
| 97 | 1+(6.87−6.87i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.18332605387011223852595550319, −8.745667376144678671621416218053, −8.127251241270472680923325684402, −6.96847897032918366178493866647, −6.91623294398779808820450188192, −5.25569458195805703202851457924, −4.29585340501749025209866462823, −3.95559240918277387577727644100, −2.03793537146418337708930142386, −0.53321099982145651262334543614,
1.39933812597711903030519505507, 2.79321338477246862840702057915, 4.31229645912697937378101752773, 4.90884346647219467349208546789, 5.81028351176249481920489242236, 6.78338416934721774952343017891, 8.036219004958736205415490066231, 8.361733220049740518000602141114, 9.201018751058938840151545096614, 10.46022950821491630864294424224