L(s) = 1 | + (−0.327 − 0.945i)2-s + (−0.458 + 0.888i)3-s + (−0.786 + 0.618i)4-s + (−1.17 − 0.111i)5-s + (0.989 + 0.142i)6-s + (1.80 + 1.93i)7-s + (0.841 + 0.540i)8-s + (−0.580 − 0.814i)9-s + (0.277 + 1.14i)10-s + (0.654 + 0.226i)11-s + (−0.189 − 0.981i)12-s + (−0.727 + 2.47i)13-s + (1.23 − 2.34i)14-s + (0.635 − 0.989i)15-s + (0.235 − 0.971i)16-s + (3.55 − 1.42i)17-s + ⋯ |
L(s) = 1 | + (−0.231 − 0.668i)2-s + (−0.264 + 0.513i)3-s + (−0.393 + 0.309i)4-s + (−0.523 − 0.0500i)5-s + (0.404 + 0.0580i)6-s + (0.683 + 0.729i)7-s + (0.297 + 0.191i)8-s + (−0.193 − 0.271i)9-s + (0.0876 + 0.361i)10-s + (0.197 + 0.0682i)11-s + (−0.0546 − 0.283i)12-s + (−0.201 + 0.687i)13-s + (0.329 − 0.625i)14-s + (0.164 − 0.255i)15-s + (0.0589 − 0.242i)16-s + (0.863 − 0.345i)17-s + ⋯ |
Λ(s)=(=(966s/2ΓC(s)L(s)(−0.230−0.973i)Λ(2−s)
Λ(s)=(=(966s/2ΓC(s+1/2)L(s)(−0.230−0.973i)Λ(1−s)
Degree: |
2 |
Conductor: |
966
= 2⋅3⋅7⋅23
|
Sign: |
−0.230−0.973i
|
Analytic conductor: |
7.71354 |
Root analytic conductor: |
2.77732 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ966(145,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 966, ( :1/2), −0.230−0.973i)
|
Particular Values
L(1) |
≈ |
0.434558+0.549313i |
L(21) |
≈ |
0.434558+0.549313i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.327+0.945i)T |
| 3 | 1+(0.458−0.888i)T |
| 7 | 1+(−1.80−1.93i)T |
| 23 | 1+(−3.80−2.91i)T |
good | 5 | 1+(1.17+0.111i)T+(4.90+0.946i)T2 |
| 11 | 1+(−0.654−0.226i)T+(8.64+6.79i)T2 |
| 13 | 1+(0.727−2.47i)T+(−10.9−7.02i)T2 |
| 17 | 1+(−3.55+1.42i)T+(12.3−11.7i)T2 |
| 19 | 1+(6.95+2.78i)T+(13.7+13.1i)T2 |
| 29 | 1+(1.02−7.14i)T+(−27.8−8.17i)T2 |
| 31 | 1+(6.04+0.288i)T+(30.8+2.94i)T2 |
| 37 | 1+(5.16−3.67i)T+(12.1−34.9i)T2 |
| 41 | 1+(−7.63+3.48i)T+(26.8−30.9i)T2 |
| 43 | 1+(−4.24−6.60i)T+(−17.8+39.1i)T2 |
| 47 | 1+(5.53+3.19i)T+(23.5+40.7i)T2 |
| 53 | 1+(7.46−7.83i)T+(−2.52−52.9i)T2 |
| 59 | 1+(2.11−0.513i)T+(52.4−27.0i)T2 |
| 61 | 1+(0.602−0.310i)T+(35.3−49.6i)T2 |
| 67 | 1+(2.64−13.7i)T+(−62.2−24.9i)T2 |
| 71 | 1+(3.89−4.49i)T+(−10.1−70.2i)T2 |
| 73 | 1+(−5.29−6.73i)T+(−17.2+70.9i)T2 |
| 79 | 1+(11.2+11.8i)T+(−3.75+78.9i)T2 |
| 83 | 1+(−2.04+4.48i)T+(−54.3−62.7i)T2 |
| 89 | 1+(−0.388−8.15i)T+(−88.5+8.45i)T2 |
| 97 | 1+(−1.11−2.44i)T+(−63.5+73.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.41821828892600454370044791883, −9.253105272574463834463437093492, −8.947529208428155416150292570521, −7.940131919893297476703008075650, −7.00646392350189213602505186206, −5.71387017628060267668929319763, −4.81084095588464009052192723594, −4.04299523379254643996524721649, −2.88846332165583835966568735474, −1.59998335692542206630878742481,
0.37131204319453143456454463615, 1.84046342753762488601621112057, 3.64666138420558248593580485960, 4.55465750839058266031212805030, 5.63127178056954609036185876790, 6.43012302502685174183374555016, 7.48106861407341316870247296717, 7.87261596973841474229228924080, 8.597956862644977783958215508318, 9.784965505166258890201765926160