L(s) = 1 | − 3-s + (−2.13 + 0.658i)5-s + (3.54 − 3.54i)7-s + 9-s + (0.707 + 0.707i)11-s + 1.18i·13-s + (2.13 − 0.658i)15-s + (−2.63 + 2.63i)17-s + (−5.21 − 5.21i)19-s + (−3.54 + 3.54i)21-s + (1.86 + 1.86i)23-s + (4.13 − 2.81i)25-s − 27-s + (2.17 − 2.17i)29-s − 2.39i·31-s + ⋯ |
L(s) = 1 | − 0.577·3-s + (−0.955 + 0.294i)5-s + (1.34 − 1.34i)7-s + 0.333·9-s + (0.213 + 0.213i)11-s + 0.329i·13-s + (0.551 − 0.170i)15-s + (−0.639 + 0.639i)17-s + (−1.19 − 1.19i)19-s + (−0.774 + 0.774i)21-s + (0.388 + 0.388i)23-s + (0.826 − 0.562i)25-s − 0.192·27-s + (0.403 − 0.403i)29-s − 0.430i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0290 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0290 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.702965 - 0.682808i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.702965 - 0.682808i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 + (2.13 - 0.658i)T \) |
good | 7 | \( 1 + (-3.54 + 3.54i)T - 7iT^{2} \) |
| 11 | \( 1 + (-0.707 - 0.707i)T + 11iT^{2} \) |
| 13 | \( 1 - 1.18iT - 13T^{2} \) |
| 17 | \( 1 + (2.63 - 2.63i)T - 17iT^{2} \) |
| 19 | \( 1 + (5.21 + 5.21i)T + 19iT^{2} \) |
| 23 | \( 1 + (-1.86 - 1.86i)T + 23iT^{2} \) |
| 29 | \( 1 + (-2.17 + 2.17i)T - 29iT^{2} \) |
| 31 | \( 1 + 2.39iT - 31T^{2} \) |
| 37 | \( 1 + 0.910iT - 37T^{2} \) |
| 41 | \( 1 + 8.26iT - 41T^{2} \) |
| 43 | \( 1 + 10.6iT - 43T^{2} \) |
| 47 | \( 1 + (5.06 + 5.06i)T + 47iT^{2} \) |
| 53 | \( 1 - 3.52T + 53T^{2} \) |
| 59 | \( 1 + (-10.2 + 10.2i)T - 59iT^{2} \) |
| 61 | \( 1 + (-4.49 - 4.49i)T + 61iT^{2} \) |
| 67 | \( 1 - 1.27iT - 67T^{2} \) |
| 71 | \( 1 - 3.56T + 71T^{2} \) |
| 73 | \( 1 + (2.47 - 2.47i)T - 73iT^{2} \) |
| 79 | \( 1 + 3.89T + 79T^{2} \) |
| 83 | \( 1 + 9.99T + 83T^{2} \) |
| 89 | \( 1 + 5.16T + 89T^{2} \) |
| 97 | \( 1 + (6.87 - 6.87i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.18332605387011223852595550319, −8.745667376144678671621416218053, −8.127251241270472680923325684402, −6.96847897032918366178493866647, −6.91623294398779808820450188192, −5.25569458195805703202851457924, −4.29585340501749025209866462823, −3.95559240918277387577727644100, −2.03793537146418337708930142386, −0.53321099982145651262334543614,
1.39933812597711903030519505507, 2.79321338477246862840702057915, 4.31229645912697937378101752773, 4.90884346647219467349208546789, 5.81028351176249481920489242236, 6.78338416934721774952343017891, 8.036219004958736205415490066231, 8.361733220049740518000602141114, 9.201018751058938840151545096614, 10.46022950821491630864294424224