Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [960,2,Mod(847,960)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(960, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 1, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("960.847");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 960.y (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 240) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
847.1 |
|
0 | −1.00000 | 0 | −2.17005 | + | 0.539352i | 0 | −3.00806 | − | 3.00806i | 0 | 1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
847.2 | 0 | −1.00000 | 0 | −2.15140 | − | 0.609492i | 0 | −0.566689 | − | 0.566689i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
847.3 | 0 | −1.00000 | 0 | −2.13688 | − | 0.658594i | 0 | 3.54781 | + | 3.54781i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
847.4 | 0 | −1.00000 | 0 | −1.61356 | + | 1.54804i | 0 | −0.143894 | − | 0.143894i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
847.5 | 0 | −1.00000 | 0 | 0.311968 | − | 2.21420i | 0 | 1.96597 | + | 1.96597i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
847.6 | 0 | −1.00000 | 0 | 1.45639 | − | 1.69674i | 0 | −1.12791 | − | 1.12791i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
847.7 | 0 | −1.00000 | 0 | 2.06823 | − | 0.849960i | 0 | 2.08016 | + | 2.08016i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
847.8 | 0 | −1.00000 | 0 | 2.23531 | − | 0.0583995i | 0 | −0.747384 | − | 0.747384i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
943.1 | 0 | −1.00000 | 0 | −2.17005 | − | 0.539352i | 0 | −3.00806 | + | 3.00806i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
943.2 | 0 | −1.00000 | 0 | −2.15140 | + | 0.609492i | 0 | −0.566689 | + | 0.566689i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
943.3 | 0 | −1.00000 | 0 | −2.13688 | + | 0.658594i | 0 | 3.54781 | − | 3.54781i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
943.4 | 0 | −1.00000 | 0 | −1.61356 | − | 1.54804i | 0 | −0.143894 | + | 0.143894i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
943.5 | 0 | −1.00000 | 0 | 0.311968 | + | 2.21420i | 0 | 1.96597 | − | 1.96597i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
943.6 | 0 | −1.00000 | 0 | 1.45639 | + | 1.69674i | 0 | −1.12791 | + | 1.12791i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
943.7 | 0 | −1.00000 | 0 | 2.06823 | + | 0.849960i | 0 | 2.08016 | − | 2.08016i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
943.8 | 0 | −1.00000 | 0 | 2.23531 | + | 0.0583995i | 0 | −0.747384 | + | 0.747384i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
80.s | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 960.2.y.e | 16 | |
4.b | odd | 2 | 1 | 240.2.y.e | ✓ | 16 | |
5.c | odd | 4 | 1 | 960.2.bc.e | 16 | ||
8.b | even | 2 | 1 | 1920.2.y.j | 16 | ||
8.d | odd | 2 | 1 | 1920.2.y.i | 16 | ||
12.b | even | 2 | 1 | 720.2.z.f | 16 | ||
16.e | even | 4 | 1 | 240.2.bc.e | yes | 16 | |
16.e | even | 4 | 1 | 1920.2.bc.i | 16 | ||
16.f | odd | 4 | 1 | 960.2.bc.e | 16 | ||
16.f | odd | 4 | 1 | 1920.2.bc.j | 16 | ||
20.e | even | 4 | 1 | 240.2.bc.e | yes | 16 | |
40.i | odd | 4 | 1 | 1920.2.bc.j | 16 | ||
40.k | even | 4 | 1 | 1920.2.bc.i | 16 | ||
48.i | odd | 4 | 1 | 720.2.bd.f | 16 | ||
60.l | odd | 4 | 1 | 720.2.bd.f | 16 | ||
80.i | odd | 4 | 1 | 240.2.y.e | ✓ | 16 | |
80.j | even | 4 | 1 | 1920.2.y.j | 16 | ||
80.s | even | 4 | 1 | inner | 960.2.y.e | 16 | |
80.t | odd | 4 | 1 | 1920.2.y.i | 16 | ||
240.bb | even | 4 | 1 | 720.2.z.f | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
240.2.y.e | ✓ | 16 | 4.b | odd | 2 | 1 | |
240.2.y.e | ✓ | 16 | 80.i | odd | 4 | 1 | |
240.2.bc.e | yes | 16 | 16.e | even | 4 | 1 | |
240.2.bc.e | yes | 16 | 20.e | even | 4 | 1 | |
720.2.z.f | 16 | 12.b | even | 2 | 1 | ||
720.2.z.f | 16 | 240.bb | even | 4 | 1 | ||
720.2.bd.f | 16 | 48.i | odd | 4 | 1 | ||
720.2.bd.f | 16 | 60.l | odd | 4 | 1 | ||
960.2.y.e | 16 | 1.a | even | 1 | 1 | trivial | |
960.2.y.e | 16 | 80.s | even | 4 | 1 | inner | |
960.2.bc.e | 16 | 5.c | odd | 4 | 1 | ||
960.2.bc.e | 16 | 16.f | odd | 4 | 1 | ||
1920.2.y.i | 16 | 8.d | odd | 2 | 1 | ||
1920.2.y.i | 16 | 80.t | odd | 4 | 1 | ||
1920.2.y.j | 16 | 8.b | even | 2 | 1 | ||
1920.2.y.j | 16 | 80.j | even | 4 | 1 | ||
1920.2.bc.i | 16 | 16.e | even | 4 | 1 | ||
1920.2.bc.i | 16 | 40.k | even | 4 | 1 | ||
1920.2.bc.j | 16 | 16.f | odd | 4 | 1 | ||
1920.2.bc.j | 16 | 40.i | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|