Properties

Label 24-338e12-1.1-c1e12-0-0
Degree 2424
Conductor 2.223×10302.223\times 10^{30}
Sign 11
Analytic cond. 149391.149391.
Root an. cond. 1.642841.64284
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·3-s + 3·4-s + 19·9-s − 18·12-s + 3·16-s + 10·17-s + 20·25-s − 46·27-s + 20·29-s + 57·36-s + 22·43-s − 18·48-s − 18·49-s − 60·51-s + 8·61-s − 2·64-s + 30·68-s − 120·75-s − 72·79-s + 121·81-s − 120·87-s + 60·100-s + 12·101-s − 120·103-s − 2·107-s − 138·108-s − 6·113-s + ⋯
L(s)  = 1  − 3.46·3-s + 3/2·4-s + 19/3·9-s − 5.19·12-s + 3/4·16-s + 2.42·17-s + 4·25-s − 8.85·27-s + 3.71·29-s + 19/2·36-s + 3.35·43-s − 2.59·48-s − 2.57·49-s − 8.40·51-s + 1.02·61-s − 1/4·64-s + 3.63·68-s − 13.8·75-s − 8.10·79-s + 13.4·81-s − 12.8·87-s + 6·100-s + 1.19·101-s − 11.8·103-s − 0.193·107-s − 13.2·108-s − 0.564·113-s + ⋯

Functional equation

Λ(s)=((2121324)s/2ΓC(s)12L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 13^{24}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((2121324)s/2ΓC(s+1/2)12L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 13^{24}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 2424
Conductor: 21213242^{12} \cdot 13^{24}
Sign: 11
Analytic conductor: 149391.149391.
Root analytic conductor: 1.642841.64284
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (24, 2121324, ( :[1/2]12), 1)(24,\ 2^{12} \cdot 13^{24} ,\ ( \ : [1/2]^{12} ),\ 1 )

Particular Values

L(1)L(1) \approx 2.4337827522.433782752
L(12)L(\frac12) \approx 2.4337827522.433782752
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 (1T2+T4)3 ( 1 - T^{2} + T^{4} )^{3}
13 1 1
good3 (1+pT+4T2+5T35T438T577T638pT75p2T8+5p3T9+4p4T10+p6T11+p6T12)2 ( 1 + p T + 4 T^{2} + 5 T^{3} - 5 T^{4} - 38 T^{5} - 77 T^{6} - 38 p T^{7} - 5 p^{2} T^{8} + 5 p^{3} T^{9} + 4 p^{4} T^{10} + p^{6} T^{11} + p^{6} T^{12} )^{2}
5 (12pT2+71T4396T6+71p2T82p5T10+p6T12)2 ( 1 - 2 p T^{2} + 71 T^{4} - 396 T^{6} + 71 p^{2} T^{8} - 2 p^{5} T^{10} + p^{6} T^{12} )^{2}
7 1+18T2+181T4+122pT62038T886054T10805027T1286054p2T142038p4T16+122p7T18+181p8T20+18p10T22+p12T24 1 + 18 T^{2} + 181 T^{4} + 122 p T^{6} - 2038 T^{8} - 86054 T^{10} - 805027 T^{12} - 86054 p^{2} T^{14} - 2038 p^{4} T^{16} + 122 p^{7} T^{18} + 181 p^{8} T^{20} + 18 p^{10} T^{22} + p^{12} T^{24}
11 1+49T2+1240T4+24535T6+414767T8+5731768T10+66986969T12+5731768p2T14+414767p4T16+24535p6T18+1240p8T20+49p10T22+p12T24 1 + 49 T^{2} + 1240 T^{4} + 24535 T^{6} + 414767 T^{8} + 5731768 T^{10} + 66986969 T^{12} + 5731768 p^{2} T^{14} + 414767 p^{4} T^{16} + 24535 p^{6} T^{18} + 1240 p^{8} T^{20} + 49 p^{10} T^{22} + p^{12} T^{24}
17 (15T4T2+T3pT4+1368T56367T6+1368pT7p3T8+p3T94p4T105p5T11+p6T12)2 ( 1 - 5 T - 4 T^{2} + T^{3} - p T^{4} + 1368 T^{5} - 6367 T^{6} + 1368 p T^{7} - p^{3} T^{8} + p^{3} T^{9} - 4 p^{4} T^{10} - 5 p^{5} T^{11} + p^{6} T^{12} )^{2}
19 1+81T2+3424T4+105551T6+2692199T8+60092368T10+1203016601T12+60092368p2T14+2692199p4T16+105551p6T18+3424p8T20+81p10T22+p12T24 1 + 81 T^{2} + 3424 T^{4} + 105551 T^{6} + 2692199 T^{8} + 60092368 T^{10} + 1203016601 T^{12} + 60092368 p^{2} T^{14} + 2692199 p^{4} T^{16} + 105551 p^{6} T^{18} + 3424 p^{8} T^{20} + 81 p^{10} T^{22} + p^{12} T^{24}
23 (141T2112T3+738T4+2296T511193T6+2296pT7+738p2T8112p3T941p4T10+p6T12)2 ( 1 - 41 T^{2} - 112 T^{3} + 738 T^{4} + 2296 T^{5} - 11193 T^{6} + 2296 p T^{7} + 738 p^{2} T^{8} - 112 p^{3} T^{9} - 41 p^{4} T^{10} + p^{6} T^{12} )^{2}
29 (110T+17T2+122T3278T4+222T58527T6+222pT7278p2T8+122p3T9+17p4T1010p5T11+p6T12)2 ( 1 - 10 T + 17 T^{2} + 122 T^{3} - 278 T^{4} + 222 T^{5} - 8527 T^{6} + 222 p T^{7} - 278 p^{2} T^{8} + 122 p^{3} T^{9} + 17 p^{4} T^{10} - 10 p^{5} T^{11} + p^{6} T^{12} )^{2}
31 (182T2+3967T4137116T6+3967p2T882p4T10+p6T12)2 ( 1 - 82 T^{2} + 3967 T^{4} - 137116 T^{6} + 3967 p^{2} T^{8} - 82 p^{4} T^{10} + p^{6} T^{12} )^{2}
37 1+138T2+9373T4+462638T6+20123402T8+820867474T10+31478329205T12+820867474p2T14+20123402p4T16+462638p6T18+9373p8T20+138p10T22+p12T24 1 + 138 T^{2} + 9373 T^{4} + 462638 T^{6} + 20123402 T^{8} + 820867474 T^{10} + 31478329205 T^{12} + 820867474 p^{2} T^{14} + 20123402 p^{4} T^{16} + 462638 p^{6} T^{18} + 9373 p^{8} T^{20} + 138 p^{10} T^{22} + p^{12} T^{24}
41 1+169T2+14504T4+947519T6+53293799T8+2528174712T10+106506710241T12+2528174712p2T14+53293799p4T16+947519p6T18+14504p8T20+169p10T22+p12T24 1 + 169 T^{2} + 14504 T^{4} + 947519 T^{6} + 53293799 T^{8} + 2528174712 T^{10} + 106506710241 T^{12} + 2528174712 p^{2} T^{14} + 53293799 p^{4} T^{16} + 947519 p^{6} T^{18} + 14504 p^{8} T^{20} + 169 p^{10} T^{22} + p^{12} T^{24}
43 (111T4T2+515T3145T420214T5+156435T620214pT7145p2T8+515p3T94p4T1011p5T11+p6T12)2 ( 1 - 11 T - 4 T^{2} + 515 T^{3} - 145 T^{4} - 20214 T^{5} + 156435 T^{6} - 20214 p T^{7} - 145 p^{2} T^{8} + 515 p^{3} T^{9} - 4 p^{4} T^{10} - 11 p^{5} T^{11} + p^{6} T^{12} )^{2}
47 (1206T2+20175T41193924T6+20175p2T8206p4T10+p6T12)2 ( 1 - 206 T^{2} + 20175 T^{4} - 1193924 T^{6} + 20175 p^{2} T^{8} - 206 p^{4} T^{10} + p^{6} T^{12} )^{2}
53 (1+131T256T3+131pT4+p3T6)4 ( 1 + 131 T^{2} - 56 T^{3} + 131 p T^{4} + p^{3} T^{6} )^{4}
59 1+225T2+26016T4+2072943T6+130229727T8+6801435144T10+362782063577T12+6801435144p2T14+130229727p4T16+2072943p6T18+26016p8T20+225p10T22+p12T24 1 + 225 T^{2} + 26016 T^{4} + 2072943 T^{6} + 130229727 T^{8} + 6801435144 T^{10} + 362782063577 T^{12} + 6801435144 p^{2} T^{14} + 130229727 p^{4} T^{16} + 2072943 p^{6} T^{18} + 26016 p^{8} T^{20} + 225 p^{10} T^{22} + p^{12} T^{24}
61 (14T23T2+692T32554T412388T5+481421T612388pT72554p2T8+692p3T923p4T104p5T11+p6T12)2 ( 1 - 4 T - 23 T^{2} + 692 T^{3} - 2554 T^{4} - 12388 T^{5} + 481421 T^{6} - 12388 p T^{7} - 2554 p^{2} T^{8} + 692 p^{3} T^{9} - 23 p^{4} T^{10} - 4 p^{5} T^{11} + p^{6} T^{12} )^{2}
67 1+129T2+3360T4568049T630377169T8+2366904456T10+354870011049T12+2366904456p2T1430377169p4T16568049p6T18+3360p8T20+129p10T22+p12T24 1 + 129 T^{2} + 3360 T^{4} - 568049 T^{6} - 30377169 T^{8} + 2366904456 T^{10} + 354870011049 T^{12} + 2366904456 p^{2} T^{14} - 30377169 p^{4} T^{16} - 568049 p^{6} T^{18} + 3360 p^{8} T^{20} + 129 p^{10} T^{22} + p^{12} T^{24}
71 1+322T2+57397T4+6820198T6+607594826T8+45013312330T10+3159779132573T12+45013312330p2T14+607594826p4T16+6820198p6T18+57397p8T20+322p10T22+p12T24 1 + 322 T^{2} + 57397 T^{4} + 6820198 T^{6} + 607594826 T^{8} + 45013312330 T^{10} + 3159779132573 T^{12} + 45013312330 p^{2} T^{14} + 607594826 p^{4} T^{16} + 6820198 p^{6} T^{18} + 57397 p^{8} T^{20} + 322 p^{10} T^{22} + p^{12} T^{24}
73 (1265T2+36313T43192361T6+36313p2T8265p4T10+p6T12)2 ( 1 - 265 T^{2} + 36313 T^{4} - 3192361 T^{6} + 36313 p^{2} T^{8} - 265 p^{4} T^{10} + p^{6} T^{12} )^{2}
79 (1+18T+261T2+2612T3+261pT4+18p2T5+p3T6)4 ( 1 + 18 T + 261 T^{2} + 2612 T^{3} + 261 p T^{4} + 18 p^{2} T^{5} + p^{3} T^{6} )^{4}
83 (1465T2+92609T410109729T6+92609p2T8465p4T10+p6T12)2 ( 1 - 465 T^{2} + 92609 T^{4} - 10109729 T^{6} + 92609 p^{2} T^{8} - 465 p^{4} T^{10} + p^{6} T^{12} )^{2}
89 1+97T2520T413169pT683617537T8+1428333264T10+762449377521T12+1428333264p2T1483617537p4T1613169p7T18520p8T20+97p10T22+p12T24 1 + 97 T^{2} - 520 T^{4} - 13169 p T^{6} - 83617537 T^{8} + 1428333264 T^{10} + 762449377521 T^{12} + 1428333264 p^{2} T^{14} - 83617537 p^{4} T^{16} - 13169 p^{7} T^{18} - 520 p^{8} T^{20} + 97 p^{10} T^{22} + p^{12} T^{24}
97 1+177T2+2872T41434169T630639697T8+12958954288T10+1741641887009T12+12958954288p2T1430639697p4T161434169p6T18+2872p8T20+177p10T22+p12T24 1 + 177 T^{2} + 2872 T^{4} - 1434169 T^{6} - 30639697 T^{8} + 12958954288 T^{10} + 1741641887009 T^{12} + 12958954288 p^{2} T^{14} - 30639697 p^{4} T^{16} - 1434169 p^{6} T^{18} + 2872 p^{8} T^{20} + 177 p^{10} T^{22} + p^{12} T^{24}
show more
show less
   L(s)=p j=124(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−3.96335918201966027538577791188, −3.93638390866002678042739385809, −3.76896283144672556192126185218, −3.72623017369448710439562358245, −3.37439276845529423220860974105, −3.26407539194360817482595225423, −3.13857475819746465688042321092, −2.99180273224166902589167350892, −2.91307919344270683168253199786, −2.91098845561263206184601993181, −2.82487550918472642054633555557, −2.72126438267126118056092333751, −2.69812486875617517268752375351, −2.49244550976883687490772583579, −2.18142688680260506465131609312, −2.11783000863985669687729836949, −1.69760131603564411239270001888, −1.61525478955380364413875893283, −1.56537264957392664277114939279, −1.36392552386706533121100760112, −1.26122412423178952301697580510, −0.992874694009511752353472560510, −0.982213822863960460817008303207, −0.57958388952597065966118921669, −0.42636257839194027975322970398, 0.42636257839194027975322970398, 0.57958388952597065966118921669, 0.982213822863960460817008303207, 0.992874694009511752353472560510, 1.26122412423178952301697580510, 1.36392552386706533121100760112, 1.56537264957392664277114939279, 1.61525478955380364413875893283, 1.69760131603564411239270001888, 2.11783000863985669687729836949, 2.18142688680260506465131609312, 2.49244550976883687490772583579, 2.69812486875617517268752375351, 2.72126438267126118056092333751, 2.82487550918472642054633555557, 2.91098845561263206184601993181, 2.91307919344270683168253199786, 2.99180273224166902589167350892, 3.13857475819746465688042321092, 3.26407539194360817482595225423, 3.37439276845529423220860974105, 3.72623017369448710439562358245, 3.76896283144672556192126185218, 3.93638390866002678042739385809, 3.96335918201966027538577791188

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.