L(s) = 1 | − 3-s + (−2.13 − 0.658i)5-s + (3.54 + 3.54i)7-s + 9-s + (0.707 − 0.707i)11-s − 1.18i·13-s + (2.13 + 0.658i)15-s + (−2.63 − 2.63i)17-s + (−5.21 + 5.21i)19-s + (−3.54 − 3.54i)21-s + (1.86 − 1.86i)23-s + (4.13 + 2.81i)25-s − 27-s + (2.17 + 2.17i)29-s + 2.39i·31-s + ⋯ |
L(s) = 1 | − 0.577·3-s + (−0.955 − 0.294i)5-s + (1.34 + 1.34i)7-s + 0.333·9-s + (0.213 − 0.213i)11-s − 0.329i·13-s + (0.551 + 0.170i)15-s + (−0.639 − 0.639i)17-s + (−1.19 + 1.19i)19-s + (−0.774 − 0.774i)21-s + (0.388 − 0.388i)23-s + (0.826 + 0.562i)25-s − 0.192·27-s + (0.403 + 0.403i)29-s + 0.430i·31-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(0.0290−0.999i)Λ(2−s)
Λ(s)=(=(960s/2ΓC(s+1/2)L(s)(0.0290−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
0.0290−0.999i
|
Analytic conductor: |
7.66563 |
Root analytic conductor: |
2.76868 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(847,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :1/2), 0.0290−0.999i)
|
Particular Values
L(1) |
≈ |
0.702965+0.682808i |
L(21) |
≈ |
0.702965+0.682808i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 5 | 1+(2.13+0.658i)T |
good | 7 | 1+(−3.54−3.54i)T+7iT2 |
| 11 | 1+(−0.707+0.707i)T−11iT2 |
| 13 | 1+1.18iT−13T2 |
| 17 | 1+(2.63+2.63i)T+17iT2 |
| 19 | 1+(5.21−5.21i)T−19iT2 |
| 23 | 1+(−1.86+1.86i)T−23iT2 |
| 29 | 1+(−2.17−2.17i)T+29iT2 |
| 31 | 1−2.39iT−31T2 |
| 37 | 1−0.910iT−37T2 |
| 41 | 1−8.26iT−41T2 |
| 43 | 1−10.6iT−43T2 |
| 47 | 1+(5.06−5.06i)T−47iT2 |
| 53 | 1−3.52T+53T2 |
| 59 | 1+(−10.2−10.2i)T+59iT2 |
| 61 | 1+(−4.49+4.49i)T−61iT2 |
| 67 | 1+1.27iT−67T2 |
| 71 | 1−3.56T+71T2 |
| 73 | 1+(2.47+2.47i)T+73iT2 |
| 79 | 1+3.89T+79T2 |
| 83 | 1+9.99T+83T2 |
| 89 | 1+5.16T+89T2 |
| 97 | 1+(6.87+6.87i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.46022950821491630864294424224, −9.201018751058938840151545096614, −8.361733220049740518000602141114, −8.036219004958736205415490066231, −6.78338416934721774952343017891, −5.81028351176249481920489242236, −4.90884346647219467349208546789, −4.31229645912697937378101752773, −2.79321338477246862840702057915, −1.39933812597711903030519505507,
0.53321099982145651262334543614, 2.03793537146418337708930142386, 3.95559240918277387577727644100, 4.29585340501749025209866462823, 5.25569458195805703202851457924, 6.91623294398779808820450188192, 6.96847897032918366178493866647, 8.127251241270472680923325684402, 8.745667376144678671621416218053, 10.18332605387011223852595550319