Properties

Label 2-966-161.10-c1-0-26
Degree $2$
Conductor $966$
Sign $-0.230 + 0.973i$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.327 + 0.945i)2-s + (−0.458 − 0.888i)3-s + (−0.786 − 0.618i)4-s + (−1.17 + 0.111i)5-s + (0.989 − 0.142i)6-s + (1.80 − 1.93i)7-s + (0.841 − 0.540i)8-s + (−0.580 + 0.814i)9-s + (0.277 − 1.14i)10-s + (0.654 − 0.226i)11-s + (−0.189 + 0.981i)12-s + (−0.727 − 2.47i)13-s + (1.23 + 2.34i)14-s + (0.635 + 0.989i)15-s + (0.235 + 0.971i)16-s + (3.55 + 1.42i)17-s + ⋯
L(s)  = 1  + (−0.231 + 0.668i)2-s + (−0.264 − 0.513i)3-s + (−0.393 − 0.309i)4-s + (−0.523 + 0.0500i)5-s + (0.404 − 0.0580i)6-s + (0.683 − 0.729i)7-s + (0.297 − 0.191i)8-s + (−0.193 + 0.271i)9-s + (0.0876 − 0.361i)10-s + (0.197 − 0.0682i)11-s + (−0.0546 + 0.283i)12-s + (−0.201 − 0.687i)13-s + (0.329 + 0.625i)14-s + (0.164 + 0.255i)15-s + (0.0589 + 0.242i)16-s + (0.863 + 0.345i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.230 + 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.230 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $-0.230 + 0.973i$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{966} (493, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ -0.230 + 0.973i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.434558 - 0.549313i\)
\(L(\frac12)\) \(\approx\) \(0.434558 - 0.549313i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.327 - 0.945i)T \)
3 \( 1 + (0.458 + 0.888i)T \)
7 \( 1 + (-1.80 + 1.93i)T \)
23 \( 1 + (-3.80 + 2.91i)T \)
good5 \( 1 + (1.17 - 0.111i)T + (4.90 - 0.946i)T^{2} \)
11 \( 1 + (-0.654 + 0.226i)T + (8.64 - 6.79i)T^{2} \)
13 \( 1 + (0.727 + 2.47i)T + (-10.9 + 7.02i)T^{2} \)
17 \( 1 + (-3.55 - 1.42i)T + (12.3 + 11.7i)T^{2} \)
19 \( 1 + (6.95 - 2.78i)T + (13.7 - 13.1i)T^{2} \)
29 \( 1 + (1.02 + 7.14i)T + (-27.8 + 8.17i)T^{2} \)
31 \( 1 + (6.04 - 0.288i)T + (30.8 - 2.94i)T^{2} \)
37 \( 1 + (5.16 + 3.67i)T + (12.1 + 34.9i)T^{2} \)
41 \( 1 + (-7.63 - 3.48i)T + (26.8 + 30.9i)T^{2} \)
43 \( 1 + (-4.24 + 6.60i)T + (-17.8 - 39.1i)T^{2} \)
47 \( 1 + (5.53 - 3.19i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (7.46 + 7.83i)T + (-2.52 + 52.9i)T^{2} \)
59 \( 1 + (2.11 + 0.513i)T + (52.4 + 27.0i)T^{2} \)
61 \( 1 + (0.602 + 0.310i)T + (35.3 + 49.6i)T^{2} \)
67 \( 1 + (2.64 + 13.7i)T + (-62.2 + 24.9i)T^{2} \)
71 \( 1 + (3.89 + 4.49i)T + (-10.1 + 70.2i)T^{2} \)
73 \( 1 + (-5.29 + 6.73i)T + (-17.2 - 70.9i)T^{2} \)
79 \( 1 + (11.2 - 11.8i)T + (-3.75 - 78.9i)T^{2} \)
83 \( 1 + (-2.04 - 4.48i)T + (-54.3 + 62.7i)T^{2} \)
89 \( 1 + (-0.388 + 8.15i)T + (-88.5 - 8.45i)T^{2} \)
97 \( 1 + (-1.11 + 2.44i)T + (-63.5 - 73.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.784965505166258890201765926160, −8.597956862644977783958215508318, −7.87261596973841474229228924080, −7.48106861407341316870247296717, −6.43012302502685174183374555016, −5.63127178056954609036185876790, −4.55465750839058266031212805030, −3.64666138420558248593580485960, −1.84046342753762488601621112057, −0.37131204319453143456454463615, 1.59998335692542206630878742481, 2.88846332165583835966568735474, 4.04299523379254643996524721649, 4.81084095588464009052192723594, 5.71387017628060267668929319763, 7.00646392350189213602505186206, 7.940131919893297476703008075650, 8.947529208428155416150292570521, 9.253105272574463834463437093492, 10.41821828892600454370044791883

Graph of the $Z$-function along the critical line