L(s) = 1 | + (−3.61 + 2.62i)2-s + (3.70 − 11.4i)4-s + (4.69 + 3.40i)5-s + (−4.72 + 14.5i)7-s + (5.52 + 17.0i)8-s − 25.9·10-s + (7.07 + 35.7i)11-s + (−37.6 + 27.3i)13-s + (−21.1 − 65.0i)14-s + (12.9 + 9.40i)16-s + (−91.6 − 66.5i)17-s + (−34.2 − 105. i)19-s + (56.2 − 40.8i)20-s + (−119. − 110. i)22-s − 12.1·23-s + ⋯ |
L(s) = 1 | + (−1.27 + 0.929i)2-s + (0.463 − 1.42i)4-s + (0.419 + 0.304i)5-s + (−0.255 + 0.785i)7-s + (0.244 + 0.751i)8-s − 0.820·10-s + (0.194 + 0.980i)11-s + (−0.804 + 0.584i)13-s + (−0.403 − 1.24i)14-s + (0.202 + 0.146i)16-s + (−1.30 − 0.949i)17-s + (−0.413 − 1.27i)19-s + (0.629 − 0.457i)20-s + (−1.15 − 1.07i)22-s − 0.110·23-s + ⋯ |
Λ(s)=(=(99s/2ΓC(s)L(s)(−0.884+0.466i)Λ(4−s)
Λ(s)=(=(99s/2ΓC(s+3/2)L(s)(−0.884+0.466i)Λ(1−s)
Degree: |
2 |
Conductor: |
99
= 32⋅11
|
Sign: |
−0.884+0.466i
|
Analytic conductor: |
5.84118 |
Root analytic conductor: |
2.41685 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ99(91,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 99, ( :3/2), −0.884+0.466i)
|
Particular Values
L(2) |
≈ |
0.0844997−0.341101i |
L(21) |
≈ |
0.0844997−0.341101i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1+(−7.07−35.7i)T |
good | 2 | 1+(3.61−2.62i)T+(2.47−7.60i)T2 |
| 5 | 1+(−4.69−3.40i)T+(38.6+118.i)T2 |
| 7 | 1+(4.72−14.5i)T+(−277.−201.i)T2 |
| 13 | 1+(37.6−27.3i)T+(678.−2.08e3i)T2 |
| 17 | 1+(91.6+66.5i)T+(1.51e3+4.67e3i)T2 |
| 19 | 1+(34.2+105.i)T+(−5.54e3+4.03e3i)T2 |
| 23 | 1+12.1T+1.21e4T2 |
| 29 | 1+(86.7−266.i)T+(−1.97e4−1.43e4i)T2 |
| 31 | 1+(74.0−53.8i)T+(9.20e3−2.83e4i)T2 |
| 37 | 1+(86.7−266.i)T+(−4.09e4−2.97e4i)T2 |
| 41 | 1+(1.85+5.69i)T+(−5.57e4+4.05e4i)T2 |
| 43 | 1+126.T+7.95e4T2 |
| 47 | 1+(72.3+222.i)T+(−8.39e4+6.10e4i)T2 |
| 53 | 1+(−7.78+5.65i)T+(4.60e4−1.41e5i)T2 |
| 59 | 1+(−96.3+296.i)T+(−1.66e5−1.20e5i)T2 |
| 61 | 1+(−719.−522.i)T+(7.01e4+2.15e5i)T2 |
| 67 | 1+589.T+3.00e5T2 |
| 71 | 1+(−212.−154.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(52.0−160.i)T+(−3.14e5−2.28e5i)T2 |
| 79 | 1+(403.−293.i)T+(1.52e5−4.68e5i)T2 |
| 83 | 1+(−261.−189.i)T+(1.76e5+5.43e5i)T2 |
| 89 | 1−1.18e3T+7.04e5T2 |
| 97 | 1+(−938.+681.i)T+(2.82e5−8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.46569602981937280913831630172, −13.01340141339736584814174089465, −11.73015033078859829204393207494, −10.34039652923989183932413373536, −9.338825793739287907168421075607, −8.786488393612752713343396208570, −7.11053862128640100635819867727, −6.63671999465136622552868569752, −4.98656730002981875769803147028, −2.24097078285833533721395480699,
0.28584594916189132593218092620, 1.97714137404701344110924073940, 3.76767045326732602545158903797, 5.91755753561279760710302660067, 7.62096144966296851485117458866, 8.626142435531437543544707598449, 9.688206033008023591943732745942, 10.50509442900965175839635078465, 11.35608081568487536903833395814, 12.62254198293903332881933434663