L(s) = 1 | − 6·3-s + 3·4-s + 19·9-s − 18·12-s + 3·16-s + 10·17-s + 20·25-s − 46·27-s + 20·29-s + 57·36-s + 22·43-s − 18·48-s − 18·49-s − 60·51-s + 8·61-s − 2·64-s + 30·68-s − 120·75-s − 72·79-s + 121·81-s − 120·87-s + 60·100-s + 12·101-s − 120·103-s − 2·107-s − 138·108-s − 6·113-s + ⋯ |
L(s) = 1 | − 3.46·3-s + 3/2·4-s + 19/3·9-s − 5.19·12-s + 3/4·16-s + 2.42·17-s + 4·25-s − 8.85·27-s + 3.71·29-s + 19/2·36-s + 3.35·43-s − 2.59·48-s − 2.57·49-s − 8.40·51-s + 1.02·61-s − 1/4·64-s + 3.63·68-s − 13.8·75-s − 8.10·79-s + 13.4·81-s − 12.8·87-s + 6·100-s + 1.19·101-s − 11.8·103-s − 0.193·107-s − 13.2·108-s − 0.564·113-s + ⋯ |
Λ(s)=(=((212⋅1324)s/2ΓC(s)12L(s)Λ(2−s)
Λ(s)=(=((212⋅1324)s/2ΓC(s+1/2)12L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.433782752 |
L(21) |
≈ |
2.433782752 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1−T2+T4)3 |
| 13 | 1 |
good | 3 | (1+pT+4T2+5T3−5T4−38T5−77T6−38pT7−5p2T8+5p3T9+4p4T10+p6T11+p6T12)2 |
| 5 | (1−2pT2+71T4−396T6+71p2T8−2p5T10+p6T12)2 |
| 7 | 1+18T2+181T4+122pT6−2038T8−86054T10−805027T12−86054p2T14−2038p4T16+122p7T18+181p8T20+18p10T22+p12T24 |
| 11 | 1+49T2+1240T4+24535T6+414767T8+5731768T10+66986969T12+5731768p2T14+414767p4T16+24535p6T18+1240p8T20+49p10T22+p12T24 |
| 17 | (1−5T−4T2+T3−pT4+1368T5−6367T6+1368pT7−p3T8+p3T9−4p4T10−5p5T11+p6T12)2 |
| 19 | 1+81T2+3424T4+105551T6+2692199T8+60092368T10+1203016601T12+60092368p2T14+2692199p4T16+105551p6T18+3424p8T20+81p10T22+p12T24 |
| 23 | (1−41T2−112T3+738T4+2296T5−11193T6+2296pT7+738p2T8−112p3T9−41p4T10+p6T12)2 |
| 29 | (1−10T+17T2+122T3−278T4+222T5−8527T6+222pT7−278p2T8+122p3T9+17p4T10−10p5T11+p6T12)2 |
| 31 | (1−82T2+3967T4−137116T6+3967p2T8−82p4T10+p6T12)2 |
| 37 | 1+138T2+9373T4+462638T6+20123402T8+820867474T10+31478329205T12+820867474p2T14+20123402p4T16+462638p6T18+9373p8T20+138p10T22+p12T24 |
| 41 | 1+169T2+14504T4+947519T6+53293799T8+2528174712T10+106506710241T12+2528174712p2T14+53293799p4T16+947519p6T18+14504p8T20+169p10T22+p12T24 |
| 43 | (1−11T−4T2+515T3−145T4−20214T5+156435T6−20214pT7−145p2T8+515p3T9−4p4T10−11p5T11+p6T12)2 |
| 47 | (1−206T2+20175T4−1193924T6+20175p2T8−206p4T10+p6T12)2 |
| 53 | (1+131T2−56T3+131pT4+p3T6)4 |
| 59 | 1+225T2+26016T4+2072943T6+130229727T8+6801435144T10+362782063577T12+6801435144p2T14+130229727p4T16+2072943p6T18+26016p8T20+225p10T22+p12T24 |
| 61 | (1−4T−23T2+692T3−2554T4−12388T5+481421T6−12388pT7−2554p2T8+692p3T9−23p4T10−4p5T11+p6T12)2 |
| 67 | 1+129T2+3360T4−568049T6−30377169T8+2366904456T10+354870011049T12+2366904456p2T14−30377169p4T16−568049p6T18+3360p8T20+129p10T22+p12T24 |
| 71 | 1+322T2+57397T4+6820198T6+607594826T8+45013312330T10+3159779132573T12+45013312330p2T14+607594826p4T16+6820198p6T18+57397p8T20+322p10T22+p12T24 |
| 73 | (1−265T2+36313T4−3192361T6+36313p2T8−265p4T10+p6T12)2 |
| 79 | (1+18T+261T2+2612T3+261pT4+18p2T5+p3T6)4 |
| 83 | (1−465T2+92609T4−10109729T6+92609p2T8−465p4T10+p6T12)2 |
| 89 | 1+97T2−520T4−13169pT6−83617537T8+1428333264T10+762449377521T12+1428333264p2T14−83617537p4T16−13169p7T18−520p8T20+97p10T22+p12T24 |
| 97 | 1+177T2+2872T4−1434169T6−30639697T8+12958954288T10+1741641887009T12+12958954288p2T14−30639697p4T16−1434169p6T18+2872p8T20+177p10T22+p12T24 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.96335918201966027538577791188, −3.93638390866002678042739385809, −3.76896283144672556192126185218, −3.72623017369448710439562358245, −3.37439276845529423220860974105, −3.26407539194360817482595225423, −3.13857475819746465688042321092, −2.99180273224166902589167350892, −2.91307919344270683168253199786, −2.91098845561263206184601993181, −2.82487550918472642054633555557, −2.72126438267126118056092333751, −2.69812486875617517268752375351, −2.49244550976883687490772583579, −2.18142688680260506465131609312, −2.11783000863985669687729836949, −1.69760131603564411239270001888, −1.61525478955380364413875893283, −1.56537264957392664277114939279, −1.36392552386706533121100760112, −1.26122412423178952301697580510, −0.992874694009511752353472560510, −0.982213822863960460817008303207, −0.57958388952597065966118921669, −0.42636257839194027975322970398,
0.42636257839194027975322970398, 0.57958388952597065966118921669, 0.982213822863960460817008303207, 0.992874694009511752353472560510, 1.26122412423178952301697580510, 1.36392552386706533121100760112, 1.56537264957392664277114939279, 1.61525478955380364413875893283, 1.69760131603564411239270001888, 2.11783000863985669687729836949, 2.18142688680260506465131609312, 2.49244550976883687490772583579, 2.69812486875617517268752375351, 2.72126438267126118056092333751, 2.82487550918472642054633555557, 2.91098845561263206184601993181, 2.91307919344270683168253199786, 2.99180273224166902589167350892, 3.13857475819746465688042321092, 3.26407539194360817482595225423, 3.37439276845529423220860974105, 3.72623017369448710439562358245, 3.76896283144672556192126185218, 3.93638390866002678042739385809, 3.96335918201966027538577791188
Plot not available for L-functions of degree greater than 10.