Properties

Label 975.2.bp.e.674.2
Level $975$
Weight $2$
Character 975.674
Analytic conductor $7.785$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(149,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 6, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bp (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.56070144.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 16x^{6} - 34x^{5} + 63x^{4} - 74x^{3} + 70x^{2} - 38x + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 674.2
Root \(0.500000 + 1.56488i\) of defining polynomial
Character \(\chi\) \(=\) 975.674
Dual form 975.2.bp.e.149.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.389774 - 1.45466i) q^{2} +(-1.71545 - 0.239203i) q^{3} +(-0.232051 - 0.133975i) q^{4} +(-1.01660 + 2.40216i) q^{6} +(-1.36603 + 0.366025i) q^{7} +(1.84443 - 1.84443i) q^{8} +(2.88556 + 0.820682i) q^{9} +(-1.06488 + 3.97420i) q^{11} +(0.366025 + 0.285334i) q^{12} +(0.232051 - 3.59808i) q^{13} +2.12976i q^{14} +(-2.23205 - 3.86603i) q^{16} +(4.36397 + 2.51954i) q^{17} +(2.31853 - 3.87762i) q^{18} +(3.73205 - 1.00000i) q^{19} +(2.43091 - 0.301143i) q^{21} +(5.36603 + 3.09808i) q^{22} +(-3.60523 + 2.72284i) q^{24} +(-5.14352 - 1.73999i) q^{26} +(-4.75374 - 2.09808i) q^{27} +(0.366025 + 0.0980762i) q^{28} +(6.20840 - 3.58442i) q^{29} +(-2.46410 - 2.46410i) q^{31} +(-1.45466 + 0.389774i) q^{32} +(2.77739 - 6.56283i) q^{33} +(5.36603 - 5.36603i) q^{34} +(-0.559647 - 0.577032i) q^{36} +(1.40192 - 5.23205i) q^{37} -5.81863i q^{38} +(-1.25874 + 6.11683i) q^{39} +(5.42885 + 1.45466i) q^{41} +(0.509445 - 3.65351i) q^{42} +(1.09808 - 1.90192i) q^{43} +(0.779548 - 0.779548i) q^{44} +(4.25953 - 4.25953i) q^{47} +(2.90422 + 7.16590i) q^{48} +(-4.33013 + 2.50000i) q^{49} +(-6.88351 - 5.36603i) q^{51} +(-0.535898 + 0.803848i) q^{52} -0.779548 q^{53} +(-4.90487 + 6.09729i) q^{54} +(-1.84443 + 3.19465i) q^{56} +(-6.64136 + 0.822738i) q^{57} +(-2.79423 - 10.4282i) q^{58} +(2.90931 - 0.779548i) q^{59} +(3.50000 - 6.06218i) q^{61} +(-4.54486 + 2.62398i) q^{62} +(-4.24214 - 0.0648824i) q^{63} -6.66025i q^{64} +(-8.46410 - 6.59817i) q^{66} +(-5.73205 - 1.53590i) q^{67} +(-0.675108 - 1.16932i) q^{68} +(-0.779548 - 2.90931i) q^{71} +(6.83591 - 3.80853i) q^{72} +(0.901924 + 0.901924i) q^{73} +(-7.06440 - 4.07863i) q^{74} +(-1.00000 - 0.267949i) q^{76} -5.81863i q^{77} +(8.40726 + 4.21522i) q^{78} -2.00000 q^{79} +(7.65296 + 4.73626i) q^{81} +(4.23205 - 7.33013i) q^{82} +(-2.90931 - 2.90931i) q^{83} +(-0.604440 - 0.255799i) q^{84} +(-2.33864 - 2.33864i) q^{86} +(-11.5076 + 4.66384i) q^{87} +(5.36603 + 9.29423i) q^{88} +(2.41510 - 9.01327i) q^{89} +(1.00000 + 5.00000i) q^{91} +(3.63763 + 4.81647i) q^{93} +(-4.53590 - 7.85641i) q^{94} +(2.58863 - 0.320682i) q^{96} +(0.437822 + 1.63397i) q^{97} +(1.94887 + 7.27328i) q^{98} +(-6.33434 + 10.5939i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{3} + 12 q^{4} - 2 q^{6} - 4 q^{7} - 4 q^{9} - 4 q^{12} - 12 q^{13} - 4 q^{16} + 4 q^{18} + 16 q^{19} + 4 q^{21} + 36 q^{22} - 18 q^{24} - 4 q^{28} + 8 q^{31} + 20 q^{33} + 36 q^{34} - 36 q^{36}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.389774 1.45466i 0.275612 1.02860i −0.679818 0.733380i \(-0.737941\pi\)
0.955430 0.295217i \(-0.0953919\pi\)
\(3\) −1.71545 0.239203i −0.990418 0.138104i
\(4\) −0.232051 0.133975i −0.116025 0.0669873i
\(5\) 0 0
\(6\) −1.01660 + 2.40216i −0.415024 + 0.980678i
\(7\) −1.36603 + 0.366025i −0.516309 + 0.138345i −0.507559 0.861617i \(-0.669452\pi\)
−0.00875026 + 0.999962i \(0.502785\pi\)
\(8\) 1.84443 1.84443i 0.652105 0.652105i
\(9\) 2.88556 + 0.820682i 0.961855 + 0.273561i
\(10\) 0 0
\(11\) −1.06488 + 3.97420i −0.321074 + 1.19826i 0.597126 + 0.802148i \(0.296309\pi\)
−0.918200 + 0.396117i \(0.870357\pi\)
\(12\) 0.366025 + 0.285334i 0.105662 + 0.0823689i
\(13\) 0.232051 3.59808i 0.0643593 0.997927i
\(14\) 2.12976i 0.569204i
\(15\) 0 0
\(16\) −2.23205 3.86603i −0.558013 0.966506i
\(17\) 4.36397 + 2.51954i 1.05842 + 0.611078i 0.924994 0.379981i \(-0.124070\pi\)
0.133424 + 0.991059i \(0.457403\pi\)
\(18\) 2.31853 3.87762i 0.546482 0.913965i
\(19\) 3.73205 1.00000i 0.856191 0.229416i 0.196084 0.980587i \(-0.437177\pi\)
0.660107 + 0.751171i \(0.270511\pi\)
\(20\) 0 0
\(21\) 2.43091 0.301143i 0.530468 0.0657148i
\(22\) 5.36603 + 3.09808i 1.14404 + 0.660512i
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) −3.60523 + 2.72284i −0.735914 + 0.555798i
\(25\) 0 0
\(26\) −5.14352 1.73999i −1.00873 0.341240i
\(27\) −4.75374 2.09808i −0.914858 0.403775i
\(28\) 0.366025 + 0.0980762i 0.0691723 + 0.0185347i
\(29\) 6.20840 3.58442i 1.15287 0.665610i 0.203286 0.979119i \(-0.434838\pi\)
0.949585 + 0.313509i \(0.101505\pi\)
\(30\) 0 0
\(31\) −2.46410 2.46410i −0.442566 0.442566i 0.450308 0.892873i \(-0.351314\pi\)
−0.892873 + 0.450308i \(0.851314\pi\)
\(32\) −1.45466 + 0.389774i −0.257149 + 0.0689030i
\(33\) 2.77739 6.56283i 0.483482 1.14244i
\(34\) 5.36603 5.36603i 0.920266 0.920266i
\(35\) 0 0
\(36\) −0.559647 0.577032i −0.0932745 0.0961720i
\(37\) 1.40192 5.23205i 0.230475 0.860144i −0.749662 0.661821i \(-0.769784\pi\)
0.980137 0.198323i \(-0.0635495\pi\)
\(38\) 5.81863i 0.943906i
\(39\) −1.25874 + 6.11683i −0.201560 + 0.979476i
\(40\) 0 0
\(41\) 5.42885 + 1.45466i 0.847844 + 0.227179i 0.656483 0.754341i \(-0.272043\pi\)
0.191361 + 0.981520i \(0.438710\pi\)
\(42\) 0.509445 3.65351i 0.0786091 0.563749i
\(43\) 1.09808 1.90192i 0.167455 0.290041i −0.770069 0.637960i \(-0.779778\pi\)
0.937524 + 0.347920i \(0.113112\pi\)
\(44\) 0.779548 0.779548i 0.117521 0.117521i
\(45\) 0 0
\(46\) 0 0
\(47\) 4.25953 4.25953i 0.621316 0.621316i −0.324552 0.945868i \(-0.605213\pi\)
0.945868 + 0.324552i \(0.105213\pi\)
\(48\) 2.90422 + 7.16590i 0.419188 + 1.03431i
\(49\) −4.33013 + 2.50000i −0.618590 + 0.357143i
\(50\) 0 0
\(51\) −6.88351 5.36603i −0.963884 0.751394i
\(52\) −0.535898 + 0.803848i −0.0743157 + 0.111474i
\(53\) −0.779548 −0.107079 −0.0535396 0.998566i \(-0.517050\pi\)
−0.0535396 + 0.998566i \(0.517050\pi\)
\(54\) −4.90487 + 6.09729i −0.667468 + 0.829736i
\(55\) 0 0
\(56\) −1.84443 + 3.19465i −0.246472 + 0.426903i
\(57\) −6.64136 + 0.822738i −0.879670 + 0.108974i
\(58\) −2.79423 10.4282i −0.366900 1.36929i
\(59\) 2.90931 0.779548i 0.378760 0.101489i −0.0644157 0.997923i \(-0.520518\pi\)
0.443176 + 0.896435i \(0.353852\pi\)
\(60\) 0 0
\(61\) 3.50000 6.06218i 0.448129 0.776182i −0.550135 0.835076i \(-0.685424\pi\)
0.998264 + 0.0588933i \(0.0187572\pi\)
\(62\) −4.54486 + 2.62398i −0.577198 + 0.333246i
\(63\) −4.24214 0.0648824i −0.534460 0.00817442i
\(64\) 6.66025i 0.832532i
\(65\) 0 0
\(66\) −8.46410 6.59817i −1.04186 0.812179i
\(67\) −5.73205 1.53590i −0.700281 0.187640i −0.108925 0.994050i \(-0.534741\pi\)
−0.591357 + 0.806410i \(0.701407\pi\)
\(68\) −0.675108 1.16932i −0.0818689 0.141801i
\(69\) 0 0
\(70\) 0 0
\(71\) −0.779548 2.90931i −0.0925153 0.345272i 0.904116 0.427288i \(-0.140531\pi\)
−0.996631 + 0.0820158i \(0.973864\pi\)
\(72\) 6.83591 3.80853i 0.805620 0.448840i
\(73\) 0.901924 + 0.901924i 0.105562 + 0.105562i 0.757915 0.652353i \(-0.226218\pi\)
−0.652353 + 0.757915i \(0.726218\pi\)
\(74\) −7.06440 4.07863i −0.821220 0.474132i
\(75\) 0 0
\(76\) −1.00000 0.267949i −0.114708 0.0307359i
\(77\) 5.81863i 0.663094i
\(78\) 8.40726 + 4.21522i 0.951934 + 0.477279i
\(79\) −2.00000 −0.225018 −0.112509 0.993651i \(-0.535889\pi\)
−0.112509 + 0.993651i \(0.535889\pi\)
\(80\) 0 0
\(81\) 7.65296 + 4.73626i 0.850329 + 0.526251i
\(82\) 4.23205 7.33013i 0.467352 0.809477i
\(83\) −2.90931 2.90931i −0.319339 0.319339i 0.529174 0.848513i \(-0.322502\pi\)
−0.848513 + 0.529174i \(0.822502\pi\)
\(84\) −0.604440 0.255799i −0.0659498 0.0279100i
\(85\) 0 0
\(86\) −2.33864 2.33864i −0.252182 0.252182i
\(87\) −11.5076 + 4.66384i −1.23375 + 0.500017i
\(88\) 5.36603 + 9.29423i 0.572020 + 0.990768i
\(89\) 2.41510 9.01327i 0.256000 0.955405i −0.711531 0.702654i \(-0.751998\pi\)
0.967531 0.252751i \(-0.0813353\pi\)
\(90\) 0 0
\(91\) 1.00000 + 5.00000i 0.104828 + 0.524142i
\(92\) 0 0
\(93\) 3.63763 + 4.81647i 0.377205 + 0.499445i
\(94\) −4.53590 7.85641i −0.467842 0.810326i
\(95\) 0 0
\(96\) 2.58863 0.320682i 0.264201 0.0327295i
\(97\) 0.437822 + 1.63397i 0.0444541 + 0.165905i 0.984584 0.174910i \(-0.0559636\pi\)
−0.940130 + 0.340815i \(0.889297\pi\)
\(98\) 1.94887 + 7.27328i 0.196866 + 0.734712i
\(99\) −6.33434 + 10.5939i −0.636625 + 1.06472i
\(100\) 0 0
\(101\) −3.01375 5.21997i −0.299880 0.519407i 0.676229 0.736692i \(-0.263613\pi\)
−0.976108 + 0.217285i \(0.930280\pi\)
\(102\) −10.4887 + 7.92160i −1.03854 + 0.784356i
\(103\) −6.92820 −0.682656 −0.341328 0.939944i \(-0.610877\pi\)
−0.341328 + 0.939944i \(0.610877\pi\)
\(104\) −6.20840 7.06440i −0.608784 0.692722i
\(105\) 0 0
\(106\) −0.303848 + 1.13397i −0.0295123 + 0.110141i
\(107\) 9.50749 + 16.4675i 0.919123 + 1.59197i 0.800749 + 0.598999i \(0.204435\pi\)
0.118374 + 0.992969i \(0.462232\pi\)
\(108\) 0.822021 + 1.12374i 0.0790990 + 0.108132i
\(109\) 13.1962 + 13.1962i 1.26396 + 1.26396i 0.949156 + 0.314806i \(0.101940\pi\)
0.314806 + 0.949156i \(0.398060\pi\)
\(110\) 0 0
\(111\) −3.65646 + 8.64000i −0.347055 + 0.820072i
\(112\) 4.46410 + 4.46410i 0.421818 + 0.421818i
\(113\) −5.14352 + 8.90883i −0.483861 + 0.838073i −0.999828 0.0185360i \(-0.994099\pi\)
0.515967 + 0.856609i \(0.327433\pi\)
\(114\) −1.39183 + 9.98158i −0.130357 + 0.934861i
\(115\) 0 0
\(116\) −1.92089 −0.178350
\(117\) 3.62247 10.1920i 0.334898 0.942254i
\(118\) 4.53590i 0.417563i
\(119\) −6.88351 1.84443i −0.631010 0.169079i
\(120\) 0 0
\(121\) −5.13397 2.96410i −0.466725 0.269464i
\(122\) −7.45418 7.45418i −0.674869 0.674869i
\(123\) −8.96499 3.79399i −0.808346 0.342093i
\(124\) 0.241670 + 0.901924i 0.0217026 + 0.0809951i
\(125\) 0 0
\(126\) −1.74786 + 6.14557i −0.155712 + 0.547491i
\(127\) 4.56218 + 7.90192i 0.404828 + 0.701182i 0.994301 0.106605i \(-0.0339981\pi\)
−0.589474 + 0.807788i \(0.700665\pi\)
\(128\) −12.5977 3.37554i −1.11349 0.298359i
\(129\) −2.33864 + 3.00000i −0.205906 + 0.264135i
\(130\) 0 0
\(131\) 7.94839i 0.694454i 0.937781 + 0.347227i \(0.112877\pi\)
−0.937781 + 0.347227i \(0.887123\pi\)
\(132\) −1.52375 + 1.15081i −0.132625 + 0.100165i
\(133\) −4.73205 + 2.73205i −0.410321 + 0.236899i
\(134\) −4.46841 + 7.73951i −0.386012 + 0.668592i
\(135\) 0 0
\(136\) 12.6962 3.40192i 1.08869 0.291713i
\(137\) 1.73999 + 6.49373i 0.148657 + 0.554797i 0.999565 + 0.0294822i \(0.00938583\pi\)
−0.850908 + 0.525315i \(0.823948\pi\)
\(138\) 0 0
\(139\) 9.19615 15.9282i 0.780007 1.35101i −0.151929 0.988391i \(-0.548549\pi\)
0.931937 0.362621i \(-0.118118\pi\)
\(140\) 0 0
\(141\) −8.32592 + 6.28814i −0.701169 + 0.529557i
\(142\) −4.53590 −0.380644
\(143\) 14.0524 + 4.75374i 1.17512 + 0.397528i
\(144\) −3.26795 12.9875i −0.272329 1.08229i
\(145\) 0 0
\(146\) 1.66354 0.960443i 0.137675 0.0794868i
\(147\) 8.02614 3.25286i 0.661985 0.268291i
\(148\) −1.02628 + 1.02628i −0.0843597 + 0.0843597i
\(149\) −2.23420 8.33816i −0.183033 0.683089i −0.995043 0.0994454i \(-0.968293\pi\)
0.812010 0.583644i \(-0.198374\pi\)
\(150\) 0 0
\(151\) 0.535898 0.535898i 0.0436108 0.0436108i −0.684965 0.728576i \(-0.740183\pi\)
0.728576 + 0.684965i \(0.240183\pi\)
\(152\) 5.03908 8.72794i 0.408723 0.707929i
\(153\) 10.5248 + 10.8517i 0.850878 + 0.877310i
\(154\) −8.46410 2.26795i −0.682057 0.182757i
\(155\) 0 0
\(156\) 1.11159 1.25078i 0.0889985 0.100142i
\(157\) 4.80385i 0.383389i −0.981455 0.191694i \(-0.938602\pi\)
0.981455 0.191694i \(-0.0613982\pi\)
\(158\) −0.779548 + 2.90931i −0.0620175 + 0.231453i
\(159\) 1.33728 + 0.186470i 0.106053 + 0.0147880i
\(160\) 0 0
\(161\) 0 0
\(162\) 9.87256 9.28636i 0.775661 0.729605i
\(163\) −4.00000 + 1.07180i −0.313304 + 0.0839496i −0.412045 0.911164i \(-0.635185\pi\)
0.0987406 + 0.995113i \(0.468519\pi\)
\(164\) −1.06488 1.06488i −0.0831533 0.0831533i
\(165\) 0 0
\(166\) −5.36603 + 3.09808i −0.416484 + 0.240457i
\(167\) 12.9875 + 3.47998i 1.00500 + 0.269289i 0.723539 0.690283i \(-0.242514\pi\)
0.281461 + 0.959573i \(0.409181\pi\)
\(168\) 3.92820 5.03908i 0.303067 0.388773i
\(169\) −12.8923 1.66987i −0.991716 0.128452i
\(170\) 0 0
\(171\) 11.5898 + 0.177262i 0.886291 + 0.0135556i
\(172\) −0.509619 + 0.294229i −0.0388581 + 0.0224347i
\(173\) 15.1172 + 8.72794i 1.14934 + 0.663573i 0.948727 0.316097i \(-0.102373\pi\)
0.200615 + 0.979670i \(0.435706\pi\)
\(174\) 2.29892 + 18.5575i 0.174281 + 1.40684i
\(175\) 0 0
\(176\) 17.7412 4.75374i 1.33729 0.358327i
\(177\) −5.17726 + 0.641364i −0.389147 + 0.0482078i
\(178\) −12.1699 7.02628i −0.912171 0.526642i
\(179\) 13.2728 + 22.9892i 0.992056 + 1.71829i 0.604972 + 0.796247i \(0.293184\pi\)
0.387084 + 0.922045i \(0.373482\pi\)
\(180\) 0 0
\(181\) 3.00000i 0.222988i −0.993765 0.111494i \(-0.964436\pi\)
0.993765 0.111494i \(-0.0355636\pi\)
\(182\) 7.66306 + 0.494214i 0.568024 + 0.0366336i
\(183\) −7.45418 + 9.56218i −0.551029 + 0.706857i
\(184\) 0 0
\(185\) 0 0
\(186\) 8.42417 3.41417i 0.617690 0.250339i
\(187\) −14.6603 + 14.6603i −1.07206 + 1.07206i
\(188\) −1.55910 + 0.417759i −0.113709 + 0.0304682i
\(189\) 7.26168 + 1.12603i 0.528210 + 0.0819070i
\(190\) 0 0
\(191\) 4.18307 + 2.41510i 0.302677 + 0.174750i 0.643645 0.765324i \(-0.277421\pi\)
−0.340968 + 0.940075i \(0.610755\pi\)
\(192\) −1.59315 + 11.4254i −0.114976 + 0.824554i
\(193\) 0.0358984 0.133975i 0.00258402 0.00964370i −0.964622 0.263638i \(-0.915078\pi\)
0.967206 + 0.253994i \(0.0817443\pi\)
\(194\) 2.54752 0.182902
\(195\) 0 0
\(196\) 1.33975 0.0956961
\(197\) 1.06488 3.97420i 0.0758697 0.283150i −0.917559 0.397599i \(-0.869844\pi\)
0.993429 + 0.114449i \(0.0365103\pi\)
\(198\) 12.9415 + 13.3435i 0.919711 + 0.948281i
\(199\) −11.1962 6.46410i −0.793674 0.458228i 0.0475802 0.998867i \(-0.484849\pi\)
−0.841254 + 0.540639i \(0.818182\pi\)
\(200\) 0 0
\(201\) 9.46568 + 4.00588i 0.667657 + 0.282553i
\(202\) −8.76795 + 2.34936i −0.616911 + 0.165301i
\(203\) −7.16884 + 7.16884i −0.503154 + 0.503154i
\(204\) 0.878413 + 2.16741i 0.0615012 + 0.151749i
\(205\) 0 0
\(206\) −2.70043 + 10.0782i −0.188148 + 0.702178i
\(207\) 0 0
\(208\) −14.4282 + 7.13397i −1.00042 + 0.494652i
\(209\) 15.8968i 1.09960i
\(210\) 0 0
\(211\) 0.901924 + 1.56218i 0.0620910 + 0.107545i 0.895400 0.445263i \(-0.146890\pi\)
−0.833309 + 0.552808i \(0.813556\pi\)
\(212\) 0.180895 + 0.104440i 0.0124239 + 0.00717294i
\(213\) 0.641364 + 5.17726i 0.0439455 + 0.354740i
\(214\) 27.6603 7.41154i 1.89082 0.506643i
\(215\) 0 0
\(216\) −12.6377 + 4.89819i −0.859887 + 0.333280i
\(217\) 4.26795 + 2.46410i 0.289727 + 0.167274i
\(218\) 24.3394 14.0524i 1.64847 0.951745i
\(219\) −1.33147 1.76295i −0.0899722 0.119129i
\(220\) 0 0
\(221\) 10.0782 15.1172i 0.677930 1.01690i
\(222\) 11.1430 + 8.68653i 0.747872 + 0.583002i
\(223\) −25.0263 6.70577i −1.67588 0.449052i −0.709196 0.705011i \(-0.750942\pi\)
−0.966687 + 0.255960i \(0.917609\pi\)
\(224\) 1.84443 1.06488i 0.123236 0.0711505i
\(225\) 0 0
\(226\) 10.9545 + 10.9545i 0.728681 + 0.728681i
\(227\) −19.5856 + 5.24796i −1.29994 + 0.348319i −0.841429 0.540367i \(-0.818285\pi\)
−0.458515 + 0.888686i \(0.651619\pi\)
\(228\) 1.65136 + 0.698857i 0.109364 + 0.0462829i
\(229\) 14.1244 14.1244i 0.933364 0.933364i −0.0645507 0.997914i \(-0.520561\pi\)
0.997914 + 0.0645507i \(0.0205614\pi\)
\(230\) 0 0
\(231\) −1.39183 + 9.98158i −0.0915757 + 0.656740i
\(232\) 4.83975 18.0622i 0.317745 1.18584i
\(233\) 17.4559i 1.14357i −0.820403 0.571786i \(-0.806251\pi\)
0.820403 0.571786i \(-0.193749\pi\)
\(234\) −13.4140 9.24205i −0.876899 0.604172i
\(235\) 0 0
\(236\) −0.779548 0.208879i −0.0507443 0.0135969i
\(237\) 3.43091 + 0.478405i 0.222861 + 0.0310757i
\(238\) −5.36603 + 9.29423i −0.347828 + 0.602455i
\(239\) −6.59817 + 6.59817i −0.426800 + 0.426800i −0.887537 0.460737i \(-0.847585\pi\)
0.460737 + 0.887537i \(0.347585\pi\)
\(240\) 0 0
\(241\) 3.76795 + 14.0622i 0.242715 + 0.905825i 0.974518 + 0.224309i \(0.0720123\pi\)
−0.731803 + 0.681516i \(0.761321\pi\)
\(242\) −6.31284 + 6.31284i −0.405805 + 0.405805i
\(243\) −11.9954 9.95544i −0.769504 0.638642i
\(244\) −1.62436 + 0.937822i −0.103989 + 0.0600379i
\(245\) 0 0
\(246\) −9.01327 + 11.5622i −0.574665 + 0.737178i
\(247\) −2.73205 13.6603i −0.173836 0.869181i
\(248\) −9.08973 −0.577198
\(249\) 4.29488 + 5.68671i 0.272177 + 0.360380i
\(250\) 0 0
\(251\) 0.494214 0.856003i 0.0311945 0.0540304i −0.850007 0.526772i \(-0.823402\pi\)
0.881201 + 0.472741i \(0.156736\pi\)
\(252\) 0.975700 + 0.583396i 0.0614634 + 0.0367505i
\(253\) 0 0
\(254\) 13.2728 3.55644i 0.832810 0.223151i
\(255\) 0 0
\(256\) −3.16025 + 5.47372i −0.197516 + 0.342108i
\(257\) −18.6252 + 10.7533i −1.16181 + 0.670770i −0.951737 0.306916i \(-0.900703\pi\)
−0.210071 + 0.977686i \(0.567370\pi\)
\(258\) 3.45243 + 4.57125i 0.214939 + 0.284593i
\(259\) 7.66025i 0.475985i
\(260\) 0 0
\(261\) 20.8564 5.24796i 1.29098 0.324840i
\(262\) 11.5622 + 3.09808i 0.714314 + 0.191400i
\(263\) 11.1430 + 19.3003i 0.687109 + 1.19011i 0.972769 + 0.231777i \(0.0744539\pi\)
−0.285660 + 0.958331i \(0.592213\pi\)
\(264\) −6.98197 17.2274i −0.429710 1.06027i
\(265\) 0 0
\(266\) 2.12976 + 7.94839i 0.130584 + 0.487347i
\(267\) −6.29899 + 14.8842i −0.385492 + 0.910896i
\(268\) 1.12436 + 1.12436i 0.0686810 + 0.0686810i
\(269\) 12.4168 + 7.16884i 0.757066 + 0.437092i 0.828241 0.560372i \(-0.189342\pi\)
−0.0711756 + 0.997464i \(0.522675\pi\)
\(270\) 0 0
\(271\) 7.46410 + 2.00000i 0.453412 + 0.121491i 0.478295 0.878199i \(-0.341255\pi\)
−0.0248835 + 0.999690i \(0.507921\pi\)
\(272\) 22.4950i 1.36396i
\(273\) −0.519441 8.81647i −0.0314380 0.533597i
\(274\) 10.1244 0.611635
\(275\) 0 0
\(276\) 0 0
\(277\) −13.7942 + 23.8923i −0.828815 + 1.43555i 0.0701536 + 0.997536i \(0.477651\pi\)
−0.898969 + 0.438013i \(0.855682\pi\)
\(278\) −19.5856 19.5856i −1.17467 1.17467i
\(279\) −5.08808 9.13257i −0.304615 0.546752i
\(280\) 0 0
\(281\) −12.1315 12.1315i −0.723703 0.723703i 0.245655 0.969357i \(-0.420997\pi\)
−0.969357 + 0.245655i \(0.920997\pi\)
\(282\) 5.90185 + 14.5623i 0.351450 + 0.867172i
\(283\) 3.29423 + 5.70577i 0.195822 + 0.339173i 0.947170 0.320733i \(-0.103929\pi\)
−0.751348 + 0.659906i \(0.770596\pi\)
\(284\) −0.208879 + 0.779548i −0.0123947 + 0.0462577i
\(285\) 0 0
\(286\) 12.3923 18.5885i 0.732772 1.09916i
\(287\) −7.94839 −0.469179
\(288\) −4.51739 0.0690922i −0.266189 0.00407129i
\(289\) 4.19615 + 7.26795i 0.246832 + 0.427526i
\(290\) 0 0
\(291\) −0.360213 2.90774i −0.0211161 0.170455i
\(292\) −0.0884573 0.330127i −0.00517657 0.0193192i
\(293\) 0.466229 + 1.73999i 0.0272374 + 0.101651i 0.978206 0.207635i \(-0.0665766\pi\)
−0.950969 + 0.309286i \(0.899910\pi\)
\(294\) −1.60341 12.9432i −0.0935127 0.754860i
\(295\) 0 0
\(296\) −7.06440 12.2359i −0.410610 0.711198i
\(297\) 13.4003 16.6581i 0.777567 0.966601i
\(298\) −13.0000 −0.753070
\(299\) 0 0
\(300\) 0 0
\(301\) −0.803848 + 3.00000i −0.0463330 + 0.172917i
\(302\) −0.570669 0.988427i −0.0328383 0.0568776i
\(303\) 3.92132 + 9.67552i 0.225274 + 0.555844i
\(304\) −12.1962 12.1962i −0.699497 0.699497i
\(305\) 0 0
\(306\) 19.8878 11.0802i 1.13691 0.633414i
\(307\) 8.39230 + 8.39230i 0.478974 + 0.478974i 0.904803 0.425829i \(-0.140018\pi\)
−0.425829 + 0.904803i \(0.640018\pi\)
\(308\) −0.779548 + 1.35022i −0.0444189 + 0.0769357i
\(309\) 11.8850 + 1.65724i 0.676115 + 0.0942773i
\(310\) 0 0
\(311\) 10.0782 0.571480 0.285740 0.958307i \(-0.407761\pi\)
0.285740 + 0.958307i \(0.407761\pi\)
\(312\) 8.96040 + 13.6037i 0.507283 + 0.770159i
\(313\) 2.00000i 0.113047i −0.998401 0.0565233i \(-0.981998\pi\)
0.998401 0.0565233i \(-0.0180015\pi\)
\(314\) −6.98795 1.87241i −0.394353 0.105666i
\(315\) 0 0
\(316\) 0.464102 + 0.267949i 0.0261078 + 0.0150733i
\(317\) −11.3519 11.3519i −0.637587 0.637587i 0.312373 0.949960i \(-0.398876\pi\)
−0.949960 + 0.312373i \(0.898876\pi\)
\(318\) 0.792486 1.87260i 0.0444404 0.105010i
\(319\) 7.63397 + 28.4904i 0.427421 + 1.59516i
\(320\) 0 0
\(321\) −12.3706 30.5234i −0.690460 1.70365i
\(322\) 0 0
\(323\) 18.8061 + 5.03908i 1.04640 + 0.280382i
\(324\) −1.14134 2.12436i −0.0634076 0.118020i
\(325\) 0 0
\(326\) 6.23638i 0.345401i
\(327\) −19.4808 25.7939i −1.07729 1.42641i
\(328\) 12.6962 7.33013i 0.701028 0.404739i
\(329\) −4.25953 + 7.37772i −0.234835 + 0.406747i
\(330\) 0 0
\(331\) −33.0526 + 8.85641i −1.81673 + 0.486792i −0.996376 0.0850595i \(-0.972892\pi\)
−0.820357 + 0.571852i \(0.806225\pi\)
\(332\) 0.285334 + 1.06488i 0.0156598 + 0.0584430i
\(333\) 8.33919 13.9469i 0.456985 0.764285i
\(334\) 10.1244 17.5359i 0.553980 0.959522i
\(335\) 0 0
\(336\) −6.59014 8.72579i −0.359521 0.476031i
\(337\) −18.4641 −1.00580 −0.502902 0.864344i \(-0.667734\pi\)
−0.502902 + 0.864344i \(0.667734\pi\)
\(338\) −7.45418 + 18.1030i −0.405454 + 0.984673i
\(339\) 10.9545 14.0524i 0.594966 0.763219i
\(340\) 0 0
\(341\) 12.4168 7.16884i 0.672407 0.388215i
\(342\) 4.77524 16.7900i 0.258215 0.907900i
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) −1.48264 5.53329i −0.0799386 0.298335i
\(345\) 0 0
\(346\) 18.5885 18.5885i 0.999322 0.999322i
\(347\) −10.2870 + 17.8177i −0.552237 + 0.956502i 0.445876 + 0.895095i \(0.352892\pi\)
−0.998113 + 0.0614076i \(0.980441\pi\)
\(348\) 3.29519 + 0.459481i 0.176641 + 0.0246308i
\(349\) −27.4904 7.36603i −1.47153 0.394294i −0.568072 0.822979i \(-0.692311\pi\)
−0.903454 + 0.428684i \(0.858977\pi\)
\(350\) 0 0
\(351\) −8.65215 + 16.6175i −0.461818 + 0.886975i
\(352\) 6.19615i 0.330256i
\(353\) 3.66088 13.6626i 0.194849 0.727186i −0.797457 0.603376i \(-0.793822\pi\)
0.992306 0.123810i \(-0.0395113\pi\)
\(354\) −1.08500 + 7.78112i −0.0576670 + 0.413562i
\(355\) 0 0
\(356\) −1.76798 + 1.76798i −0.0937025 + 0.0937025i
\(357\) 11.3671 + 4.81059i 0.601613 + 0.254603i
\(358\) 38.6147 10.3468i 2.04085 0.546845i
\(359\) −18.2354 18.2354i −0.962429 0.962429i 0.0368904 0.999319i \(-0.488255\pi\)
−0.999319 + 0.0368904i \(0.988255\pi\)
\(360\) 0 0
\(361\) −3.52628 + 2.03590i −0.185594 + 0.107153i
\(362\) −4.36397 1.16932i −0.229365 0.0614582i
\(363\) 8.09808 + 6.31284i 0.425039 + 0.331338i
\(364\) 0.437822 1.29423i 0.0229481 0.0678360i
\(365\) 0 0
\(366\) 11.0042 + 14.5704i 0.575201 + 0.761605i
\(367\) 26.3205 15.1962i 1.37392 0.793233i 0.382500 0.923955i \(-0.375063\pi\)
0.991419 + 0.130723i \(0.0417297\pi\)
\(368\) 0 0
\(369\) 14.4715 + 8.65286i 0.753356 + 0.450450i
\(370\) 0 0
\(371\) 1.06488 0.285334i 0.0552859 0.0148138i
\(372\) −0.198831 1.60502i −0.0103089 0.0832162i
\(373\) 10.0359 + 5.79423i 0.519639 + 0.300014i 0.736787 0.676125i \(-0.236342\pi\)
−0.217148 + 0.976139i \(0.569675\pi\)
\(374\) 15.6114 + 27.0398i 0.807249 + 1.39820i
\(375\) 0 0
\(376\) 15.7128i 0.810326i
\(377\) −11.4564 23.1701i −0.590032 1.19332i
\(378\) 4.46841 10.1244i 0.229830 0.520741i
\(379\) −3.83013 + 14.2942i −0.196740 + 0.734245i 0.795069 + 0.606519i \(0.207435\pi\)
−0.991809 + 0.127726i \(0.959232\pi\)
\(380\) 0 0
\(381\) −5.93605 14.6467i −0.304113 0.750372i
\(382\) 5.14359 5.14359i 0.263169 0.263169i
\(383\) −31.7936 + 8.51906i −1.62458 + 0.435304i −0.952341 0.305035i \(-0.901332\pi\)
−0.672234 + 0.740339i \(0.734665\pi\)
\(384\) 20.8033 + 8.80399i 1.06162 + 0.449277i
\(385\) 0 0
\(386\) −0.180895 0.104440i −0.00920730 0.00531584i
\(387\) 4.72944 4.58695i 0.240411 0.233168i
\(388\) 0.117314 0.437822i 0.00595572 0.0222271i
\(389\) −22.4950 −1.14054 −0.570270 0.821457i \(-0.693161\pi\)
−0.570270 + 0.821457i \(0.693161\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −3.37554 + 12.5977i −0.170491 + 0.636280i
\(393\) 1.90128 13.6351i 0.0959066 0.687800i
\(394\) −5.36603 3.09808i −0.270336 0.156079i
\(395\) 0 0
\(396\) 2.88920 1.60968i 0.145188 0.0808892i
\(397\) 13.2942 3.56218i 0.667218 0.178781i 0.0907168 0.995877i \(-0.471084\pi\)
0.576501 + 0.817096i \(0.304418\pi\)
\(398\) −13.7670 + 13.7670i −0.690078 + 0.690078i
\(399\) 8.77113 3.55479i 0.439106 0.177962i
\(400\) 0 0
\(401\) −3.22263 + 12.0270i −0.160931 + 0.600601i 0.837594 + 0.546294i \(0.183962\pi\)
−0.998524 + 0.0543073i \(0.982705\pi\)
\(402\) 9.51666 12.2079i 0.474648 0.608876i
\(403\) −9.43782 + 8.29423i −0.470131 + 0.413165i
\(404\) 1.61507i 0.0803525i
\(405\) 0 0
\(406\) 7.63397 + 13.2224i 0.378868 + 0.656218i
\(407\) 19.3003 + 11.1430i 0.956681 + 0.552340i
\(408\) −22.5934 + 2.79889i −1.11854 + 0.138566i
\(409\) −28.9904 + 7.76795i −1.43348 + 0.384100i −0.890246 0.455480i \(-0.849468\pi\)
−0.543236 + 0.839580i \(0.682801\pi\)
\(410\) 0 0
\(411\) −1.43156 11.5559i −0.0706135 0.570011i
\(412\) 1.60770 + 0.928203i 0.0792055 + 0.0457293i
\(413\) −3.68886 + 2.12976i −0.181517 + 0.104799i
\(414\) 0 0
\(415\) 0 0
\(416\) 1.06488 + 5.32441i 0.0522102 + 0.261051i
\(417\) −19.5856 + 25.1244i −0.959113 + 1.23034i
\(418\) 23.1244 + 6.19615i 1.13105 + 0.303064i
\(419\) 8.23373 4.75374i 0.402244 0.232236i −0.285208 0.958466i \(-0.592063\pi\)
0.687452 + 0.726230i \(0.258729\pi\)
\(420\) 0 0
\(421\) −7.83013 7.83013i −0.381617 0.381617i 0.490067 0.871685i \(-0.336972\pi\)
−0.871685 + 0.490067i \(0.836972\pi\)
\(422\) 2.62398 0.703093i 0.127733 0.0342260i
\(423\) 15.7869 8.79543i 0.767584 0.427648i
\(424\) −1.43782 + 1.43782i −0.0698268 + 0.0698268i
\(425\) 0 0
\(426\) 7.78112 + 1.08500i 0.376997 + 0.0525683i
\(427\) −2.56218 + 9.56218i −0.123992 + 0.462746i
\(428\) 5.09505i 0.246278i
\(429\) −22.9691 11.5162i −1.10896 0.556007i
\(430\) 0 0
\(431\) −36.5473 9.79282i −1.76042 0.471704i −0.773622 0.633648i \(-0.781557\pi\)
−0.986800 + 0.161944i \(0.948224\pi\)
\(432\) 2.49938 + 23.0611i 0.120252 + 1.10953i
\(433\) −15.5263 + 26.8923i −0.746145 + 1.29236i 0.203512 + 0.979072i \(0.434764\pi\)
−0.949658 + 0.313289i \(0.898569\pi\)
\(434\) 5.24796 5.24796i 0.251910 0.251910i
\(435\) 0 0
\(436\) −1.29423 4.83013i −0.0619823 0.231321i
\(437\) 0 0
\(438\) −3.08346 + 1.24967i −0.147333 + 0.0597117i
\(439\) −1.09808 + 0.633975i −0.0524083 + 0.0302580i −0.525975 0.850500i \(-0.676300\pi\)
0.473567 + 0.880758i \(0.342966\pi\)
\(440\) 0 0
\(441\) −14.5466 + 3.66025i −0.692694 + 0.174298i
\(442\) −18.0622 20.5526i −0.859130 0.977586i
\(443\) −11.2195 −0.533054 −0.266527 0.963827i \(-0.585876\pi\)
−0.266527 + 0.963827i \(0.585876\pi\)
\(444\) 2.00602 1.51505i 0.0952017 0.0719009i
\(445\) 0 0
\(446\) −19.5092 + 33.7909i −0.923787 + 1.60005i
\(447\) 1.83816 + 14.8382i 0.0869422 + 0.701821i
\(448\) 2.43782 + 9.09808i 0.115176 + 0.429844i
\(449\) 19.8710 5.32441i 0.937769 0.251275i 0.242605 0.970125i \(-0.421998\pi\)
0.695165 + 0.718851i \(0.255331\pi\)
\(450\) 0 0
\(451\) −11.5622 + 20.0263i −0.544442 + 0.943001i
\(452\) 2.38711 1.37820i 0.112280 0.0648251i
\(453\) −1.04750 + 0.791121i −0.0492157 + 0.0371701i
\(454\) 30.5359i 1.43312i
\(455\) 0 0
\(456\) −10.7321 + 13.7670i −0.502574 + 0.644700i
\(457\) −3.76795 1.00962i −0.176257 0.0472280i 0.169611 0.985511i \(-0.445749\pi\)
−0.345868 + 0.938283i \(0.612416\pi\)
\(458\) −15.0408 26.0514i −0.702809 1.21730i
\(459\) −15.4590 21.1332i −0.721565 0.986412i
\(460\) 0 0
\(461\) −5.50531 20.5461i −0.256408 0.956927i −0.967302 0.253628i \(-0.918376\pi\)
0.710894 0.703299i \(-0.248290\pi\)
\(462\) 13.9773 + 5.91520i 0.650282 + 0.275200i
\(463\) −23.0526 23.0526i −1.07134 1.07134i −0.997251 0.0740918i \(-0.976394\pi\)
−0.0740918 0.997251i \(-0.523606\pi\)
\(464\) −27.7149 16.0012i −1.28663 0.742838i
\(465\) 0 0
\(466\) −25.3923 6.80385i −1.17628 0.315182i
\(467\) 19.1679i 0.886984i −0.896278 0.443492i \(-0.853739\pi\)
0.896278 0.443492i \(-0.146261\pi\)
\(468\) −2.20607 + 1.87975i −0.101976 + 0.0868916i
\(469\) 8.39230 0.387521
\(470\) 0 0
\(471\) −1.14909 + 8.24078i −0.0529474 + 0.379715i
\(472\) 3.92820 6.80385i 0.180810 0.313172i
\(473\) 6.38929 + 6.38929i 0.293780 + 0.293780i
\(474\) 2.03319 4.80432i 0.0933877 0.220670i
\(475\) 0 0
\(476\) 1.35022 + 1.35022i 0.0618871 + 0.0618871i
\(477\) −2.24944 0.639761i −0.102995 0.0292926i
\(478\) 7.02628 + 12.1699i 0.321375 + 0.556637i
\(479\) −5.32441 + 19.8710i −0.243279 + 0.907928i 0.730962 + 0.682418i \(0.239072\pi\)
−0.974241 + 0.225510i \(0.927595\pi\)
\(480\) 0 0
\(481\) −18.5000 6.25833i −0.843527 0.285355i
\(482\) 21.9243 0.998624
\(483\) 0 0
\(484\) 0.794229 + 1.37564i 0.0361013 + 0.0625293i
\(485\) 0 0
\(486\) −19.1572 + 13.5688i −0.868990 + 0.615492i
\(487\) 1.49038 + 5.56218i 0.0675356 + 0.252046i 0.991437 0.130584i \(-0.0416851\pi\)
−0.923902 + 0.382630i \(0.875018\pi\)
\(488\) −4.72576 17.6368i −0.213925 0.798379i
\(489\) 7.11819 0.881808i 0.321896 0.0398767i
\(490\) 0 0
\(491\) 14.2612 + 24.7012i 0.643600 + 1.11475i 0.984623 + 0.174693i \(0.0558934\pi\)
−0.341023 + 0.940055i \(0.610773\pi\)
\(492\) 1.57203 + 2.08148i 0.0708728 + 0.0938403i
\(493\) 36.1244 1.62696
\(494\) −20.9359 1.35022i −0.941949 0.0607491i
\(495\) 0 0
\(496\) −4.02628 + 15.0263i −0.180785 + 0.674700i
\(497\) 2.12976 + 3.68886i 0.0955330 + 0.165468i
\(498\) 9.94624 4.03104i 0.445702 0.180635i
\(499\) 2.46410 + 2.46410i 0.110308 + 0.110308i 0.760107 0.649798i \(-0.225147\pi\)
−0.649798 + 0.760107i \(0.725147\pi\)
\(500\) 0 0
\(501\) −21.4470 9.07638i −0.958181 0.405503i
\(502\) −1.05256 1.05256i −0.0469780 0.0469780i
\(503\) −1.63555 + 2.83286i −0.0729256 + 0.126311i −0.900182 0.435513i \(-0.856567\pi\)
0.827257 + 0.561824i \(0.189900\pi\)
\(504\) −7.94401 + 7.70467i −0.353854 + 0.343193i
\(505\) 0 0
\(506\) 0 0
\(507\) 21.7167 + 5.94846i 0.964473 + 0.264180i
\(508\) 2.44486i 0.108473i
\(509\) −14.1568 3.79330i −0.627489 0.168135i −0.0689588 0.997620i \(-0.521968\pi\)
−0.558530 + 0.829484i \(0.688634\pi\)
\(510\) 0 0
\(511\) −1.56218 0.901924i −0.0691067 0.0398988i
\(512\) −11.7137 11.7137i −0.517678 0.517678i
\(513\) −19.8393 3.07638i −0.875926 0.135826i
\(514\) 8.38269 + 31.2846i 0.369744 + 1.37990i
\(515\) 0 0
\(516\) 0.944608 0.382834i 0.0415841 0.0168533i
\(517\) 12.3923 + 21.4641i 0.545013 + 0.943990i
\(518\) 11.1430 + 2.98577i 0.489597 + 0.131187i
\(519\) −23.8452 18.5885i −1.04669 0.815943i
\(520\) 0 0
\(521\) 2.49155i 0.109157i −0.998509 0.0545785i \(-0.982618\pi\)
0.998509 0.0545785i \(-0.0173815\pi\)
\(522\) 0.495311 32.3844i 0.0216792 1.41743i
\(523\) 33.7583 19.4904i 1.47615 0.852255i 0.476511 0.879169i \(-0.341901\pi\)
0.999638 + 0.0269137i \(0.00856792\pi\)
\(524\) 1.06488 1.84443i 0.0465196 0.0805743i
\(525\) 0 0
\(526\) 32.4186 8.68653i 1.41352 0.378751i
\(527\) −4.54486 16.9617i −0.197977 0.738862i
\(528\) −31.5713 + 3.91108i −1.37397 + 0.170208i
\(529\) −11.5000 + 19.9186i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) 9.03477 + 0.138184i 0.392076 + 0.00599669i
\(532\) 1.46410 0.0634769
\(533\) 6.49373 19.1959i 0.281275 0.831465i
\(534\) 19.1962 + 14.9643i 0.830699 + 0.647570i
\(535\) 0 0
\(536\) −13.4052 + 7.73951i −0.579018 + 0.334296i
\(537\) −17.2698 42.6117i −0.745247 1.83883i
\(538\) 15.2679 15.2679i 0.658248 0.658248i
\(539\) −5.32441 19.8710i −0.229339 0.855904i
\(540\) 0 0
\(541\) −12.6865 + 12.6865i −0.545437 + 0.545437i −0.925118 0.379681i \(-0.876034\pi\)
0.379681 + 0.925118i \(0.376034\pi\)
\(542\) 5.81863 10.0782i 0.249931 0.432894i
\(543\) −0.717608 + 5.14636i −0.0307955 + 0.220852i
\(544\) −7.33013 1.96410i −0.314277 0.0842102i
\(545\) 0 0
\(546\) −13.0274 2.68082i −0.557521 0.114729i
\(547\) 2.00000i 0.0855138i 0.999086 + 0.0427569i \(0.0136141\pi\)
−0.999086 + 0.0427569i \(0.986386\pi\)
\(548\) 0.466229 1.73999i 0.0199163 0.0743287i
\(549\) 15.0746 14.6204i 0.643368 0.623984i
\(550\) 0 0
\(551\) 19.5856 19.5856i 0.834376 0.834376i
\(552\) 0 0
\(553\) 2.73205 0.732051i 0.116179 0.0311300i
\(554\) 29.3785 + 29.3785i 1.24817 + 1.24817i
\(555\) 0 0
\(556\) −4.26795 + 2.46410i −0.181001 + 0.104501i
\(557\) 24.7292 + 6.62616i 1.04781 + 0.280759i 0.741346 0.671123i \(-0.234188\pi\)
0.306462 + 0.951883i \(0.400855\pi\)
\(558\) −15.2679 + 3.84177i −0.646344 + 0.162635i
\(559\) −6.58846 4.39230i −0.278662 0.185775i
\(560\) 0 0
\(561\) 28.6558 21.6422i 1.20985 0.913735i
\(562\) −22.3756 + 12.9186i −0.943860 + 0.544938i
\(563\) −8.72794 5.03908i −0.367839 0.212372i 0.304675 0.952456i \(-0.401452\pi\)
−0.672514 + 0.740085i \(0.734785\pi\)
\(564\) 2.77449 0.343706i 0.116827 0.0144726i
\(565\) 0 0
\(566\) 9.58394 2.56801i 0.402843 0.107941i
\(567\) −12.1877 3.66867i −0.511837 0.154070i
\(568\) −6.80385 3.92820i −0.285483 0.164824i
\(569\) −1.35022 2.33864i −0.0566040 0.0980411i 0.836335 0.548219i \(-0.184694\pi\)
−0.892939 + 0.450178i \(0.851361\pi\)
\(570\) 0 0
\(571\) 1.94744i 0.0814979i −0.999169 0.0407489i \(-0.987026\pi\)
0.999169 0.0407489i \(-0.0129744\pi\)
\(572\) −2.62398 2.98577i −0.109714 0.124841i
\(573\) −6.59817 5.14359i −0.275643 0.214877i
\(574\) −3.09808 + 11.5622i −0.129311 + 0.482596i
\(575\) 0 0
\(576\) 5.46595 19.2186i 0.227748 0.800775i
\(577\) 22.4904 22.4904i 0.936287 0.936287i −0.0618016 0.998088i \(-0.519685\pi\)
0.998088 + 0.0618016i \(0.0196846\pi\)
\(578\) 12.2079 3.27110i 0.507783 0.136060i
\(579\) −0.0936291 + 0.221240i −0.00389109 + 0.00919443i
\(580\) 0 0
\(581\) 5.03908 + 2.90931i 0.209056 + 0.120699i
\(582\) −4.37016 0.609374i −0.181149 0.0252594i
\(583\) 0.830127 3.09808i 0.0343803 0.128309i
\(584\) 3.32707 0.137675
\(585\) 0 0
\(586\) 2.71281 0.112065
\(587\) −4.83020 + 18.0265i −0.199364 + 0.744035i 0.791730 + 0.610871i \(0.209181\pi\)
−0.991094 + 0.133164i \(0.957486\pi\)
\(588\) −2.29827 0.320471i −0.0947792 0.0132160i
\(589\) −11.6603 6.73205i −0.480452 0.277389i
\(590\) 0 0
\(591\) −2.77739 + 6.56283i −0.114247 + 0.269959i
\(592\) −23.3564 + 6.25833i −0.959942 + 0.257216i
\(593\) 10.3635 10.3635i 0.425578 0.425578i −0.461541 0.887119i \(-0.652703\pi\)
0.887119 + 0.461541i \(0.152703\pi\)
\(594\) −19.0087 25.9858i −0.779937 1.06621i
\(595\) 0 0
\(596\) −0.598653 + 2.23420i −0.0245218 + 0.0915166i
\(597\) 17.6603 + 13.7670i 0.722786 + 0.563446i
\(598\) 0 0
\(599\) 20.7270i 0.846881i −0.905924 0.423441i \(-0.860822\pi\)
0.905924 0.423441i \(-0.139178\pi\)
\(600\) 0 0
\(601\) −11.7942 20.4282i −0.481097 0.833284i 0.518668 0.854976i \(-0.326428\pi\)
−0.999765 + 0.0216919i \(0.993095\pi\)
\(602\) 4.05065 + 2.33864i 0.165092 + 0.0953160i
\(603\) −15.2797 9.13612i −0.622238 0.372052i
\(604\) −0.196152 + 0.0525589i −0.00798133 + 0.00213859i
\(605\) 0 0
\(606\) 15.6030 1.93291i 0.633828 0.0785192i
\(607\) 0.169873 + 0.0980762i 0.00689493 + 0.00398079i 0.503444 0.864028i \(-0.332066\pi\)
−0.496549 + 0.868009i \(0.665400\pi\)
\(608\) −5.03908 + 2.90931i −0.204362 + 0.117988i
\(609\) 14.0126 10.5830i 0.567820 0.428845i
\(610\) 0 0
\(611\) −14.3377 16.3145i −0.580041 0.660016i
\(612\) −0.988427 3.92820i −0.0399548 0.158788i
\(613\) 42.3827 + 11.3564i 1.71182 + 0.458681i 0.975870 0.218354i \(-0.0700687\pi\)
0.735951 + 0.677035i \(0.236735\pi\)
\(614\) 15.4790 8.93682i 0.624683 0.360661i
\(615\) 0 0
\(616\) −10.7321 10.7321i −0.432407 0.432407i
\(617\) 17.8457 4.78173i 0.718439 0.192505i 0.118964 0.992899i \(-0.462043\pi\)
0.599475 + 0.800393i \(0.295376\pi\)
\(618\) 7.04319 16.6427i 0.283319 0.669466i
\(619\) 31.6603 31.6603i 1.27253 1.27253i 0.327778 0.944755i \(-0.393700\pi\)
0.944755 0.327778i \(-0.106300\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 3.92820 14.6603i 0.157507 0.587823i
\(623\) 13.1963i 0.528701i
\(624\) 26.4574 8.78674i 1.05914 0.351751i
\(625\) 0 0
\(626\) −2.90931 0.779548i −0.116280 0.0311570i
\(627\) 3.80255 27.2702i 0.151859 1.08907i
\(628\) −0.643594 + 1.11474i −0.0256822 + 0.0444828i
\(629\) 19.3003 19.3003i 0.769554 0.769554i
\(630\) 0 0
\(631\) 5.73205 + 21.3923i 0.228189 + 0.851614i 0.981102 + 0.193493i \(0.0619818\pi\)
−0.752912 + 0.658121i \(0.771352\pi\)
\(632\) −3.68886 + 3.68886i −0.146735 + 0.146735i
\(633\) −1.17353 2.89559i −0.0466437 0.115089i
\(634\) −20.9378 + 12.0885i −0.831547 + 0.480094i
\(635\) 0 0
\(636\) −0.285334 0.222432i −0.0113142 0.00882000i
\(637\) 7.99038 + 16.1603i 0.316590 + 0.640293i
\(638\) 44.4192 1.75857
\(639\) 0.138184 9.03477i 0.00546649 0.357410i
\(640\) 0 0
\(641\) −22.6758 + 39.2757i −0.895642 + 1.55130i −0.0626345 + 0.998037i \(0.519950\pi\)
−0.833008 + 0.553261i \(0.813383\pi\)
\(642\) −49.2228 + 6.09776i −1.94267 + 0.240659i
\(643\) −1.87564 7.00000i −0.0739682 0.276053i 0.919029 0.394190i \(-0.128975\pi\)
−0.992997 + 0.118136i \(0.962308\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 14.6603 25.3923i 0.576800 0.999047i
\(647\) −14.2612 + 8.23373i −0.560667 + 0.323701i −0.753413 0.657547i \(-0.771594\pi\)
0.192746 + 0.981249i \(0.438261\pi\)
\(648\) 22.8511 5.37965i 0.897674 0.211333i
\(649\) 12.3923i 0.486441i
\(650\) 0 0
\(651\) −6.73205 5.24796i −0.263850 0.205684i
\(652\) 1.07180 + 0.287187i 0.0419748 + 0.0112471i
\(653\) −4.83020 8.36615i −0.189020 0.327393i 0.755904 0.654683i \(-0.227198\pi\)
−0.944924 + 0.327290i \(0.893865\pi\)
\(654\) −45.1145 + 18.2841i −1.76411 + 0.714966i
\(655\) 0 0
\(656\) −6.49373 24.2349i −0.253538 0.946216i
\(657\) 1.86237 + 3.34275i 0.0726578 + 0.130413i
\(658\) 9.07180 + 9.07180i 0.353655 + 0.353655i
\(659\) 23.4834 + 13.5581i 0.914783 + 0.528150i 0.881967 0.471311i \(-0.156219\pi\)
0.0328158 + 0.999461i \(0.489553\pi\)
\(660\) 0 0
\(661\) 9.42820 + 2.52628i 0.366715 + 0.0982609i 0.437470 0.899233i \(-0.355874\pi\)
−0.0707559 + 0.997494i \(0.522541\pi\)
\(662\) 51.5321i 2.00285i
\(663\) −20.9047 + 23.5222i −0.811871 + 0.913526i
\(664\) −10.7321 −0.416484
\(665\) 0 0
\(666\) −17.0375 17.5668i −0.660191 0.680699i
\(667\) 0 0
\(668\) −2.54752 2.54752i −0.0985666 0.0985666i
\(669\) 41.3274 + 17.4898i 1.59781 + 0.676194i
\(670\) 0 0
\(671\) 20.3652 + 20.3652i 0.786189 + 0.786189i
\(672\) −3.41876 + 1.38556i −0.131881 + 0.0534493i
\(673\) 21.3564 + 36.9904i 0.823229 + 1.42587i 0.903265 + 0.429082i \(0.141163\pi\)
−0.0800364 + 0.996792i \(0.525504\pi\)
\(674\) −7.19683 + 26.8589i −0.277211 + 1.03457i
\(675\) 0 0
\(676\) 2.76795 + 2.11474i 0.106460 + 0.0813360i
\(677\) −9.66040 −0.371279 −0.185640 0.982618i \(-0.559436\pi\)
−0.185640 + 0.982618i \(0.559436\pi\)
\(678\) −16.1716 21.4123i −0.621065 0.822333i
\(679\) −1.19615 2.07180i −0.0459041 0.0795083i
\(680\) 0 0
\(681\) 34.8536 4.31769i 1.33559 0.165454i
\(682\) −5.58846 20.8564i −0.213993 0.798633i
\(683\) −12.1315 45.2752i −0.464198 1.73241i −0.659536 0.751673i \(-0.729247\pi\)
0.195338 0.980736i \(-0.437420\pi\)
\(684\) −2.66566 1.59387i −0.101924 0.0609430i
\(685\) 0 0
\(686\) −12.7786 22.1332i −0.487889 0.845048i
\(687\) −27.6083 + 20.8511i −1.05332 + 0.795519i
\(688\) −9.80385 −0.373768
\(689\) −0.180895 + 2.80487i −0.00689154 + 0.106857i
\(690\) 0 0
\(691\) 4.88269 18.2224i 0.185746 0.693214i −0.808723 0.588189i \(-0.799841\pi\)
0.994470 0.105025i \(-0.0334922\pi\)
\(692\) −2.33864 4.05065i −0.0889019 0.153983i
\(693\) 4.77524 16.7900i 0.181396 0.637800i
\(694\) 21.9090 + 21.9090i 0.831653 + 0.831653i
\(695\) 0 0
\(696\) −12.6229 + 29.8272i −0.478469 + 1.13060i
\(697\) 20.0263 + 20.0263i 0.758549 + 0.758549i
\(698\) −21.4301 + 37.1180i −0.811140 + 1.40494i
\(699\) −4.17549 + 29.9448i −0.157932 + 1.13261i
\(700\) 0 0
\(701\) 12.7786 0.482641 0.241320 0.970446i \(-0.422420\pi\)
0.241320 + 0.970446i \(0.422420\pi\)
\(702\) 20.8003 + 19.0630i 0.785058 + 0.719485i
\(703\) 20.9282i 0.789322i
\(704\) 26.4692 + 7.09239i 0.997594 + 0.267304i
\(705\) 0 0
\(706\) −18.4474 10.6506i −0.694279 0.400842i
\(707\) 6.02751 + 6.02751i 0.226688 + 0.226688i
\(708\) 1.28731 + 0.544793i 0.0483802 + 0.0204746i
\(709\) 3.03590 + 11.3301i 0.114016 + 0.425512i 0.999211 0.0397068i \(-0.0126424\pi\)
−0.885196 + 0.465219i \(0.845976\pi\)
\(710\) 0 0
\(711\) −5.77113 1.64136i −0.216434 0.0615559i
\(712\) −12.1699 21.0788i −0.456085 0.789963i
\(713\) 0 0
\(714\) 11.4284 14.6603i 0.427696 0.548646i
\(715\) 0 0
\(716\) 7.11287i 0.265821i
\(717\) 12.8972 9.74056i 0.481653 0.363768i
\(718\) −33.6340 + 19.4186i −1.25521 + 0.724695i
\(719\) −3.68886 + 6.38929i −0.137571 + 0.238280i −0.926577 0.376106i \(-0.877263\pi\)
0.789005 + 0.614386i \(0.210596\pi\)
\(720\) 0 0
\(721\) 9.46410 2.53590i 0.352462 0.0944418i
\(722\) 1.58708 + 5.92307i 0.0590650 + 0.220434i
\(723\) −3.10003 25.0243i −0.115292 0.930665i
\(724\) −0.401924 + 0.696152i −0.0149374 + 0.0258723i
\(725\) 0 0
\(726\) 12.3394 9.31934i 0.457959 0.345873i
\(727\) −19.5167 −0.723833 −0.361916 0.932211i \(-0.617877\pi\)
−0.361916 + 0.932211i \(0.617877\pi\)
\(728\) 11.0666 + 7.37772i 0.410155 + 0.273437i
\(729\) 18.1962 + 19.9474i 0.673932 + 0.738794i
\(730\) 0 0
\(731\) 9.58394 5.53329i 0.354475 0.204656i
\(732\) 3.01084 1.22024i 0.111284 0.0451014i
\(733\) −6.77757 + 6.77757i −0.250335 + 0.250335i −0.821108 0.570773i \(-0.806644\pi\)
0.570773 + 0.821108i \(0.306644\pi\)
\(734\) −11.8461 44.2104i −0.437249 1.63183i
\(735\) 0 0
\(736\) 0 0
\(737\) 12.2079 21.1447i 0.449685 0.778876i
\(738\) 18.2276 17.6784i 0.670966 0.650750i
\(739\) 11.1244 + 2.98076i 0.409216 + 0.109649i 0.457554 0.889182i \(-0.348726\pi\)
−0.0483378 + 0.998831i \(0.515392\pi\)
\(740\) 0 0
\(741\) 1.41914 + 24.0870i 0.0521334 + 0.884860i
\(742\) 1.66025i 0.0609498i
\(743\) −2.28268 + 8.51906i −0.0837432 + 0.312534i −0.995073 0.0991426i \(-0.968390\pi\)
0.911330 + 0.411677i \(0.135057\pi\)
\(744\) 15.5930 + 2.17429i 0.571667 + 0.0797132i
\(745\) 0 0
\(746\) 12.3403 12.3403i 0.451812 0.451812i
\(747\) −6.00739 10.7826i −0.219799 0.394516i
\(748\) 5.36603 1.43782i 0.196201 0.0525720i
\(749\) −19.0150 19.0150i −0.694792 0.694792i
\(750\) 0 0
\(751\) −29.2750 + 16.9019i −1.06826 + 0.616760i −0.927705 0.373313i \(-0.878222\pi\)
−0.140554 + 0.990073i \(0.544888\pi\)
\(752\) −25.9749 6.95996i −0.947208 0.253804i
\(753\) −1.05256 + 1.35022i −0.0383574 + 0.0492046i
\(754\) −38.1699 + 7.63397i −1.39006 + 0.278013i
\(755\) 0 0
\(756\) −1.53422 1.23418i −0.0557990 0.0448866i
\(757\) 14.5359 8.39230i 0.528316 0.305024i −0.212014 0.977267i \(-0.568002\pi\)
0.740331 + 0.672243i \(0.234669\pi\)
\(758\) 19.3003 + 11.1430i 0.701019 + 0.404733i
\(759\) 0 0
\(760\) 0 0
\(761\) 17.7412 4.75374i 0.643118 0.172323i 0.0775029 0.996992i \(-0.475305\pi\)
0.565616 + 0.824669i \(0.308639\pi\)
\(762\) −23.6196 + 2.92602i −0.855647 + 0.105998i
\(763\) −22.8564 13.1962i −0.827457 0.477733i
\(764\) −0.647124 1.12085i −0.0234121 0.0405510i
\(765\) 0 0
\(766\) 49.5692i 1.79101i
\(767\) −2.12976 10.6488i −0.0769014 0.384507i
\(768\) 6.73060 8.63397i 0.242870 0.311552i
\(769\) 10.8301 40.4186i 0.390544 1.45753i −0.438694 0.898636i \(-0.644559\pi\)
0.829238 0.558895i \(-0.188775\pi\)
\(770\) 0 0
\(771\) 34.5229 13.9915i 1.24331 0.503893i
\(772\) −0.0262794 + 0.0262794i −0.000945818 + 0.000945818i
\(773\) 41.5864 11.1430i 1.49576 0.400787i 0.584081 0.811695i \(-0.301455\pi\)
0.911677 + 0.410908i \(0.134788\pi\)
\(774\) −4.82903 8.66759i −0.173576 0.311550i
\(775\) 0 0
\(776\) 3.82129 + 2.20622i 0.137176 + 0.0791987i
\(777\) 1.83235 13.1408i 0.0657353 0.471424i
\(778\) −8.76795 + 32.7224i −0.314346 + 1.17316i
\(779\) 21.7154 0.778035
\(780\) 0 0
\(781\) 12.3923 0.443432
\(782\) 0 0
\(783\) −37.0335 + 4.01372i −1.32347 + 0.143439i
\(784\) 19.3301 + 11.1603i 0.690362 + 0.398581i
\(785\) 0 0
\(786\) −19.0933 8.08031i −0.681036 0.288215i
\(787\) −16.0263 + 4.29423i −0.571275 + 0.153073i −0.532881 0.846190i \(-0.678891\pi\)
−0.0383938 + 0.999263i \(0.512224\pi\)
\(788\) −0.779548 + 0.779548i −0.0277702 + 0.0277702i
\(789\) −14.4987 35.7742i −0.516167 1.27360i
\(790\) 0 0
\(791\) 3.76532 14.0524i 0.133879 0.499644i
\(792\) 7.85641 + 31.2229i 0.279165 + 1.10946i
\(793\) −21.0000 14.0000i −0.745732 0.497155i
\(794\) 20.7270i 0.735573i
\(795\) 0 0
\(796\) 1.73205 + 3.00000i 0.0613909 + 0.106332i
\(797\) 34.9118 + 20.1563i 1.23664 + 0.713973i 0.968405 0.249381i \(-0.0802272\pi\)
0.268232 + 0.963354i \(0.413561\pi\)
\(798\) −1.75224 14.1445i −0.0620286 0.500711i
\(799\) 29.3205 7.85641i 1.03729 0.277940i
\(800\) 0 0
\(801\) 14.3660 24.0264i 0.507596 0.848929i
\(802\) 16.2391 + 9.37564i 0.573422 + 0.331066i
\(803\) −4.54486 + 2.62398i −0.160385 + 0.0925982i
\(804\) −1.65983 2.19773i −0.0585377 0.0775079i
\(805\) 0 0
\(806\) 8.38664 + 16.9617i 0.295407 + 0.597449i
\(807\) −19.5856 15.2679i −0.689447 0.537457i
\(808\) −15.1865 4.06922i −0.534260 0.143155i
\(809\) −24.0261 + 13.8715i −0.844712 + 0.487694i −0.858863 0.512205i \(-0.828829\pi\)
0.0141514 + 0.999900i \(0.495495\pi\)
\(810\) 0 0
\(811\) 19.0000 + 19.0000i 0.667180 + 0.667180i 0.957062 0.289882i \(-0.0936161\pi\)
−0.289882 + 0.957062i \(0.593616\pi\)
\(812\) 2.62398 0.703093i 0.0920836 0.0246737i
\(813\) −12.3259 5.21634i −0.432289 0.182945i
\(814\) 23.7321 23.7321i 0.831808 0.831808i
\(815\) 0 0
\(816\) −5.38085 + 38.5891i −0.188367 + 1.35089i
\(817\) 2.19615 8.19615i 0.0768336 0.286747i
\(818\) 45.1988i 1.58034i
\(819\) −1.21785 + 15.2485i −0.0425549 + 0.532826i
\(820\) 0 0
\(821\) −41.5864 11.1430i −1.45137 0.388895i −0.554873 0.831935i \(-0.687233\pi\)
−0.896502 + 0.443040i \(0.853900\pi\)
\(822\) −17.3679 2.42177i −0.605774 0.0844690i
\(823\) −4.26795 + 7.39230i −0.148771 + 0.257680i −0.930774 0.365596i \(-0.880865\pi\)
0.782002 + 0.623276i \(0.214199\pi\)
\(824\) −12.7786 + 12.7786i −0.445163 + 0.445163i
\(825\) 0 0
\(826\) 1.66025 + 6.19615i 0.0577676 + 0.215592i
\(827\) 31.7936 31.7936i 1.10557 1.10557i 0.111845 0.993726i \(-0.464324\pi\)
0.993726 0.111845i \(-0.0356760\pi\)
\(828\) 0 0
\(829\) −41.6769 + 24.0622i −1.44750 + 0.835714i −0.998332 0.0577338i \(-0.981613\pi\)
−0.449167 + 0.893448i \(0.648279\pi\)
\(830\) 0 0
\(831\) 29.3785 37.6865i 1.01913 1.30733i
\(832\) −23.9641 1.54552i −0.830806 0.0535812i
\(833\) −25.1954 −0.872968
\(834\) 28.9133 + 38.2832i 1.00119 + 1.32564i
\(835\) 0 0
\(836\) 2.12976 3.68886i 0.0736595 0.127582i
\(837\) 6.54383 + 16.8836i 0.226188 + 0.583582i
\(838\) −3.70577 13.8301i −0.128014 0.477754i
\(839\) 9.79282 2.62398i 0.338086 0.0905898i −0.0857819 0.996314i \(-0.527339\pi\)
0.423868 + 0.905724i \(0.360672\pi\)
\(840\) 0 0
\(841\) 11.1962 19.3923i 0.386074 0.668700i
\(842\) −14.4421 + 8.33816i −0.497708 + 0.287352i
\(843\) 17.9091 + 23.7128i 0.616822 + 0.816714i
\(844\) 0.483340i 0.0166372i
\(845\) 0 0
\(846\) −6.64102 26.3927i −0.228323 0.907400i
\(847\) 8.09808 + 2.16987i 0.278253 + 0.0745577i
\(848\) 1.73999 + 3.01375i 0.0597515 + 0.103493i
\(849\) −4.28626 10.5760i −0.147104 0.362967i
\(850\) 0 0
\(851\) 0 0
\(852\) 0.544793 1.28731i 0.0186643 0.0441027i
\(853\) 22.3660 + 22.3660i 0.765798 + 0.765798i 0.977364 0.211566i \(-0.0678562\pi\)
−0.211566 + 0.977364i \(0.567856\pi\)
\(854\) 12.9110 + 7.45418i 0.441806 + 0.255077i
\(855\) 0 0
\(856\) 47.9090 + 12.8372i 1.63749 + 0.438765i
\(857\) 3.32707i 0.113651i 0.998384 + 0.0568253i \(0.0180978\pi\)
−0.998384 + 0.0568253i \(0.981902\pi\)
\(858\) −25.7048 + 28.9234i −0.877549 + 0.987428i
\(859\) −39.1769 −1.33670 −0.668350 0.743847i \(-0.732999\pi\)
−0.668350 + 0.743847i \(0.732999\pi\)
\(860\) 0 0
\(861\) 13.6351 + 1.90128i 0.464683 + 0.0647953i
\(862\) −28.4904 + 49.3468i −0.970386 + 1.68076i
\(863\) 18.2354 + 18.2354i 0.620741 + 0.620741i 0.945721 0.324980i \(-0.105358\pi\)
−0.324980 + 0.945721i \(0.605358\pi\)
\(864\) 7.73284 + 1.19909i 0.263077 + 0.0407940i
\(865\) 0 0
\(866\) 33.0673 + 33.0673i 1.12367 + 1.12367i
\(867\) −5.45979 13.4716i −0.185424 0.457518i
\(868\) −0.660254 1.14359i −0.0224105 0.0388161i
\(869\) 2.12976 7.94839i 0.0722473 0.269631i
\(870\) 0 0
\(871\) −6.85641 + 20.2679i −0.232320 + 0.686753i
\(872\) 48.6788 1.64847
\(873\) −0.0776093 + 5.07425i −0.00262668 + 0.171737i
\(874\) 0 0
\(875\) 0 0
\(876\) 0.0727771 + 0.587477i 0.00245891 + 0.0198490i
\(877\) 7.76795 + 28.9904i 0.262305 + 0.978936i 0.963879 + 0.266339i \(0.0858142\pi\)
−0.701574 + 0.712596i \(0.747519\pi\)
\(878\) 0.494214 + 1.84443i 0.0166789 + 0.0622465i
\(879\) −0.383584 3.09640i −0.0129380 0.104439i
\(880\) 0 0
\(881\) 11.7417 + 20.3372i 0.395588 + 0.685178i 0.993176 0.116625i \(-0.0372076\pi\)
−0.597588 + 0.801803i \(0.703874\pi\)
\(882\) −0.345461 + 22.5869i −0.0116323 + 0.760541i
\(883\) −33.3731 −1.12309 −0.561547 0.827445i \(-0.689793\pi\)
−0.561547 + 0.827445i \(0.689793\pi\)
\(884\) −4.36397 + 2.15775i −0.146776 + 0.0725730i
\(885\) 0 0
\(886\) −4.37307 + 16.3205i −0.146916 + 0.548298i
\(887\) −12.6257 21.8683i −0.423929 0.734266i 0.572391 0.819981i \(-0.306016\pi\)
−0.996320 + 0.0857146i \(0.972683\pi\)
\(888\) 9.19180 + 22.6800i 0.308457 + 0.761089i
\(889\) −9.12436 9.12436i −0.306021 0.306021i
\(890\) 0 0
\(891\) −26.9723 + 25.3708i −0.903607 + 0.849954i
\(892\) 4.90897 + 4.90897i 0.164364 + 0.164364i
\(893\) 11.6373 20.1563i 0.389426 0.674505i
\(894\) 22.3009 + 3.10963i 0.745854 + 0.104002i
\(895\) 0 0
\(896\) 18.4443 0.616181
\(897\) 0 0
\(898\) 30.9808i 1.03384i
\(899\) −24.1305 6.46575i −0.804797 0.215645i
\(900\) 0 0
\(901\) −3.40192 1.96410i −0.113335 0.0654337i
\(902\) 24.6247 + 24.6247i 0.819913 + 0.819913i
\(903\) 2.09657 4.95408i 0.0697695 0.164861i
\(904\) 6.94486 + 25.9186i 0.230983 + 0.862039i
\(905\) 0 0
\(906\) 0.742522 + 1.83211i 0.0246686 + 0.0608677i
\(907\) −8.66025 15.0000i −0.287559 0.498067i 0.685668 0.727915i \(-0.259510\pi\)
−0.973227 + 0.229848i \(0.926177\pi\)
\(908\) 5.24796 + 1.40619i 0.174160 + 0.0466659i
\(909\) −4.41244 17.5359i −0.146351 0.581629i
\(910\) 0 0
\(911\) 1.55910i 0.0516552i 0.999666 + 0.0258276i \(0.00822209\pi\)
−0.999666 + 0.0258276i \(0.991778\pi\)
\(912\) 18.0046 + 23.8393i 0.596191 + 0.789398i
\(913\) 14.6603 8.46410i 0.485184 0.280121i
\(914\) −2.93730 + 5.08755i −0.0971572 + 0.168281i
\(915\) 0 0
\(916\) −5.16987 + 1.38526i −0.170817 + 0.0457704i
\(917\) −2.90931 10.8577i −0.0960740 0.358553i
\(918\) −36.7670 + 14.2504i −1.21349 + 0.470333i
\(919\) 6.70577 11.6147i 0.221203 0.383135i −0.733971 0.679181i \(-0.762335\pi\)
0.955174 + 0.296046i \(0.0956683\pi\)
\(920\) 0 0
\(921\) −12.3892 16.4041i −0.408236 0.540533i
\(922\) −32.0333 −1.05496
\(923\) −10.6488 + 2.12976i −0.350510 + 0.0701021i
\(924\) 1.66025 2.12976i 0.0546183 0.0700641i
\(925\) 0 0
\(926\) −42.5188 + 24.5483i −1.39726 + 0.806706i
\(927\) −19.9918 5.68585i −0.656616 0.186748i
\(928\) −7.63397 + 7.63397i −0.250597 + 0.250597i
\(929\) 5.27594 + 19.6901i 0.173098 + 0.646011i 0.996868 + 0.0790861i \(0.0252002\pi\)
−0.823770 + 0.566924i \(0.808133\pi\)
\(930\) 0 0
\(931\) −13.6603 + 13.6603i −0.447697 + 0.447697i
\(932\) −2.33864 + 4.05065i −0.0766048 + 0.132683i
\(933\) −17.2886 2.41072i −0.566004 0.0789234i
\(934\) −27.8827 7.47114i −0.912349 0.244463i
\(935\) 0 0
\(936\) −12.1171 25.4799i −0.396060 0.832837i
\(937\) 37.0000i 1.20874i −0.796705 0.604369i \(-0.793425\pi\)
0.796705 0.604369i \(-0.206575\pi\)
\(938\) 3.27110 12.2079i 0.106805 0.398603i
\(939\) −0.478405 + 3.43091i −0.0156122 + 0.111963i
\(940\) 0 0
\(941\) −9.14570 + 9.14570i −0.298141 + 0.298141i −0.840285 0.542144i \(-0.817613\pi\)
0.542144 + 0.840285i \(0.317613\pi\)
\(942\) 11.5396 + 4.88358i 0.375981 + 0.159116i
\(943\) 0 0
\(944\) −9.50749 9.50749i −0.309442 0.309442i
\(945\) 0 0
\(946\) 11.7846 6.80385i 0.383151 0.221212i
\(947\) −10.3635 2.77689i −0.336768 0.0902368i 0.0864720 0.996254i \(-0.472441\pi\)
−0.423240 + 0.906018i \(0.639107\pi\)
\(948\) −0.732051 0.570669i −0.0237759 0.0185345i
\(949\) 3.45448 3.03590i 0.112137 0.0985494i
\(950\) 0 0
\(951\) 16.7583 + 22.1891i 0.543425 + 0.719531i
\(952\) −16.0981 + 9.29423i −0.521742 + 0.301228i
\(953\) 1.71201 + 0.988427i 0.0554573 + 0.0320183i 0.527472 0.849572i \(-0.323140\pi\)
−0.472015 + 0.881591i \(0.656473\pi\)
\(954\) −1.80740 + 3.02279i −0.0585169 + 0.0978666i
\(955\) 0 0
\(956\) 2.41510 0.647124i 0.0781099 0.0209295i
\(957\) −6.28076 50.7000i −0.203028 1.63890i
\(958\) 26.8301 + 15.4904i 0.866842 + 0.500471i
\(959\) −4.75374 8.23373i −0.153506 0.265881i
\(960\) 0 0
\(961\) 18.8564i 0.608271i
\(962\) −16.3145 + 24.4718i −0.526002 + 0.789003i
\(963\) 13.9199 + 55.3205i 0.448563 + 1.78268i
\(964\) 1.00962 3.76795i 0.0325176 0.121357i
\(965\) 0 0
\(966\) 0 0
\(967\) 27.8564 27.8564i 0.895802 0.895802i −0.0992599 0.995062i \(-0.531648\pi\)
0.995062 + 0.0992599i \(0.0316475\pi\)
\(968\) −14.9363 + 4.00218i −0.480072 + 0.128635i
\(969\) −31.0556 13.1428i −0.997651 0.422207i
\(970\) 0 0
\(971\) 41.4335 + 23.9216i 1.32966 + 0.767682i 0.985247 0.171136i \(-0.0547436\pi\)
0.344416 + 0.938817i \(0.388077\pi\)
\(972\) 1.44976 + 3.91725i 0.0465011 + 0.125646i
\(973\) −6.73205 + 25.1244i −0.215820 + 0.805450i
\(974\) 8.67197 0.277868
\(975\) 0 0
\(976\) −31.2487 −1.00025
\(977\) −6.13194 + 22.8847i −0.196178 + 0.732147i 0.795780 + 0.605585i \(0.207061\pi\)
−0.991959 + 0.126562i \(0.959606\pi\)
\(978\) 1.49176 10.6982i 0.0477012 0.342092i
\(979\) 33.2487 + 19.1962i 1.06263 + 0.613512i
\(980\) 0 0
\(981\) 27.2485 + 48.9082i 0.869978 + 1.56152i
\(982\) 41.4904 11.1173i 1.32401 0.354768i
\(983\) −30.4433 + 30.4433i −0.970992 + 0.970992i −0.999591 0.0285990i \(-0.990895\pi\)
0.0285990 + 0.999591i \(0.490895\pi\)
\(984\) −23.5330 + 9.53754i −0.750206 + 0.304046i
\(985\) 0 0
\(986\) 14.0803 52.5485i 0.448409 1.67349i
\(987\) 9.07180 11.6373i 0.288758 0.370418i
\(988\) −1.19615 + 3.53590i −0.0380547 + 0.112492i
\(989\) 0 0
\(990\) 0 0
\(991\) 28.7846 + 49.8564i 0.914373 + 1.58374i 0.807816 + 0.589434i \(0.200649\pi\)
0.106557 + 0.994307i \(0.466017\pi\)
\(992\) 4.54486 + 2.62398i 0.144300 + 0.0833114i
\(993\) 58.8186 7.28650i 1.86655 0.231230i
\(994\) 6.19615 1.66025i 0.196530 0.0526601i
\(995\) 0 0
\(996\) −0.234755 1.89501i −0.00743851 0.0600457i
\(997\) 6.06218 + 3.50000i 0.191991 + 0.110846i 0.592914 0.805266i \(-0.297977\pi\)
−0.400923 + 0.916112i \(0.631311\pi\)
\(998\) 4.54486 2.62398i 0.143865 0.0830606i
\(999\) −17.6416 + 21.9305i −0.558156 + 0.693850i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bp.e.674.2 8
3.2 odd 2 inner 975.2.bp.e.674.1 8
5.2 odd 4 975.2.bo.d.401.2 8
5.3 odd 4 39.2.k.b.11.1 8
5.4 even 2 975.2.bp.f.674.1 8
13.6 odd 12 975.2.bp.f.149.2 8
15.2 even 4 975.2.bo.d.401.1 8
15.8 even 4 39.2.k.b.11.2 yes 8
15.14 odd 2 975.2.bp.f.674.2 8
20.3 even 4 624.2.cn.c.401.1 8
39.32 even 12 975.2.bp.f.149.1 8
60.23 odd 4 624.2.cn.c.401.2 8
65.3 odd 12 507.2.f.f.437.3 8
65.8 even 4 507.2.k.f.80.2 8
65.18 even 4 507.2.k.e.80.1 8
65.19 odd 12 inner 975.2.bp.e.149.1 8
65.23 odd 12 507.2.f.e.437.2 8
65.28 even 12 507.2.f.f.239.2 8
65.32 even 12 975.2.bo.d.851.1 8
65.33 even 12 507.2.k.d.188.1 8
65.38 odd 4 507.2.k.d.89.2 8
65.43 odd 12 507.2.k.f.488.1 8
65.48 odd 12 507.2.k.e.488.2 8
65.58 even 12 39.2.k.b.32.2 yes 8
65.63 even 12 507.2.f.e.239.3 8
195.8 odd 4 507.2.k.f.80.1 8
195.23 even 12 507.2.f.e.437.3 8
195.32 odd 12 975.2.bo.d.851.2 8
195.38 even 4 507.2.k.d.89.1 8
195.68 even 12 507.2.f.f.437.2 8
195.83 odd 4 507.2.k.e.80.2 8
195.98 odd 12 507.2.k.d.188.2 8
195.113 even 12 507.2.k.e.488.1 8
195.128 odd 12 507.2.f.e.239.2 8
195.149 even 12 inner 975.2.bp.e.149.2 8
195.158 odd 12 507.2.f.f.239.3 8
195.173 even 12 507.2.k.f.488.2 8
195.188 odd 12 39.2.k.b.32.1 yes 8
260.123 odd 12 624.2.cn.c.305.2 8
780.383 even 12 624.2.cn.c.305.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.k.b.11.1 8 5.3 odd 4
39.2.k.b.11.2 yes 8 15.8 even 4
39.2.k.b.32.1 yes 8 195.188 odd 12
39.2.k.b.32.2 yes 8 65.58 even 12
507.2.f.e.239.2 8 195.128 odd 12
507.2.f.e.239.3 8 65.63 even 12
507.2.f.e.437.2 8 65.23 odd 12
507.2.f.e.437.3 8 195.23 even 12
507.2.f.f.239.2 8 65.28 even 12
507.2.f.f.239.3 8 195.158 odd 12
507.2.f.f.437.2 8 195.68 even 12
507.2.f.f.437.3 8 65.3 odd 12
507.2.k.d.89.1 8 195.38 even 4
507.2.k.d.89.2 8 65.38 odd 4
507.2.k.d.188.1 8 65.33 even 12
507.2.k.d.188.2 8 195.98 odd 12
507.2.k.e.80.1 8 65.18 even 4
507.2.k.e.80.2 8 195.83 odd 4
507.2.k.e.488.1 8 195.113 even 12
507.2.k.e.488.2 8 65.48 odd 12
507.2.k.f.80.1 8 195.8 odd 4
507.2.k.f.80.2 8 65.8 even 4
507.2.k.f.488.1 8 65.43 odd 12
507.2.k.f.488.2 8 195.173 even 12
624.2.cn.c.305.1 8 780.383 even 12
624.2.cn.c.305.2 8 260.123 odd 12
624.2.cn.c.401.1 8 20.3 even 4
624.2.cn.c.401.2 8 60.23 odd 4
975.2.bo.d.401.1 8 15.2 even 4
975.2.bo.d.401.2 8 5.2 odd 4
975.2.bo.d.851.1 8 65.32 even 12
975.2.bo.d.851.2 8 195.32 odd 12
975.2.bp.e.149.1 8 65.19 odd 12 inner
975.2.bp.e.149.2 8 195.149 even 12 inner
975.2.bp.e.674.1 8 3.2 odd 2 inner
975.2.bp.e.674.2 8 1.1 even 1 trivial
975.2.bp.f.149.1 8 39.32 even 12
975.2.bp.f.149.2 8 13.6 odd 12
975.2.bp.f.674.1 8 5.4 even 2
975.2.bp.f.674.2 8 15.14 odd 2