L(s) = 1 | + (0.389 − 1.45i)2-s + (−1.71 − 0.239i)3-s + (−0.232 − 0.133i)4-s + (−1.01 + 2.40i)6-s + (−1.36 + 0.366i)7-s + (1.84 − 1.84i)8-s + (2.88 + 0.820i)9-s + (−1.06 + 3.97i)11-s + (0.366 + 0.285i)12-s + (0.232 − 3.59i)13-s + 2.12i·14-s + (−2.23 − 3.86i)16-s + (4.36 + 2.51i)17-s + (2.31 − 3.87i)18-s + (3.73 − i)19-s + ⋯ |
L(s) = 1 | + (0.275 − 1.02i)2-s + (−0.990 − 0.138i)3-s + (−0.116 − 0.0669i)4-s + (−0.415 + 0.980i)6-s + (−0.516 + 0.138i)7-s + (0.652 − 0.652i)8-s + (0.961 + 0.273i)9-s + (−0.321 + 1.19i)11-s + (0.105 + 0.0823i)12-s + (0.0643 − 0.997i)13-s + 0.569i·14-s + (−0.558 − 0.966i)16-s + (1.05 + 0.611i)17-s + (0.546 − 0.913i)18-s + (0.856 − 0.229i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.104 + 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.104 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.973650 - 1.08098i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.973650 - 1.08098i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.71 + 0.239i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-0.232 + 3.59i)T \) |
good | 2 | \( 1 + (-0.389 + 1.45i)T + (-1.73 - i)T^{2} \) |
| 7 | \( 1 + (1.36 - 0.366i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (1.06 - 3.97i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-4.36 - 2.51i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.73 + i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-6.20 + 3.58i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.46 + 2.46i)T + 31iT^{2} \) |
| 37 | \( 1 + (-1.40 + 5.23i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (-5.42 - 1.45i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-1.09 + 1.90i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.25 + 4.25i)T - 47iT^{2} \) |
| 53 | \( 1 + 0.779T + 53T^{2} \) |
| 59 | \( 1 + (-2.90 + 0.779i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.73 + 1.53i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (0.779 + 2.90i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-0.901 - 0.901i)T + 73iT^{2} \) |
| 79 | \( 1 + 2T + 79T^{2} \) |
| 83 | \( 1 + (2.90 + 2.90i)T + 83iT^{2} \) |
| 89 | \( 1 + (-2.41 + 9.01i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-0.437 - 1.63i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13858233379130098020199789228, −9.502060531657308788571871993426, −7.80595483938993324418142709569, −7.31109972403168873819314893105, −6.22561218661486468405842310880, −5.33173352052875052034126464544, −4.37586757356498095181006399252, −3.32940578925124549325236916421, −2.18976654477988402835890210912, −0.865164695145537842524509933040,
1.16192970564519131118015917327, 3.11257632645460103335218497723, 4.39600779072434378826417643791, 5.36117927060214303796125248131, 5.90537608978892167782553548171, 6.73349774078354972919216229841, 7.34569641676802476855356524769, 8.335803392251548875945262429517, 9.445977954732508458931033006199, 10.28603861060317129442682379594