Properties

Label 338.2.e.e.147.3
Level $338$
Weight $2$
Character 338.147
Analytic conductor $2.699$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,2,Mod(23,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.23");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 338.e (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.69894358832\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.17213603549184.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 147.3
Root \(-0.385418 - 0.222521i\) of defining polynomial
Character \(\chi\) \(=\) 338.147
Dual form 338.2.e.e.23.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(1.02446 - 1.77441i) q^{3} +(0.500000 + 0.866025i) q^{4} +3.60388i q^{5} +(-1.77441 + 1.02446i) q^{6} +(0.961216 - 0.554958i) q^{7} -1.00000i q^{8} +(-0.599031 - 1.03755i) q^{9} +(1.80194 - 3.12105i) q^{10} +(2.04113 + 1.17845i) q^{11} +2.04892 q^{12} -1.10992 q^{14} +(6.39477 + 3.69202i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(2.98039 + 5.16218i) q^{17} +1.19806i q^{18} +(-0.789689 + 0.455927i) q^{19} +(-3.12105 + 1.80194i) q^{20} -2.27413i q^{21} +(-1.17845 - 2.04113i) q^{22} +(1.69202 - 2.93067i) q^{23} +(-1.77441 - 1.02446i) q^{24} -7.98792 q^{25} +3.69202 q^{27} +(0.961216 + 0.554958i) q^{28} +(1.89008 - 3.27372i) q^{29} +(-3.69202 - 6.39477i) q^{30} -8.49396i q^{31} +(0.866025 - 0.500000i) q^{32} +(4.18211 - 2.41454i) q^{33} -5.96077i q^{34} +(2.00000 + 3.46410i) q^{35} +(0.599031 - 1.03755i) q^{36} +(-4.23494 - 2.44504i) q^{37} +0.911854 q^{38} +3.60388 q^{40} +(-6.22324 - 3.59299i) q^{41} +(-1.13706 + 1.96945i) q^{42} +(-0.257865 - 0.446635i) q^{43} +2.35690i q^{44} +(3.73921 - 2.15883i) q^{45} +(-2.93067 + 1.69202i) q^{46} +6.98792i q^{47} +(1.02446 + 1.77441i) q^{48} +(-2.88404 + 4.99531i) q^{49} +(6.91774 + 3.99396i) q^{50} +12.2131 q^{51} -3.38404 q^{53} +(-3.19738 - 1.84601i) q^{54} +(-4.24698 + 7.35598i) q^{55} +(-0.554958 - 0.961216i) q^{56} +1.86831i q^{57} +(-3.27372 + 1.89008i) q^{58} +(8.78735 - 5.07338i) q^{59} +7.38404i q^{60} +(0.219833 + 0.380761i) q^{61} +(-4.24698 + 7.35598i) q^{62} +(-1.15160 - 0.664874i) q^{63} -1.00000 q^{64} -4.82908 q^{66} +(1.85914 + 1.07338i) q^{67} +(-2.98039 + 5.16218i) q^{68} +(-3.46681 - 6.00469i) q^{69} -4.00000i q^{70} +(-0.533434 + 0.307979i) q^{71} +(-1.03755 + 0.599031i) q^{72} +6.32304i q^{73} +(2.44504 + 4.23494i) q^{74} +(-8.18329 + 14.1739i) q^{75} +(-0.789689 - 0.455927i) q^{76} +2.61596 q^{77} -15.4819 q^{79} +(-3.12105 - 1.80194i) q^{80} +(5.57942 - 9.66383i) q^{81} +(3.59299 + 6.22324i) q^{82} +0.911854i q^{83} +(1.96945 - 1.13706i) q^{84} +(-18.6039 + 10.7409i) q^{85} +0.515729i q^{86} +(-3.87263 - 6.70758i) q^{87} +(1.17845 - 2.04113i) q^{88} +(-3.24814 - 1.87531i) q^{89} -4.31767 q^{90} +3.38404 q^{92} +(-15.0718 - 8.70171i) q^{93} +(3.49396 - 6.05171i) q^{94} +(-1.64310 - 2.84594i) q^{95} -2.04892i q^{96} +(12.7085 - 7.33728i) q^{97} +(4.99531 - 2.88404i) q^{98} -2.82371i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{3} + 6 q^{4} - 16 q^{9} + 4 q^{10} - 12 q^{12} - 16 q^{14} - 6 q^{16} + 10 q^{17} - 6 q^{22} - 20 q^{25} + 24 q^{27} + 20 q^{29} - 24 q^{30} + 24 q^{35} + 16 q^{36} - 4 q^{38} + 8 q^{40} + 8 q^{42}+ \cdots - 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 1.02446 1.77441i 0.591471 1.02446i −0.402563 0.915392i \(-0.631881\pi\)
0.994034 0.109066i \(-0.0347861\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 3.60388i 1.61170i 0.592118 + 0.805851i \(0.298292\pi\)
−0.592118 + 0.805851i \(0.701708\pi\)
\(6\) −1.77441 + 1.02446i −0.724402 + 0.418234i
\(7\) 0.961216 0.554958i 0.363305 0.209754i −0.307224 0.951637i \(-0.599400\pi\)
0.670530 + 0.741883i \(0.266067\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −0.599031 1.03755i −0.199677 0.345851i
\(10\) 1.80194 3.12105i 0.569823 0.986962i
\(11\) 2.04113 + 1.17845i 0.615424 + 0.355315i 0.775085 0.631856i \(-0.217707\pi\)
−0.159661 + 0.987172i \(0.551040\pi\)
\(12\) 2.04892 0.591471
\(13\) 0 0
\(14\) −1.10992 −0.296638
\(15\) 6.39477 + 3.69202i 1.65112 + 0.953276i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.98039 + 5.16218i 0.722850 + 1.25201i 0.959853 + 0.280504i \(0.0905015\pi\)
−0.237003 + 0.971509i \(0.576165\pi\)
\(18\) 1.19806i 0.282386i
\(19\) −0.789689 + 0.455927i −0.181167 + 0.104597i −0.587841 0.808977i \(-0.700022\pi\)
0.406674 + 0.913573i \(0.366689\pi\)
\(20\) −3.12105 + 1.80194i −0.697887 + 0.402926i
\(21\) 2.27413i 0.496255i
\(22\) −1.17845 2.04113i −0.251246 0.435171i
\(23\) 1.69202 2.93067i 0.352811 0.611086i −0.633930 0.773391i \(-0.718559\pi\)
0.986741 + 0.162304i \(0.0518926\pi\)
\(24\) −1.77441 1.02446i −0.362201 0.209117i
\(25\) −7.98792 −1.59758
\(26\) 0 0
\(27\) 3.69202 0.710530
\(28\) 0.961216 + 0.554958i 0.181653 + 0.104877i
\(29\) 1.89008 3.27372i 0.350980 0.607915i −0.635442 0.772149i \(-0.719182\pi\)
0.986421 + 0.164234i \(0.0525153\pi\)
\(30\) −3.69202 6.39477i −0.674068 1.16752i
\(31\) 8.49396i 1.52556i −0.646658 0.762780i \(-0.723834\pi\)
0.646658 0.762780i \(-0.276166\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 4.18211 2.41454i 0.728012 0.420318i
\(34\) 5.96077i 1.02226i
\(35\) 2.00000 + 3.46410i 0.338062 + 0.585540i
\(36\) 0.599031 1.03755i 0.0998385 0.172925i
\(37\) −4.23494 2.44504i −0.696219 0.401962i 0.109718 0.993963i \(-0.465005\pi\)
−0.805938 + 0.592000i \(0.798338\pi\)
\(38\) 0.911854 0.147922
\(39\) 0 0
\(40\) 3.60388 0.569823
\(41\) −6.22324 3.59299i −0.971907 0.561131i −0.0720900 0.997398i \(-0.522967\pi\)
−0.899817 + 0.436267i \(0.856300\pi\)
\(42\) −1.13706 + 1.96945i −0.175453 + 0.303893i
\(43\) −0.257865 0.446635i −0.0393240 0.0681112i 0.845694 0.533669i \(-0.179187\pi\)
−0.885018 + 0.465558i \(0.845854\pi\)
\(44\) 2.35690i 0.355315i
\(45\) 3.73921 2.15883i 0.557408 0.321820i
\(46\) −2.93067 + 1.69202i −0.432103 + 0.249475i
\(47\) 6.98792i 1.01929i 0.860384 + 0.509646i \(0.170224\pi\)
−0.860384 + 0.509646i \(0.829776\pi\)
\(48\) 1.02446 + 1.77441i 0.147868 + 0.256115i
\(49\) −2.88404 + 4.99531i −0.412006 + 0.713616i
\(50\) 6.91774 + 3.99396i 0.978316 + 0.564831i
\(51\) 12.2131 1.71018
\(52\) 0 0
\(53\) −3.38404 −0.464834 −0.232417 0.972616i \(-0.574663\pi\)
−0.232417 + 0.972616i \(0.574663\pi\)
\(54\) −3.19738 1.84601i −0.435109 0.251210i
\(55\) −4.24698 + 7.35598i −0.572663 + 0.991881i
\(56\) −0.554958 0.961216i −0.0741594 0.128448i
\(57\) 1.86831i 0.247464i
\(58\) −3.27372 + 1.89008i −0.429861 + 0.248180i
\(59\) 8.78735 5.07338i 1.14401 0.660497i 0.196593 0.980485i \(-0.437012\pi\)
0.947422 + 0.319988i \(0.103679\pi\)
\(60\) 7.38404i 0.953276i
\(61\) 0.219833 + 0.380761i 0.0281467 + 0.0487515i 0.879756 0.475426i \(-0.157706\pi\)
−0.851609 + 0.524178i \(0.824373\pi\)
\(62\) −4.24698 + 7.35598i −0.539367 + 0.934211i
\(63\) −1.15160 0.664874i −0.145087 0.0837663i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −4.82908 −0.594419
\(67\) 1.85914 + 1.07338i 0.227130 + 0.131134i 0.609248 0.792980i \(-0.291472\pi\)
−0.382117 + 0.924114i \(0.624805\pi\)
\(68\) −2.98039 + 5.16218i −0.361425 + 0.626006i
\(69\) −3.46681 6.00469i −0.417355 0.722880i
\(70\) 4.00000i 0.478091i
\(71\) −0.533434 + 0.307979i −0.0633070 + 0.0365503i −0.531319 0.847172i \(-0.678304\pi\)
0.468012 + 0.883722i \(0.344970\pi\)
\(72\) −1.03755 + 0.599031i −0.122277 + 0.0705965i
\(73\) 6.32304i 0.740056i 0.929021 + 0.370028i \(0.120652\pi\)
−0.929021 + 0.370028i \(0.879348\pi\)
\(74\) 2.44504 + 4.23494i 0.284230 + 0.492301i
\(75\) −8.18329 + 14.1739i −0.944925 + 1.63666i
\(76\) −0.789689 0.455927i −0.0905835 0.0522984i
\(77\) 2.61596 0.298116
\(78\) 0 0
\(79\) −15.4819 −1.74185 −0.870924 0.491418i \(-0.836479\pi\)
−0.870924 + 0.491418i \(0.836479\pi\)
\(80\) −3.12105 1.80194i −0.348944 0.201463i
\(81\) 5.57942 9.66383i 0.619935 1.07376i
\(82\) 3.59299 + 6.22324i 0.396779 + 0.687242i
\(83\) 0.911854i 0.100089i 0.998747 + 0.0500445i \(0.0159363\pi\)
−0.998747 + 0.0500445i \(0.984064\pi\)
\(84\) 1.96945 1.13706i 0.214885 0.124064i
\(85\) −18.6039 + 10.7409i −2.01787 + 1.16502i
\(86\) 0.515729i 0.0556125i
\(87\) −3.87263 6.70758i −0.415189 0.719128i
\(88\) 1.17845 2.04113i 0.125623 0.217585i
\(89\) −3.24814 1.87531i −0.344302 0.198783i 0.317871 0.948134i \(-0.397032\pi\)
−0.662173 + 0.749351i \(0.730366\pi\)
\(90\) −4.31767 −0.455122
\(91\) 0 0
\(92\) 3.38404 0.352811
\(93\) −15.0718 8.70171i −1.56287 0.902325i
\(94\) 3.49396 6.05171i 0.360374 0.624187i
\(95\) −1.64310 2.84594i −0.168579 0.291987i
\(96\) 2.04892i 0.209117i
\(97\) 12.7085 7.33728i 1.29036 0.744988i 0.311640 0.950200i \(-0.399122\pi\)
0.978717 + 0.205212i \(0.0657885\pi\)
\(98\) 4.99531 2.88404i 0.504602 0.291332i
\(99\) 2.82371i 0.283793i
\(100\) −3.99396 6.91774i −0.399396 0.691774i
\(101\) 4.38404 7.59339i 0.436229 0.755570i −0.561166 0.827703i \(-0.689647\pi\)
0.997395 + 0.0721329i \(0.0229806\pi\)
\(102\) −10.5769 6.10656i −1.04727 0.604640i
\(103\) −18.8116 −1.85356 −0.926782 0.375599i \(-0.877437\pi\)
−0.926782 + 0.375599i \(0.877437\pi\)
\(104\) 0 0
\(105\) 8.19567 0.799815
\(106\) 2.93067 + 1.69202i 0.284652 + 0.164344i
\(107\) −9.02595 + 15.6334i −0.872572 + 1.51134i −0.0132443 + 0.999912i \(0.504216\pi\)
−0.859327 + 0.511426i \(0.829117\pi\)
\(108\) 1.84601 + 3.19738i 0.177632 + 0.307668i
\(109\) 6.09783i 0.584067i −0.956408 0.292033i \(-0.905668\pi\)
0.956408 0.292033i \(-0.0943318\pi\)
\(110\) 7.35598 4.24698i 0.701366 0.404934i
\(111\) −8.67704 + 5.00969i −0.823588 + 0.475499i
\(112\) 1.10992i 0.104877i
\(113\) 6.10052 + 10.5664i 0.573889 + 0.994005i 0.996161 + 0.0875358i \(0.0278992\pi\)
−0.422272 + 0.906469i \(0.638767\pi\)
\(114\) 0.934157 1.61801i 0.0874918 0.151540i
\(115\) 10.5618 + 6.09783i 0.984889 + 0.568626i
\(116\) 3.78017 0.350980
\(117\) 0 0
\(118\) −10.1468 −0.934084
\(119\) 5.72959 + 3.30798i 0.525230 + 0.303242i
\(120\) 3.69202 6.39477i 0.337034 0.583760i
\(121\) −2.72252 4.71554i −0.247502 0.428686i
\(122\) 0.439665i 0.0398054i
\(123\) −12.7509 + 7.36174i −1.14971 + 0.663786i
\(124\) 7.35598 4.24698i 0.660587 0.381390i
\(125\) 10.7681i 0.963127i
\(126\) 0.664874 + 1.15160i 0.0592317 + 0.102592i
\(127\) 5.71379 9.89658i 0.507017 0.878179i −0.492950 0.870058i \(-0.664081\pi\)
0.999967 0.00812161i \(-0.00258522\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −1.05669 −0.0930361
\(130\) 0 0
\(131\) 2.29590 0.200593 0.100297 0.994958i \(-0.468021\pi\)
0.100297 + 0.994958i \(0.468021\pi\)
\(132\) 4.18211 + 2.41454i 0.364006 + 0.210159i
\(133\) −0.506041 + 0.876488i −0.0438793 + 0.0760012i
\(134\) −1.07338 1.85914i −0.0927256 0.160605i
\(135\) 13.3056i 1.14516i
\(136\) 5.16218 2.98039i 0.442653 0.255566i
\(137\) 7.86384 4.54019i 0.671853 0.387894i −0.124925 0.992166i \(-0.539869\pi\)
0.796778 + 0.604272i \(0.206536\pi\)
\(138\) 6.93362i 0.590229i
\(139\) −9.45257 16.3723i −0.801757 1.38868i −0.918459 0.395517i \(-0.870566\pi\)
0.116702 0.993167i \(-0.462768\pi\)
\(140\) −2.00000 + 3.46410i −0.169031 + 0.292770i
\(141\) 12.3995 + 7.15883i 1.04422 + 0.602883i
\(142\) 0.615957 0.0516900
\(143\) 0 0
\(144\) 1.19806 0.0998385
\(145\) 11.7981 + 6.81163i 0.979777 + 0.565675i
\(146\) 3.16152 5.47592i 0.261649 0.453190i
\(147\) 5.90917 + 10.2350i 0.487380 + 0.844167i
\(148\) 4.89008i 0.401962i
\(149\) −16.1857 + 9.34481i −1.32598 + 0.765557i −0.984676 0.174395i \(-0.944203\pi\)
−0.341308 + 0.939952i \(0.610870\pi\)
\(150\) 14.1739 8.18329i 1.15729 0.668163i
\(151\) 0.317667i 0.0258514i −0.999916 0.0129257i \(-0.995886\pi\)
0.999916 0.0129257i \(-0.00411449\pi\)
\(152\) 0.455927 + 0.789689i 0.0369806 + 0.0640522i
\(153\) 3.57069 6.18461i 0.288673 0.499996i
\(154\) −2.26549 1.30798i −0.182558 0.105400i
\(155\) 30.6112 2.45875
\(156\) 0 0
\(157\) 18.8901 1.50759 0.753796 0.657108i \(-0.228220\pi\)
0.753796 + 0.657108i \(0.228220\pi\)
\(158\) 13.4077 + 7.74094i 1.06666 + 0.615836i
\(159\) −3.46681 + 6.00469i −0.274936 + 0.476203i
\(160\) 1.80194 + 3.12105i 0.142456 + 0.246740i
\(161\) 3.75600i 0.296015i
\(162\) −9.66383 + 5.57942i −0.759262 + 0.438360i
\(163\) −3.75226 + 2.16637i −0.293899 + 0.169683i −0.639699 0.768625i \(-0.720941\pi\)
0.345800 + 0.938308i \(0.387608\pi\)
\(164\) 7.18598i 0.561131i
\(165\) 8.70171 + 15.0718i 0.677427 + 1.17334i
\(166\) 0.455927 0.789689i 0.0353868 0.0612917i
\(167\) −12.1244 7.00000i −0.938211 0.541676i −0.0488118 0.998808i \(-0.515543\pi\)
−0.889399 + 0.457132i \(0.848877\pi\)
\(168\) −2.27413 −0.175453
\(169\) 0 0
\(170\) 21.4819 1.64758
\(171\) 0.946096 + 0.546229i 0.0723498 + 0.0417712i
\(172\) 0.257865 0.446635i 0.0196620 0.0340556i
\(173\) −5.49396 9.51582i −0.417698 0.723474i 0.578010 0.816030i \(-0.303830\pi\)
−0.995707 + 0.0925559i \(0.970496\pi\)
\(174\) 7.74525i 0.587166i
\(175\) −7.67811 + 4.43296i −0.580411 + 0.335100i
\(176\) −2.04113 + 1.17845i −0.153856 + 0.0888289i
\(177\) 20.7899i 1.56266i
\(178\) 1.87531 + 3.24814i 0.140561 + 0.243458i
\(179\) 2.32759 4.03151i 0.173972 0.301329i −0.765833 0.643040i \(-0.777673\pi\)
0.939805 + 0.341711i \(0.111006\pi\)
\(180\) 3.73921 + 2.15883i 0.278704 + 0.160910i
\(181\) 1.06638 0.0792631 0.0396315 0.999214i \(-0.487382\pi\)
0.0396315 + 0.999214i \(0.487382\pi\)
\(182\) 0 0
\(183\) 0.900837 0.0665918
\(184\) −2.93067 1.69202i −0.216052 0.124737i
\(185\) 8.81163 15.2622i 0.647844 1.12210i
\(186\) 8.70171 + 15.0718i 0.638040 + 1.10512i
\(187\) 14.0489i 1.02736i
\(188\) −6.05171 + 3.49396i −0.441367 + 0.254823i
\(189\) 3.54883 2.04892i 0.258139 0.149037i
\(190\) 3.28621i 0.238407i
\(191\) −0.445042 0.770835i −0.0322021 0.0557757i 0.849475 0.527629i \(-0.176919\pi\)
−0.881677 + 0.471853i \(0.843585\pi\)
\(192\) −1.02446 + 1.77441i −0.0739339 + 0.128057i
\(193\) −14.0447 8.10872i −1.01096 0.583678i −0.0994879 0.995039i \(-0.531720\pi\)
−0.911473 + 0.411360i \(0.865054\pi\)
\(194\) −14.6746 −1.05357
\(195\) 0 0
\(196\) −5.76809 −0.412006
\(197\) −9.93428 5.73556i −0.707788 0.408642i 0.102453 0.994738i \(-0.467331\pi\)
−0.810242 + 0.586096i \(0.800664\pi\)
\(198\) −1.41185 + 2.44540i −0.100336 + 0.173787i
\(199\) −1.89977 3.29050i −0.134671 0.233258i 0.790801 0.612074i \(-0.209665\pi\)
−0.925472 + 0.378816i \(0.876331\pi\)
\(200\) 7.98792i 0.564831i
\(201\) 3.80923 2.19926i 0.268682 0.155124i
\(202\) −7.59339 + 4.38404i −0.534269 + 0.308460i
\(203\) 4.19567i 0.294478i
\(204\) 6.10656 + 10.5769i 0.427545 + 0.740530i
\(205\) 12.9487 22.4278i 0.904376 1.56642i
\(206\) 16.2913 + 9.40581i 1.13507 + 0.655334i
\(207\) −4.05429 −0.281793
\(208\) 0 0
\(209\) −2.14914 −0.148659
\(210\) −7.09766 4.09783i −0.489785 0.282777i
\(211\) 12.5233 21.6909i 0.862137 1.49326i −0.00772527 0.999970i \(-0.502459\pi\)
0.869862 0.493295i \(-0.164208\pi\)
\(212\) −1.69202 2.93067i −0.116209 0.201279i
\(213\) 1.26205i 0.0864739i
\(214\) 15.6334 9.02595i 1.06868 0.617001i
\(215\) 1.60962 0.929312i 0.109775 0.0633786i
\(216\) 3.69202i 0.251210i
\(217\) −4.71379 8.16453i −0.319993 0.554244i
\(218\) −3.04892 + 5.28088i −0.206499 + 0.357666i
\(219\) 11.2197 + 6.47770i 0.758157 + 0.437722i
\(220\) −8.49396 −0.572663
\(221\) 0 0
\(222\) 10.0194 0.672457
\(223\) 11.2479 + 6.49396i 0.753213 + 0.434868i 0.826854 0.562417i \(-0.190128\pi\)
−0.0736407 + 0.997285i \(0.523462\pi\)
\(224\) 0.554958 0.961216i 0.0370797 0.0642239i
\(225\) 4.78501 + 8.28788i 0.319001 + 0.552526i
\(226\) 12.2010i 0.811602i
\(227\) 11.9554 6.90246i 0.793509 0.458132i −0.0476877 0.998862i \(-0.515185\pi\)
0.841196 + 0.540730i \(0.181852\pi\)
\(228\) −1.61801 + 0.934157i −0.107155 + 0.0618660i
\(229\) 11.5603i 0.763928i −0.924177 0.381964i \(-0.875248\pi\)
0.924177 0.381964i \(-0.124752\pi\)
\(230\) −6.09783 10.5618i −0.402079 0.696422i
\(231\) 2.67994 4.64179i 0.176327 0.305407i
\(232\) −3.27372 1.89008i −0.214930 0.124090i
\(233\) −9.77479 −0.640368 −0.320184 0.947355i \(-0.603745\pi\)
−0.320184 + 0.947355i \(0.603745\pi\)
\(234\) 0 0
\(235\) −25.1836 −1.64280
\(236\) 8.78735 + 5.07338i 0.572007 + 0.330249i
\(237\) −15.8605 + 27.4713i −1.03025 + 1.78445i
\(238\) −3.30798 5.72959i −0.214424 0.371394i
\(239\) 0.944378i 0.0610867i 0.999533 + 0.0305434i \(0.00972377\pi\)
−0.999533 + 0.0305434i \(0.990276\pi\)
\(240\) −6.39477 + 3.69202i −0.412781 + 0.238319i
\(241\) −0.190381 + 0.109916i −0.0122635 + 0.00708033i −0.506119 0.862464i \(-0.668920\pi\)
0.493856 + 0.869544i \(0.335587\pi\)
\(242\) 5.44504i 0.350021i
\(243\) −5.89373 10.2082i −0.378083 0.654859i
\(244\) −0.219833 + 0.380761i −0.0140733 + 0.0243757i
\(245\) −18.0025 10.3937i −1.15014 0.664031i
\(246\) 14.7235 0.938735
\(247\) 0 0
\(248\) −8.49396 −0.539367
\(249\) 1.61801 + 0.934157i 0.102537 + 0.0591998i
\(250\) −5.38404 + 9.32544i −0.340517 + 0.589792i
\(251\) 8.12714 + 14.0766i 0.512980 + 0.888508i 0.999887 + 0.0150539i \(0.00479198\pi\)
−0.486906 + 0.873454i \(0.661875\pi\)
\(252\) 1.32975i 0.0837663i
\(253\) 6.90728 3.98792i 0.434257 0.250718i
\(254\) −9.89658 + 5.71379i −0.620967 + 0.358515i
\(255\) 44.0146i 2.75630i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −11.2186 + 19.4312i −0.699799 + 1.21209i 0.268737 + 0.963214i \(0.413394\pi\)
−0.968536 + 0.248874i \(0.919939\pi\)
\(258\) 0.915118 + 0.528344i 0.0569727 + 0.0328932i
\(259\) −5.42758 −0.337254
\(260\) 0 0
\(261\) −4.52888 −0.280330
\(262\) −1.98831 1.14795i −0.122838 0.0709205i
\(263\) 5.24698 9.08804i 0.323543 0.560392i −0.657674 0.753303i \(-0.728459\pi\)
0.981216 + 0.192911i \(0.0617928\pi\)
\(264\) −2.41454 4.18211i −0.148605 0.257391i
\(265\) 12.1957i 0.749174i
\(266\) 0.876488 0.506041i 0.0537409 0.0310274i
\(267\) −6.65517 + 3.84236i −0.407290 + 0.235149i
\(268\) 2.14675i 0.131134i
\(269\) −13.2078 22.8765i −0.805291 1.39480i −0.916095 0.400962i \(-0.868676\pi\)
0.110804 0.993842i \(-0.464657\pi\)
\(270\) 6.65279 11.5230i 0.404876 0.701266i
\(271\) 19.0787 + 11.0151i 1.15895 + 0.669118i 0.951051 0.309034i \(-0.100006\pi\)
0.207895 + 0.978151i \(0.433339\pi\)
\(272\) −5.96077 −0.361425
\(273\) 0 0
\(274\) −9.08038 −0.548566
\(275\) −16.3044 9.41335i −0.983192 0.567646i
\(276\) 3.46681 6.00469i 0.208678 0.361440i
\(277\) 1.08815 + 1.88472i 0.0653804 + 0.113242i 0.896863 0.442309i \(-0.145841\pi\)
−0.831482 + 0.555551i \(0.812507\pi\)
\(278\) 18.9051i 1.13386i
\(279\) −8.81293 + 5.08815i −0.527616 + 0.304619i
\(280\) 3.46410 2.00000i 0.207020 0.119523i
\(281\) 25.0030i 1.49155i 0.666196 + 0.745776i \(0.267921\pi\)
−0.666196 + 0.745776i \(0.732079\pi\)
\(282\) −7.15883 12.3995i −0.426302 0.738377i
\(283\) −8.15764 + 14.1294i −0.484921 + 0.839908i −0.999850 0.0173249i \(-0.994485\pi\)
0.514929 + 0.857233i \(0.327818\pi\)
\(284\) −0.533434 0.307979i −0.0316535 0.0182752i
\(285\) −6.73317 −0.398839
\(286\) 0 0
\(287\) −7.97584 −0.470799
\(288\) −1.03755 0.599031i −0.0611384 0.0352982i
\(289\) −9.26540 + 16.0481i −0.545023 + 0.944008i
\(290\) −6.81163 11.7981i −0.399992 0.692807i
\(291\) 30.0670i 1.76256i
\(292\) −5.47592 + 3.16152i −0.320454 + 0.185014i
\(293\) −1.62640 + 0.939001i −0.0950152 + 0.0548570i −0.546755 0.837293i \(-0.684137\pi\)
0.451740 + 0.892150i \(0.350804\pi\)
\(294\) 11.8183i 0.689259i
\(295\) 18.2838 + 31.6685i 1.06452 + 1.84381i
\(296\) −2.44504 + 4.23494i −0.142115 + 0.246151i
\(297\) 7.53590 + 4.35086i 0.437277 + 0.252462i
\(298\) 18.6896 1.08266
\(299\) 0 0
\(300\) −16.3666 −0.944925
\(301\) −0.495727 0.286208i −0.0285732 0.0164968i
\(302\) −0.158834 + 0.275108i −0.00913985 + 0.0158307i
\(303\) −8.98254 15.5582i −0.516034 0.893796i
\(304\) 0.911854i 0.0522984i
\(305\) −1.37222 + 0.792249i −0.0785728 + 0.0453640i
\(306\) −6.18461 + 3.57069i −0.353551 + 0.204123i
\(307\) 23.9801i 1.36862i −0.729192 0.684310i \(-0.760104\pi\)
0.729192 0.684310i \(-0.239896\pi\)
\(308\) 1.30798 + 2.26549i 0.0745290 + 0.129088i
\(309\) −19.2717 + 33.3796i −1.09633 + 1.89890i
\(310\) −26.5101 15.3056i −1.50567 0.869299i
\(311\) 5.38404 0.305301 0.152651 0.988280i \(-0.451219\pi\)
0.152651 + 0.988280i \(0.451219\pi\)
\(312\) 0 0
\(313\) 18.9487 1.07104 0.535522 0.844522i \(-0.320115\pi\)
0.535522 + 0.844522i \(0.320115\pi\)
\(314\) −16.3593 9.44504i −0.923208 0.533015i
\(315\) 2.39612 4.15021i 0.135006 0.233838i
\(316\) −7.74094 13.4077i −0.435462 0.754242i
\(317\) 11.5013i 0.645975i 0.946403 + 0.322987i \(0.104687\pi\)
−0.946403 + 0.322987i \(0.895313\pi\)
\(318\) 6.00469 3.46681i 0.336727 0.194409i
\(319\) 7.71582 4.45473i 0.432003 0.249417i
\(320\) 3.60388i 0.201463i
\(321\) 18.4934 + 32.0316i 1.03220 + 1.78783i
\(322\) −1.87800 + 3.25280i −0.104657 + 0.181271i
\(323\) −4.70715 2.71768i −0.261913 0.151216i
\(324\) 11.1588 0.619935
\(325\) 0 0
\(326\) 4.33273 0.239968
\(327\) −10.8201 6.24698i −0.598352 0.345459i
\(328\) −3.59299 + 6.22324i −0.198390 + 0.343621i
\(329\) 3.87800 + 6.71690i 0.213801 + 0.370315i
\(330\) 17.4034i 0.958027i
\(331\) 29.9742 17.3056i 1.64753 0.951201i 0.669478 0.742832i \(-0.266518\pi\)
0.978050 0.208369i \(-0.0668156\pi\)
\(332\) −0.789689 + 0.455927i −0.0433398 + 0.0250222i
\(333\) 5.85862i 0.321051i
\(334\) 7.00000 + 12.1244i 0.383023 + 0.663415i
\(335\) −3.86831 + 6.70012i −0.211349 + 0.366066i
\(336\) 1.96945 + 1.13706i 0.107442 + 0.0620319i
\(337\) −1.95407 −0.106445 −0.0532224 0.998583i \(-0.516949\pi\)
−0.0532224 + 0.998583i \(0.516949\pi\)
\(338\) 0 0
\(339\) 24.9989 1.35776
\(340\) −18.6039 10.7409i −1.00894 0.582509i
\(341\) 10.0097 17.3373i 0.542055 0.938867i
\(342\) −0.546229 0.946096i −0.0295367 0.0511590i
\(343\) 14.1715i 0.765189i
\(344\) −0.446635 + 0.257865i −0.0240809 + 0.0139031i
\(345\) 21.6402 12.4940i 1.16507 0.672652i
\(346\) 10.9879i 0.590714i
\(347\) 3.20775 + 5.55599i 0.172201 + 0.298261i 0.939189 0.343400i \(-0.111579\pi\)
−0.766988 + 0.641661i \(0.778245\pi\)
\(348\) 3.87263 6.70758i 0.207595 0.359564i
\(349\) 0.940290 + 0.542877i 0.0503326 + 0.0290595i 0.524955 0.851130i \(-0.324082\pi\)
−0.474623 + 0.880189i \(0.657415\pi\)
\(350\) 8.86592 0.473903
\(351\) 0 0
\(352\) 2.35690 0.125623
\(353\) −3.71455 2.14460i −0.197706 0.114145i 0.397879 0.917438i \(-0.369746\pi\)
−0.595585 + 0.803292i \(0.703080\pi\)
\(354\) −10.3949 + 18.0045i −0.552484 + 0.956931i
\(355\) −1.10992 1.92243i −0.0589082 0.102032i
\(356\) 3.75063i 0.198783i
\(357\) 11.7394 6.77777i 0.621318 0.358718i
\(358\) −4.03151 + 2.32759i −0.213072 + 0.123017i
\(359\) 15.5060i 0.818378i 0.912450 + 0.409189i \(0.134188\pi\)
−0.912450 + 0.409189i \(0.865812\pi\)
\(360\) −2.15883 3.73921i −0.113781 0.197074i
\(361\) −9.08426 + 15.7344i −0.478119 + 0.828126i
\(362\) −0.923508 0.533188i −0.0485385 0.0280237i
\(363\) −11.1564 −0.585561
\(364\) 0 0
\(365\) −22.7875 −1.19275
\(366\) −0.780148 0.450419i −0.0407790 0.0235438i
\(367\) −8.71379 + 15.0927i −0.454856 + 0.787834i −0.998680 0.0513654i \(-0.983643\pi\)
0.543824 + 0.839199i \(0.316976\pi\)
\(368\) 1.69202 + 2.93067i 0.0882027 + 0.152772i
\(369\) 8.60925i 0.448180i
\(370\) −15.2622 + 8.81163i −0.793443 + 0.458095i
\(371\) −3.25280 + 1.87800i −0.168877 + 0.0975010i
\(372\) 17.4034i 0.902325i
\(373\) −4.09783 7.09766i −0.212178 0.367503i 0.740218 0.672367i \(-0.234722\pi\)
−0.952396 + 0.304864i \(0.901389\pi\)
\(374\) 7.02446 12.1667i 0.363226 0.629126i
\(375\) −19.1070 11.0315i −0.986684 0.569662i
\(376\) 6.98792 0.360374
\(377\) 0 0
\(378\) −4.09783 −0.210770
\(379\) 13.0316 + 7.52379i 0.669388 + 0.386471i 0.795845 0.605501i \(-0.207027\pi\)
−0.126457 + 0.991972i \(0.540360\pi\)
\(380\) 1.64310 2.84594i 0.0842895 0.145994i
\(381\) −11.7071 20.2773i −0.599772 1.03884i
\(382\) 0.890084i 0.0455406i
\(383\) −9.63078 + 5.56033i −0.492110 + 0.284120i −0.725449 0.688276i \(-0.758368\pi\)
0.233339 + 0.972395i \(0.425035\pi\)
\(384\) 1.77441 1.02446i 0.0905502 0.0522792i
\(385\) 9.42758i 0.480474i
\(386\) 8.10872 + 14.0447i 0.412723 + 0.714857i
\(387\) −0.308938 + 0.535096i −0.0157042 + 0.0272005i
\(388\) 12.7085 + 7.33728i 0.645179 + 0.372494i
\(389\) 8.04354 0.407824 0.203912 0.978989i \(-0.434634\pi\)
0.203912 + 0.978989i \(0.434634\pi\)
\(390\) 0 0
\(391\) 20.1715 1.02012
\(392\) 4.99531 + 2.88404i 0.252301 + 0.145666i
\(393\) 2.35205 4.07387i 0.118645 0.205500i
\(394\) 5.73556 + 9.93428i 0.288953 + 0.500482i
\(395\) 55.7948i 2.80734i
\(396\) 2.44540 1.41185i 0.122886 0.0709483i
\(397\) 18.9730 10.9541i 0.952228 0.549769i 0.0584554 0.998290i \(-0.481382\pi\)
0.893772 + 0.448521i \(0.148049\pi\)
\(398\) 3.79954i 0.190454i
\(399\) 1.03684 + 1.79585i 0.0519067 + 0.0899051i
\(400\) 3.99396 6.91774i 0.199698 0.345887i
\(401\) 15.1058 + 8.72132i 0.754347 + 0.435522i 0.827262 0.561816i \(-0.189897\pi\)
−0.0729157 + 0.997338i \(0.523230\pi\)
\(402\) −4.39852 −0.219378
\(403\) 0 0
\(404\) 8.76809 0.436229
\(405\) 34.8273 + 20.1075i 1.73058 + 0.999151i
\(406\) −2.09783 + 3.63356i −0.104114 + 0.180330i
\(407\) −5.76271 9.98130i −0.285647 0.494755i
\(408\) 12.2131i 0.604640i
\(409\) −15.0974 + 8.71648i −0.746518 + 0.431002i −0.824434 0.565958i \(-0.808507\pi\)
0.0779166 + 0.996960i \(0.475173\pi\)
\(410\) −22.4278 + 12.9487i −1.10763 + 0.639490i
\(411\) 18.6049i 0.917714i
\(412\) −9.40581 16.2913i −0.463391 0.802617i
\(413\) 5.63102 9.75322i 0.277085 0.479924i
\(414\) 3.51112 + 2.02715i 0.172562 + 0.0996288i
\(415\) −3.28621 −0.161314
\(416\) 0 0
\(417\) −38.7351 −1.89687
\(418\) 1.86121 + 1.07457i 0.0910350 + 0.0525591i
\(419\) −4.98792 + 8.63933i −0.243676 + 0.422059i −0.961758 0.273899i \(-0.911687\pi\)
0.718083 + 0.695958i \(0.245020\pi\)
\(420\) 4.09783 + 7.09766i 0.199954 + 0.346330i
\(421\) 0.615957i 0.0300199i 0.999887 + 0.0150100i \(0.00477800\pi\)
−0.999887 + 0.0150100i \(0.995222\pi\)
\(422\) −21.6909 + 12.5233i −1.05590 + 0.609623i
\(423\) 7.25033 4.18598i 0.352523 0.203529i
\(424\) 3.38404i 0.164344i
\(425\) −23.8071 41.2351i −1.15481 2.00019i
\(426\) 0.631023 1.09296i 0.0305731 0.0529542i
\(427\) 0.422613 + 0.243996i 0.0204517 + 0.0118078i
\(428\) −18.0519 −0.872572
\(429\) 0 0
\(430\) −1.85862 −0.0896308
\(431\) 12.8105 + 7.39612i 0.617058 + 0.356259i 0.775723 0.631074i \(-0.217385\pi\)
−0.158665 + 0.987333i \(0.550719\pi\)
\(432\) −1.84601 + 3.19738i −0.0888162 + 0.153834i
\(433\) 8.26606 + 14.3172i 0.397242 + 0.688043i 0.993384 0.114836i \(-0.0366342\pi\)
−0.596143 + 0.802878i \(0.703301\pi\)
\(434\) 9.42758i 0.452538i
\(435\) 24.1733 13.9565i 1.15902 0.669161i
\(436\) 5.28088 3.04892i 0.252908 0.146017i
\(437\) 3.08575i 0.147612i
\(438\) −6.47770 11.2197i −0.309516 0.536098i
\(439\) 1.75063 3.03218i 0.0835529 0.144718i −0.821221 0.570611i \(-0.806707\pi\)
0.904774 + 0.425893i \(0.140040\pi\)
\(440\) 7.35598 + 4.24698i 0.350683 + 0.202467i
\(441\) 6.91053 0.329073
\(442\) 0 0
\(443\) 17.4077 0.827066 0.413533 0.910489i \(-0.364295\pi\)
0.413533 + 0.910489i \(0.364295\pi\)
\(444\) −8.67704 5.00969i −0.411794 0.237749i
\(445\) 6.75840 11.7059i 0.320379 0.554912i
\(446\) −6.49396 11.2479i −0.307498 0.532602i
\(447\) 38.2935i 1.81122i
\(448\) −0.961216 + 0.554958i −0.0454132 + 0.0262193i
\(449\) −29.5745 + 17.0749i −1.39571 + 0.805813i −0.993940 0.109928i \(-0.964938\pi\)
−0.401769 + 0.915741i \(0.631605\pi\)
\(450\) 9.57002i 0.451135i
\(451\) −8.46830 14.6675i −0.398757 0.690667i
\(452\) −6.10052 + 10.5664i −0.286944 + 0.497002i
\(453\) −0.563673 0.325437i −0.0264837 0.0152904i
\(454\) −13.8049 −0.647897
\(455\) 0 0
\(456\) 1.86831 0.0874918
\(457\) −8.14360 4.70171i −0.380942 0.219937i 0.297286 0.954788i \(-0.403918\pi\)
−0.678228 + 0.734852i \(0.737252\pi\)
\(458\) −5.78017 + 10.0115i −0.270089 + 0.467809i
\(459\) 11.0036 + 19.0589i 0.513606 + 0.889592i
\(460\) 12.1957i 0.568626i
\(461\) −0.634943 + 0.366585i −0.0295722 + 0.0170735i −0.514713 0.857362i \(-0.672102\pi\)
0.485141 + 0.874436i \(0.338768\pi\)
\(462\) −4.64179 + 2.67994i −0.215956 + 0.124682i
\(463\) 7.24267i 0.336595i −0.985736 0.168298i \(-0.946173\pi\)
0.985736 0.168298i \(-0.0538270\pi\)
\(464\) 1.89008 + 3.27372i 0.0877449 + 0.151979i
\(465\) 31.3599 54.3169i 1.45428 2.51889i
\(466\) 8.46522 + 4.88740i 0.392144 + 0.226404i
\(467\) −30.2446 −1.39955 −0.699776 0.714362i \(-0.746717\pi\)
−0.699776 + 0.714362i \(0.746717\pi\)
\(468\) 0 0
\(469\) 2.38271 0.110024
\(470\) 21.8096 + 12.5918i 1.00600 + 0.580816i
\(471\) 19.3521 33.5188i 0.891698 1.54447i
\(472\) −5.07338 8.78735i −0.233521 0.404470i
\(473\) 1.21552i 0.0558897i
\(474\) 27.4713 15.8605i 1.26180 0.728499i
\(475\) 6.30797 3.64191i 0.289429 0.167102i
\(476\) 6.61596i 0.303242i
\(477\) 2.02715 + 3.51112i 0.0928167 + 0.160763i
\(478\) 0.472189 0.817855i 0.0215974 0.0374078i
\(479\) −31.8002 18.3599i −1.45299 0.838884i −0.454340 0.890828i \(-0.650125\pi\)
−0.998650 + 0.0519439i \(0.983458\pi\)
\(480\) 7.38404 0.337034
\(481\) 0 0
\(482\) 0.219833 0.0100131
\(483\) −6.66471 3.84787i −0.303255 0.175084i
\(484\) 2.72252 4.71554i 0.123751 0.214343i
\(485\) 26.4426 + 45.8000i 1.20070 + 2.07967i
\(486\) 11.7875i 0.534690i
\(487\) −24.8157 + 14.3274i −1.12451 + 0.649234i −0.942548 0.334072i \(-0.891577\pi\)
−0.181959 + 0.983306i \(0.558244\pi\)
\(488\) 0.380761 0.219833i 0.0172362 0.00995135i
\(489\) 8.87741i 0.401450i
\(490\) 10.3937 + 18.0025i 0.469541 + 0.813269i
\(491\) 15.2148 26.3527i 0.686632 1.18928i −0.286289 0.958143i \(-0.592422\pi\)
0.972921 0.231138i \(-0.0742450\pi\)
\(492\) −12.7509 7.36174i −0.574855 0.331893i
\(493\) 22.5327 1.01482
\(494\) 0 0
\(495\) 10.1763 0.457390
\(496\) 7.35598 + 4.24698i 0.330293 + 0.190695i
\(497\) −0.341830 + 0.592068i −0.0153332 + 0.0265579i
\(498\) −0.934157 1.61801i −0.0418606 0.0725046i
\(499\) 15.9715i 0.714984i 0.933916 + 0.357492i \(0.116368\pi\)
−0.933916 + 0.357492i \(0.883632\pi\)
\(500\) 9.32544 5.38404i 0.417046 0.240782i
\(501\) −24.8418 + 14.3424i −1.10985 + 0.640772i
\(502\) 16.2543i 0.725464i
\(503\) 20.9855 + 36.3480i 0.935698 + 1.62068i 0.773384 + 0.633938i \(0.218563\pi\)
0.162314 + 0.986739i \(0.448104\pi\)
\(504\) −0.664874 + 1.15160i −0.0296159 + 0.0512962i
\(505\) 27.3656 + 15.7995i 1.21775 + 0.703071i
\(506\) −7.97584 −0.354569
\(507\) 0 0
\(508\) 11.4276 0.507017
\(509\) −0.791761 0.457123i −0.0350942 0.0202616i 0.482350 0.875978i \(-0.339783\pi\)
−0.517444 + 0.855717i \(0.673117\pi\)
\(510\) 22.0073 38.1178i 0.974499 1.68788i
\(511\) 3.50902 + 6.07781i 0.155230 + 0.268866i
\(512\) 1.00000i 0.0441942i
\(513\) −2.91555 + 1.68329i −0.128725 + 0.0743192i
\(514\) 19.4312 11.2186i 0.857076 0.494833i
\(515\) 67.7948i 2.98739i
\(516\) −0.528344 0.915118i −0.0232590 0.0402858i
\(517\) −8.23490 + 14.2633i −0.362170 + 0.627298i
\(518\) 4.70043 + 2.71379i 0.206525 + 0.119237i
\(519\) −22.5133 −0.988226
\(520\) 0 0
\(521\) −3.31096 −0.145056 −0.0725279 0.997366i \(-0.523107\pi\)
−0.0725279 + 0.997366i \(0.523107\pi\)
\(522\) 3.92212 + 2.26444i 0.171667 + 0.0991118i
\(523\) 0.425428 0.736862i 0.0186026 0.0322207i −0.856574 0.516024i \(-0.827412\pi\)
0.875177 + 0.483803i \(0.160745\pi\)
\(524\) 1.14795 + 1.98831i 0.0501484 + 0.0868595i
\(525\) 18.1655i 0.792809i
\(526\) −9.08804 + 5.24698i −0.396257 + 0.228779i
\(527\) 43.8473 25.3153i 1.91002 1.10275i
\(528\) 4.82908i 0.210159i
\(529\) 5.77413 + 10.0011i 0.251049 + 0.434830i
\(530\) −6.09783 + 10.5618i −0.264873 + 0.458774i
\(531\) −10.5278 6.07822i −0.456867 0.263772i
\(532\) −1.01208 −0.0438793
\(533\) 0 0
\(534\) 7.68473 0.332551
\(535\) −56.3408 32.5284i −2.43583 1.40633i
\(536\) 1.07338 1.85914i 0.0463628 0.0803027i
\(537\) −4.76905 8.26023i −0.205799 0.356455i
\(538\) 26.4155i 1.13885i
\(539\) −11.7734 + 6.79739i −0.507117 + 0.292784i
\(540\) −11.5230 + 6.65279i −0.495870 + 0.286291i
\(541\) 40.8853i 1.75780i 0.477010 + 0.878898i \(0.341721\pi\)
−0.477010 + 0.878898i \(0.658279\pi\)
\(542\) −11.0151 19.0787i −0.473138 0.819498i
\(543\) 1.09246 1.89219i 0.0468819 0.0812018i
\(544\) 5.16218 + 2.98039i 0.221327 + 0.127783i
\(545\) 21.9758 0.941341
\(546\) 0 0
\(547\) −2.39075 −0.102221 −0.0511105 0.998693i \(-0.516276\pi\)
−0.0511105 + 0.998693i \(0.516276\pi\)
\(548\) 7.86384 + 4.54019i 0.335926 + 0.193947i
\(549\) 0.263373 0.456176i 0.0112405 0.0194691i
\(550\) 9.41335 + 16.3044i 0.401386 + 0.695222i
\(551\) 3.44696i 0.146845i
\(552\) −6.00469 + 3.46681i −0.255577 + 0.147557i
\(553\) −14.8814 + 8.59179i −0.632822 + 0.365360i
\(554\) 2.17629i 0.0924618i
\(555\) −18.0543 31.2710i −0.766362 1.32738i
\(556\) 9.45257 16.3723i 0.400878 0.694342i
\(557\) 23.5133 + 13.5754i 0.996290 + 0.575208i 0.907148 0.420811i \(-0.138254\pi\)
0.0891414 + 0.996019i \(0.471588\pi\)
\(558\) 10.1763 0.430797
\(559\) 0 0
\(560\) −4.00000 −0.169031
\(561\) 24.9286 + 14.3925i 1.05249 + 0.607653i
\(562\) 12.5015 21.6532i 0.527344 0.913386i
\(563\) −3.26205 5.65003i −0.137479 0.238120i 0.789063 0.614312i \(-0.210567\pi\)
−0.926542 + 0.376192i \(0.877233\pi\)
\(564\) 14.3177i 0.602883i
\(565\) −38.0800 + 21.9855i −1.60204 + 0.924938i
\(566\) 14.1294 8.15764i 0.593905 0.342891i
\(567\) 12.3854i 0.520137i
\(568\) 0.307979 + 0.533434i 0.0129225 + 0.0223824i
\(569\) 3.65010 6.32217i 0.153020 0.265039i −0.779316 0.626631i \(-0.784433\pi\)
0.932336 + 0.361592i \(0.117767\pi\)
\(570\) 5.83110 + 3.36658i 0.244238 + 0.141011i
\(571\) 43.6722 1.82762 0.913812 0.406138i \(-0.133125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(572\) 0 0
\(573\) −1.82371 −0.0761865
\(574\) 6.90728 + 3.98792i 0.288304 + 0.166452i
\(575\) −13.5157 + 23.4099i −0.563645 + 0.976262i
\(576\) 0.599031 + 1.03755i 0.0249596 + 0.0432313i
\(577\) 16.8528i 0.701590i 0.936452 + 0.350795i \(0.114089\pi\)
−0.936452 + 0.350795i \(0.885911\pi\)
\(578\) 16.0481 9.26540i 0.667515 0.385390i
\(579\) −28.7765 + 16.6141i −1.19591 + 0.690458i
\(580\) 13.6233i 0.565675i
\(581\) 0.506041 + 0.876488i 0.0209941 + 0.0363629i
\(582\) −15.0335 + 26.0388i −0.623158 + 1.07934i
\(583\) −6.90728 3.98792i −0.286070 0.165163i
\(584\) 6.32304 0.261649
\(585\) 0 0
\(586\) 1.87800 0.0775796
\(587\) 19.2106 + 11.0913i 0.792907 + 0.457785i 0.840985 0.541058i \(-0.181976\pi\)
−0.0480776 + 0.998844i \(0.515309\pi\)
\(588\) −5.90917 + 10.2350i −0.243690 + 0.422083i
\(589\) 3.87263 + 6.70758i 0.159569 + 0.276381i
\(590\) 36.5676i 1.50547i
\(591\) −20.3545 + 11.7517i −0.837273 + 0.483400i
\(592\) 4.23494 2.44504i 0.174055 0.100491i
\(593\) 3.98493i 0.163642i −0.996647 0.0818208i \(-0.973926\pi\)
0.996647 0.0818208i \(-0.0260735\pi\)
\(594\) −4.35086 7.53590i −0.178518 0.309202i
\(595\) −11.9215 + 20.6487i −0.488736 + 0.846515i
\(596\) −16.1857 9.34481i −0.662992 0.382779i
\(597\) −7.78495 −0.318617
\(598\) 0 0
\(599\) 33.2379 1.35806 0.679032 0.734109i \(-0.262400\pi\)
0.679032 + 0.734109i \(0.262400\pi\)
\(600\) 14.1739 + 8.18329i 0.578646 + 0.334082i
\(601\) −4.89858 + 8.48458i −0.199817 + 0.346093i −0.948469 0.316870i \(-0.897368\pi\)
0.748652 + 0.662963i \(0.230701\pi\)
\(602\) 0.286208 + 0.495727i 0.0116650 + 0.0202043i
\(603\) 2.57194i 0.104738i
\(604\) 0.275108 0.158834i 0.0111940 0.00646285i
\(605\) 16.9942 9.81163i 0.690914 0.398899i
\(606\) 17.9651i 0.729782i
\(607\) 12.1129 + 20.9802i 0.491647 + 0.851558i 0.999954 0.00961799i \(-0.00306155\pi\)
−0.508306 + 0.861176i \(0.669728\pi\)
\(608\) −0.455927 + 0.789689i −0.0184903 + 0.0320261i
\(609\) −7.44486 4.29829i −0.301681 0.174175i
\(610\) 1.58450 0.0641545
\(611\) 0 0
\(612\) 7.14138 0.288673
\(613\) 13.0386 + 7.52781i 0.526622 + 0.304045i 0.739640 0.673003i \(-0.234996\pi\)
−0.213018 + 0.977048i \(0.568329\pi\)
\(614\) −11.9901 + 20.7674i −0.483880 + 0.838105i
\(615\) −26.5308 45.9527i −1.06982 1.85299i
\(616\) 2.61596i 0.105400i
\(617\) −1.74832 + 1.00939i −0.0703847 + 0.0406366i −0.534779 0.844992i \(-0.679605\pi\)
0.464395 + 0.885628i \(0.346272\pi\)
\(618\) 33.3796 19.2717i 1.34273 0.775223i
\(619\) 7.84309i 0.315240i 0.987500 + 0.157620i \(0.0503821\pi\)
−0.987500 + 0.157620i \(0.949618\pi\)
\(620\) 15.3056 + 26.5101i 0.614687 + 1.06467i
\(621\) 6.24698 10.8201i 0.250683 0.434195i
\(622\) −4.66272 2.69202i −0.186958 0.107940i
\(623\) −4.16288 −0.166782
\(624\) 0 0
\(625\) −1.13275 −0.0453101
\(626\) −16.4100 9.47434i −0.655877 0.378671i
\(627\) −2.20171 + 3.81347i −0.0879278 + 0.152295i
\(628\) 9.44504 + 16.3593i 0.376898 + 0.652807i
\(629\) 29.1487i 1.16223i
\(630\) −4.15021 + 2.39612i −0.165348 + 0.0954639i
\(631\) −21.2460 + 12.2664i −0.845788 + 0.488316i −0.859227 0.511594i \(-0.829055\pi\)
0.0134394 + 0.999910i \(0.495722\pi\)
\(632\) 15.4819i 0.615836i
\(633\) −25.6591 44.4429i −1.01986 1.76645i
\(634\) 5.75063 9.96038i 0.228387 0.395577i
\(635\) 35.6660 + 20.5918i 1.41536 + 0.817160i
\(636\) −6.93362 −0.274936
\(637\) 0 0
\(638\) −8.90946 −0.352729
\(639\) 0.639088 + 0.368977i 0.0252819 + 0.0145965i
\(640\) −1.80194 + 3.12105i −0.0712278 + 0.123370i
\(641\) −20.8007 36.0279i −0.821580 1.42302i −0.904505 0.426462i \(-0.859760\pi\)
0.0829254 0.996556i \(-0.473574\pi\)
\(642\) 36.9869i 1.45975i
\(643\) 39.3278 22.7059i 1.55094 0.895433i 0.552869 0.833268i \(-0.313533\pi\)
0.998066 0.0621650i \(-0.0198005\pi\)
\(644\) 3.25280 1.87800i 0.128178 0.0740037i
\(645\) 3.80817i 0.149946i
\(646\) 2.71768 + 4.70715i 0.106926 + 0.185200i
\(647\) 17.9172 31.0336i 0.704399 1.22005i −0.262509 0.964930i \(-0.584550\pi\)
0.966908 0.255125i \(-0.0821167\pi\)
\(648\) −9.66383 5.57942i −0.379631 0.219180i
\(649\) 23.9148 0.938740
\(650\) 0 0
\(651\) −19.3163 −0.757067
\(652\) −3.75226 2.16637i −0.146950 0.0848415i
\(653\) −9.27950 + 16.0726i −0.363135 + 0.628968i −0.988475 0.151384i \(-0.951627\pi\)
0.625340 + 0.780352i \(0.284960\pi\)
\(654\) 6.24698 + 10.8201i 0.244276 + 0.423099i
\(655\) 8.27413i 0.323297i
\(656\) 6.22324 3.59299i 0.242977 0.140283i
\(657\) 6.56049 3.78770i 0.255949 0.147772i
\(658\) 7.75600i 0.302361i
\(659\) 1.98762 + 3.44266i 0.0774268 + 0.134107i 0.902139 0.431445i \(-0.141996\pi\)
−0.824712 + 0.565553i \(0.808663\pi\)
\(660\) −8.70171 + 15.0718i −0.338714 + 0.586669i
\(661\) 1.06687 + 0.615957i 0.0414964 + 0.0239580i 0.520605 0.853798i \(-0.325707\pi\)
−0.479108 + 0.877756i \(0.659040\pi\)
\(662\) −34.6112 −1.34520
\(663\) 0 0
\(664\) 0.911854 0.0353868
\(665\) −3.15875 1.82371i −0.122491 0.0707204i
\(666\) 2.92931 5.07372i 0.113509 0.196603i
\(667\) −6.39612 11.0784i −0.247659 0.428958i
\(668\) 14.0000i 0.541676i
\(669\) 23.0460 13.3056i 0.891008 0.514424i
\(670\) 6.70012 3.86831i 0.258848 0.149446i
\(671\) 1.03624i 0.0400038i
\(672\) −1.13706 1.96945i −0.0438632 0.0759732i
\(673\) −18.4128 + 31.8919i −0.709762 + 1.22934i 0.255184 + 0.966893i \(0.417864\pi\)
−0.964945 + 0.262451i \(0.915469\pi\)
\(674\) 1.69227 + 0.977033i 0.0651839 + 0.0376339i
\(675\) −29.4916 −1.13513
\(676\) 0 0
\(677\) −25.9215 −0.996246 −0.498123 0.867106i \(-0.665977\pi\)
−0.498123 + 0.867106i \(0.665977\pi\)
\(678\) −21.6497 12.4995i −0.831452 0.480039i
\(679\) 8.14377 14.1054i 0.312529 0.541316i
\(680\) 10.7409 + 18.6039i 0.411896 + 0.713425i
\(681\) 28.2851i 1.08389i
\(682\) −17.3373 + 10.0097i −0.663879 + 0.383291i
\(683\) −32.5168 + 18.7736i −1.24422 + 0.718352i −0.969951 0.243301i \(-0.921770\pi\)
−0.274271 + 0.961653i \(0.588436\pi\)
\(684\) 1.09246i 0.0417712i
\(685\) 16.3623 + 28.3403i 0.625170 + 1.08283i
\(686\) 7.08575 12.2729i 0.270535 0.468581i
\(687\) −20.5128 11.8431i −0.782613 0.451842i
\(688\) 0.515729 0.0196620
\(689\) 0 0
\(690\) −24.9879 −0.951274
\(691\) −39.1919 22.6274i −1.49093 0.860788i −0.490983 0.871169i \(-0.663362\pi\)
−0.999946 + 0.0103812i \(0.996695\pi\)
\(692\) 5.49396 9.51582i 0.208849 0.361737i
\(693\) −1.56704 2.71419i −0.0595269 0.103104i
\(694\) 6.41550i 0.243529i
\(695\) 59.0039 34.0659i 2.23814 1.29219i
\(696\) −6.70758 + 3.87263i −0.254250 + 0.146791i
\(697\) 42.8340i 1.62245i
\(698\) −0.542877 0.940290i −0.0205482 0.0355905i
\(699\) −10.0139 + 17.3445i −0.378759 + 0.656030i
\(700\) −7.67811 4.43296i −0.290205 0.167550i
\(701\) −36.0823 −1.36281 −0.681405 0.731907i \(-0.738631\pi\)
−0.681405 + 0.731907i \(0.738631\pi\)
\(702\) 0 0
\(703\) 4.45904 0.168176
\(704\) −2.04113 1.17845i −0.0769280 0.0444144i
\(705\) −25.7995 + 44.6861i −0.971667 + 1.68298i
\(706\) 2.14460 + 3.71455i 0.0807129 + 0.139799i
\(707\) 9.73184i 0.366004i
\(708\) 18.0045 10.3949i 0.676652 0.390665i
\(709\) 16.5120 9.53319i 0.620120 0.358026i −0.156796 0.987631i \(-0.550116\pi\)
0.776916 + 0.629605i \(0.216783\pi\)
\(710\) 2.21983i 0.0833088i
\(711\) 9.27413 + 16.0633i 0.347807 + 0.602419i
\(712\) −1.87531 + 3.24814i −0.0702804 + 0.121729i
\(713\) −24.8930 14.3720i −0.932249 0.538234i
\(714\) −13.5555 −0.507304
\(715\) 0 0
\(716\) 4.65519 0.173972
\(717\) 1.67572 + 0.967476i 0.0625808 + 0.0361311i
\(718\) 7.75302 13.4286i 0.289340 0.501152i
\(719\) −7.65279 13.2550i −0.285401 0.494329i 0.687305 0.726369i \(-0.258793\pi\)
−0.972706 + 0.232040i \(0.925460\pi\)
\(720\) 4.31767i 0.160910i
\(721\) −18.0820 + 10.4397i −0.673410 + 0.388793i
\(722\) 15.7344 9.08426i 0.585574 0.338081i
\(723\) 0.450419i 0.0167513i
\(724\) 0.533188 + 0.923508i 0.0198158 + 0.0343219i
\(725\) −15.0978 + 26.1502i −0.560720 + 0.971195i
\(726\) 9.66176 + 5.57822i 0.358582 + 0.207027i
\(727\) −3.46250 −0.128417 −0.0642085 0.997937i \(-0.520452\pi\)
−0.0642085 + 0.997937i \(0.520452\pi\)
\(728\) 0 0
\(729\) 9.32496 0.345369
\(730\) 19.7345 + 11.3937i 0.730407 + 0.421701i
\(731\) 1.53707 2.66229i 0.0568507 0.0984683i
\(732\) 0.450419 + 0.780148i 0.0166480 + 0.0288351i
\(733\) 26.0930i 0.963769i −0.876235 0.481884i \(-0.839953\pi\)
0.876235 0.481884i \(-0.160047\pi\)
\(734\) 15.0927 8.71379i 0.557083 0.321632i
\(735\) −36.8856 + 21.2959i −1.36054 + 0.785511i
\(736\) 3.38404i 0.124737i
\(737\) 2.52984 + 4.38180i 0.0931877 + 0.161406i
\(738\) 4.30463 7.45583i 0.158455 0.274453i
\(739\) −22.9491 13.2497i −0.844196 0.487397i 0.0144922 0.999895i \(-0.495387\pi\)
−0.858688 + 0.512498i \(0.828720\pi\)
\(740\) 17.6233 0.647844
\(741\) 0 0
\(742\) 3.75600 0.137887
\(743\) 0.359835 + 0.207751i 0.0132011 + 0.00762164i 0.506586 0.862189i \(-0.330907\pi\)
−0.493385 + 0.869811i \(0.664241\pi\)
\(744\) −8.70171 + 15.0718i −0.319020 + 0.552559i
\(745\) −33.6775 58.3312i −1.23385 2.13709i
\(746\) 8.19567i 0.300065i
\(747\) 0.946096 0.546229i 0.0346159 0.0199855i
\(748\) −12.1667 + 7.02446i −0.444859 + 0.256840i
\(749\) 20.0361i 0.732103i
\(750\) 11.0315 + 19.1070i 0.402812 + 0.697691i
\(751\) 1.45473 2.51967i 0.0530839 0.0919440i −0.838262 0.545267i \(-0.816428\pi\)
0.891346 + 0.453323i \(0.149762\pi\)
\(752\) −6.05171 3.49396i −0.220683 0.127412i
\(753\) 33.3037 1.21365
\(754\) 0 0
\(755\) 1.14483 0.0416647
\(756\) 3.54883 + 2.04892i 0.129070 + 0.0745184i
\(757\) −6.18598 + 10.7144i −0.224833 + 0.389423i −0.956269 0.292487i \(-0.905517\pi\)
0.731436 + 0.681910i \(0.238850\pi\)
\(758\) −7.52379 13.0316i −0.273277 0.473329i
\(759\) 16.3418i 0.593171i
\(760\) −2.84594 + 1.64310i −0.103233 + 0.0596017i
\(761\) −36.7459 + 21.2153i −1.33204 + 0.769053i −0.985612 0.169023i \(-0.945939\pi\)
−0.346428 + 0.938077i \(0.612605\pi\)
\(762\) 23.4142i 0.848206i
\(763\) −3.38404 5.86133i −0.122511 0.212195i
\(764\) 0.445042 0.770835i 0.0161010 0.0278878i
\(765\) 22.2886 + 12.8683i 0.805845 + 0.465255i
\(766\) 11.1207 0.401806
\(767\) 0 0
\(768\) −2.04892 −0.0739339
\(769\) −11.5476 6.66703i −0.416418 0.240419i 0.277125 0.960834i \(-0.410618\pi\)
−0.693544 + 0.720415i \(0.743952\pi\)
\(770\) 4.71379 8.16453i 0.169873 0.294229i
\(771\) 22.9861 + 39.8130i 0.827823 + 1.43383i
\(772\) 16.2174i 0.583678i
\(773\) −5.06957 + 2.92692i −0.182340 + 0.105274i −0.588392 0.808576i \(-0.700239\pi\)
0.406052 + 0.913850i \(0.366905\pi\)
\(774\) 0.535096 0.308938i 0.0192336 0.0111045i
\(775\) 67.8491i 2.43721i
\(776\) −7.33728 12.7085i −0.263393 0.456210i
\(777\) −5.56033 + 9.63078i −0.199476 + 0.345502i
\(778\) −6.96591 4.02177i −0.249740 0.144187i
\(779\) 6.55257 0.234770
\(780\) 0 0
\(781\) −1.45175 −0.0519476
\(782\) −17.4690 10.0858i −0.624691 0.360666i
\(783\) 6.97823 12.0866i 0.249382 0.431942i
\(784\) −2.88404 4.99531i −0.103002 0.178404i
\(785\) 68.0775i 2.42979i
\(786\) −4.07387 + 2.35205i −0.145310 + 0.0838949i
\(787\) 20.1754 11.6482i 0.719174 0.415215i −0.0952749 0.995451i \(-0.530373\pi\)
0.814448 + 0.580236i \(0.197040\pi\)
\(788\) 11.4711i 0.408642i
\(789\) −10.7506 18.6206i −0.382732 0.662912i
\(790\) −27.8974 + 48.3197i −0.992544 + 1.71914i
\(791\) 11.7278 + 6.77107i 0.416994 + 0.240752i
\(792\) −2.82371 −0.100336
\(793\) 0 0
\(794\) −21.9081 −0.777491
\(795\) −21.6402 12.4940i −0.767498 0.443115i
\(796\) 1.89977 3.29050i 0.0673356 0.116629i
\(797\) 17.9051 + 31.0126i 0.634233 + 1.09852i 0.986677 + 0.162691i \(0.0520173\pi\)
−0.352444 + 0.935833i \(0.614649\pi\)
\(798\) 2.07367i 0.0734072i
\(799\) −36.0729 + 20.8267i −1.27617 + 0.736795i
\(800\) −6.91774 + 3.99396i −0.244579 + 0.141208i
\(801\) 4.49349i 0.158769i
\(802\) −8.72132 15.1058i −0.307961 0.533404i
\(803\) −7.45138 + 12.9062i −0.262953 + 0.455449i
\(804\) 3.80923 + 2.19926i 0.134341 + 0.0775619i
\(805\) 13.5362 0.477087
\(806\) 0 0
\(807\) −54.1232 −1.90523
\(808\) −7.59339 4.38404i −0.267134 0.154230i
\(809\) −14.1872 + 24.5729i −0.498795 + 0.863938i −0.999999 0.00139133i \(-0.999557\pi\)
0.501204 + 0.865329i \(0.332890\pi\)
\(810\) −20.1075 34.8273i −0.706506 1.22370i
\(811\) 5.20344i 0.182717i 0.995818 + 0.0913587i \(0.0291210\pi\)
−0.995818 + 0.0913587i \(0.970879\pi\)
\(812\) 3.63356 2.09783i 0.127513 0.0736196i
\(813\) 39.0906 22.5690i 1.37097 0.791528i
\(814\) 11.5254i 0.403966i
\(815\) −7.80731 13.5227i −0.273478 0.473678i
\(816\) −6.10656 + 10.5769i −0.213772 + 0.370265i
\(817\) 0.407266 + 0.235135i 0.0142484 + 0.00822633i
\(818\) 17.4330 0.609529
\(819\) 0 0
\(820\) 25.8974 0.904376
\(821\) 4.89597 + 2.82669i 0.170871 + 0.0986522i 0.582996 0.812475i \(-0.301880\pi\)
−0.412126 + 0.911127i \(0.635214\pi\)
\(822\) −9.30247 + 16.1124i −0.324461 + 0.561983i
\(823\) 19.5308 + 33.8283i 0.680801 + 1.17918i 0.974737 + 0.223356i \(0.0717014\pi\)
−0.293936 + 0.955825i \(0.594965\pi\)
\(824\) 18.8116i 0.655334i
\(825\) −33.4064 + 19.2872i −1.16306 + 0.671493i
\(826\) −9.75322 + 5.63102i −0.339358 + 0.195928i
\(827\) 5.40283i 0.187875i 0.995578 + 0.0939374i \(0.0299454\pi\)
−0.995578 + 0.0939374i \(0.970055\pi\)
\(828\) −2.02715 3.51112i −0.0704482 0.122020i
\(829\) −4.19269 + 7.26194i −0.145618 + 0.252218i −0.929603 0.368562i \(-0.879850\pi\)
0.783985 + 0.620779i \(0.213184\pi\)
\(830\) 2.84594 + 1.64310i 0.0987840 + 0.0570330i
\(831\) 4.45904 0.154682
\(832\) 0 0
\(833\) −34.3822 −1.19127
\(834\) 33.5456 + 19.3675i 1.16159 + 0.670643i
\(835\) 25.2271 43.6947i 0.873021 1.51212i
\(836\) −1.07457 1.86121i −0.0371649 0.0643714i
\(837\) 31.3599i 1.08396i
\(838\) 8.63933 4.98792i 0.298441 0.172305i
\(839\) 3.44732 1.99031i 0.119015 0.0687132i −0.439311 0.898335i \(-0.644777\pi\)
0.558326 + 0.829622i \(0.311444\pi\)
\(840\) 8.19567i 0.282777i
\(841\) 7.35517 + 12.7395i 0.253626 + 0.439294i
\(842\) 0.307979 0.533434i 0.0106136 0.0183834i
\(843\) 44.3657 + 25.6145i 1.52803 + 0.882211i
\(844\) 25.0465 0.862137
\(845\) 0 0
\(846\) −8.37196 −0.287834
\(847\) −5.23386 3.02177i −0.179838 0.103829i
\(848\) 1.69202 2.93067i 0.0581043 0.100640i
\(849\) 16.7143 + 28.9501i 0.573634 + 0.993563i
\(850\) 47.6142i 1.63315i
\(851\) −14.3312 + 8.27413i −0.491267 + 0.283633i
\(852\) −1.09296 + 0.631023i −0.0374443 + 0.0216185i
\(853\) 6.29350i 0.215485i −0.994179 0.107743i \(-0.965638\pi\)
0.994179 0.107743i \(-0.0343623\pi\)
\(854\) −0.243996 0.422613i −0.00834936 0.0144615i
\(855\) −1.96854 + 3.40961i −0.0673227 + 0.116606i
\(856\) 15.6334 + 9.02595i 0.534339 + 0.308501i
\(857\) −4.37627 −0.149491 −0.0747453 0.997203i \(-0.523814\pi\)
−0.0747453 + 0.997203i \(0.523814\pi\)
\(858\) 0 0
\(859\) 15.0261 0.512683 0.256342 0.966586i \(-0.417483\pi\)
0.256342 + 0.966586i \(0.417483\pi\)
\(860\) 1.60962 + 0.929312i 0.0548875 + 0.0316893i
\(861\) −8.17092 + 14.1524i −0.278464 + 0.482314i
\(862\) −7.39612 12.8105i −0.251913 0.436326i
\(863\) 6.21121i 0.211432i 0.994396 + 0.105716i \(0.0337134\pi\)
−0.994396 + 0.105716i \(0.966287\pi\)
\(864\) 3.19738 1.84601i 0.108777 0.0628026i
\(865\) 34.2938 19.7995i 1.16602 0.673205i
\(866\) 16.5321i 0.561784i
\(867\) 18.9840 + 32.8813i 0.644732 + 1.11671i
\(868\) 4.71379 8.16453i 0.159997 0.277122i
\(869\) −31.6006 18.2446i −1.07198 0.618905i
\(870\) −27.9129 −0.946337
\(871\) 0 0
\(872\) −6.09783 −0.206499
\(873\) −15.2256 8.79052i −0.515309 0.297514i
\(874\) 1.54288 2.67234i 0.0521886 0.0903933i
\(875\) −5.97584 10.3505i −0.202020 0.349909i
\(876\) 12.9554i 0.437722i
\(877\) 33.0993 19.1099i 1.11769 0.645296i 0.176876 0.984233i \(-0.443401\pi\)
0.940809 + 0.338937i \(0.110067\pi\)
\(878\) −3.03218 + 1.75063i −0.102331 + 0.0590808i
\(879\) 3.84787i 0.129785i
\(880\) −4.24698 7.35598i −0.143166 0.247970i
\(881\) 13.3916 23.1949i 0.451174 0.781456i −0.547286 0.836946i \(-0.684339\pi\)
0.998459 + 0.0554902i \(0.0176722\pi\)
\(882\) −5.98469 3.45526i −0.201515 0.116345i
\(883\) 34.4956 1.16087 0.580435 0.814307i \(-0.302883\pi\)
0.580435 + 0.814307i \(0.302883\pi\)
\(884\) 0 0
\(885\) 74.9241 2.51854
\(886\) −15.0755 8.70387i −0.506473 0.292412i
\(887\) 11.9933 20.7730i 0.402695 0.697489i −0.591355 0.806411i \(-0.701407\pi\)
0.994050 + 0.108923i \(0.0347400\pi\)
\(888\) 5.00969 + 8.67704i 0.168114 + 0.291182i
\(889\) 12.6837i 0.425396i
\(890\) −11.7059 + 6.75840i −0.392382 + 0.226542i
\(891\) 22.7766 13.1501i 0.763046 0.440545i
\(892\) 12.9879i 0.434868i
\(893\) −3.18598 5.51828i −0.106615 0.184662i
\(894\) 19.1468 33.1631i 0.640363 1.10914i
\(895\) 14.5291 + 8.38835i 0.485653 + 0.280392i
\(896\) 1.10992 0.0370797
\(897\) 0 0
\(898\) 34.1497 1.13959
\(899\) −27.8069 16.0543i −0.927410 0.535441i
\(900\) −4.78501 + 8.28788i −0.159500 + 0.276263i
\(901\) −10.0858 17.4690i −0.336005 0.581978i
\(902\) 16.9366i 0.563927i
\(903\) −1.01570 + 0.586417i −0.0338005 + 0.0195147i
\(904\) 10.5664 6.10052i 0.351434 0.202900i
\(905\) 3.84309i 0.127748i
\(906\) 0.325437 + 0.563673i 0.0108119 + 0.0187268i
\(907\) 11.9635 20.7213i 0.397240 0.688040i −0.596144 0.802877i \(-0.703301\pi\)
0.993384 + 0.114837i \(0.0366347\pi\)
\(908\) 11.9554 + 6.90246i 0.396754 + 0.229066i
\(909\) −10.5047 −0.348419
\(910\) 0 0
\(911\) −35.8866 −1.18898 −0.594488 0.804104i \(-0.702645\pi\)
−0.594488 + 0.804104i \(0.702645\pi\)
\(912\) −1.61801 0.934157i −0.0535776 0.0309330i
\(913\) −1.07457 + 1.86121i −0.0355632 + 0.0615972i
\(914\) 4.70171 + 8.14360i 0.155519 + 0.269366i
\(915\) 3.24651i 0.107326i
\(916\) 10.0115 5.78017i 0.330791 0.190982i
\(917\) 2.20685 1.27413i 0.0728767 0.0420754i
\(918\) 22.0073i 0.726349i
\(919\) −16.6233 28.7923i −0.548351 0.949771i −0.998388 0.0567612i \(-0.981923\pi\)
0.450037 0.893010i \(-0.351411\pi\)
\(920\) 6.09783 10.5618i 0.201040 0.348211i
\(921\) −42.5507 24.5667i −1.40209 0.809499i
\(922\) 0.733169 0.0241456
\(923\) 0 0
\(924\) 5.35988 0.176327
\(925\) 33.8283 + 19.5308i 1.11227 + 0.642169i
\(926\) −3.62133 + 6.27233i −0.119004 + 0.206122i
\(927\) 11.2687 + 19.5180i 0.370114 + 0.641057i
\(928\) 3.78017i 0.124090i
\(929\) 46.9891 27.1292i 1.54166 0.890079i 0.542928 0.839779i \(-0.317316\pi\)
0.998734 0.0502995i \(-0.0160176\pi\)
\(930\) −54.3169 + 31.3599i −1.78112 + 1.02833i
\(931\) 5.25965i 0.172378i
\(932\) −4.88740 8.46522i −0.160092 0.277287i
\(933\) 5.51573 9.55352i 0.180577 0.312768i
\(934\) 26.1926 + 15.1223i 0.857047 + 0.494817i
\(935\) −50.6305 −1.65580
\(936\) 0 0
\(937\) 16.5265 0.539897 0.269948 0.962875i \(-0.412993\pi\)
0.269948 + 0.962875i \(0.412993\pi\)
\(938\) −2.06349 1.19136i −0.0673754 0.0388992i
\(939\) 19.4121 33.6228i 0.633492 1.09724i
\(940\) −12.5918 21.8096i −0.410699 0.711352i
\(941\) 41.7017i 1.35944i 0.733473 + 0.679718i \(0.237898\pi\)
−0.733473 + 0.679718i \(0.762102\pi\)
\(942\) −33.5188 + 19.3521i −1.09210 + 0.630526i
\(943\) −21.0597 + 12.1588i −0.685799 + 0.395946i
\(944\) 10.1468i 0.330249i
\(945\) 7.38404 + 12.7895i 0.240203 + 0.416044i
\(946\) −0.607760 + 1.05267i −0.0197600 + 0.0342253i
\(947\) −2.59900 1.50053i −0.0844561 0.0487608i 0.457177 0.889376i \(-0.348861\pi\)
−0.541633 + 0.840615i \(0.682194\pi\)
\(948\) −31.7211 −1.03025
\(949\) 0 0
\(950\) −7.28382 −0.236318
\(951\) 20.4080 + 11.7826i 0.661775 + 0.382076i
\(952\) 3.30798 5.72959i 0.107212 0.185697i
\(953\) 19.0725 + 33.0345i 0.617818 + 1.07009i 0.989883 + 0.141886i \(0.0453165\pi\)
−0.372065 + 0.928207i \(0.621350\pi\)
\(954\) 4.05429i 0.131263i
\(955\) 2.77799 1.60388i 0.0898938 0.0519002i
\(956\) −0.817855 + 0.472189i −0.0264513 + 0.0152717i
\(957\) 18.2547i 0.590092i
\(958\) 18.3599 + 31.8002i 0.593181 + 1.02742i
\(959\) 5.03923 8.72820i 0.162725 0.281848i
\(960\) −6.39477 3.69202i −0.206390 0.119159i
\(961\) −41.1473 −1.32733
\(962\) 0 0
\(963\) 21.6273 0.696930
\(964\) −0.190381 0.109916i −0.00613174 0.00354016i
\(965\) 29.2228 50.6154i 0.940716 1.62937i
\(966\) 3.84787 + 6.66471i 0.123803 + 0.214433i
\(967\) 26.8793i 0.864381i 0.901782 + 0.432190i \(0.142259\pi\)
−0.901782 + 0.432190i \(0.857741\pi\)
\(968\) −4.71554 + 2.72252i −0.151563 + 0.0875051i
\(969\) −9.64457 + 5.56829i −0.309828 + 0.178879i
\(970\) 52.8853i 1.69804i
\(971\) −1.56824 2.71626i −0.0503271 0.0871691i 0.839764 0.542951i \(-0.182693\pi\)
−0.890092 + 0.455782i \(0.849360\pi\)
\(972\) 5.89373 10.2082i 0.189042 0.327430i
\(973\) −18.1719 10.4916i −0.582565 0.336344i
\(974\) 28.6547 0.918156
\(975\) 0 0
\(976\) −0.439665 −0.0140733
\(977\) 31.0785 + 17.9432i 0.994289 + 0.574053i 0.906554 0.422091i \(-0.138704\pi\)
0.0877357 + 0.996144i \(0.472037\pi\)
\(978\) 4.43871 7.68806i 0.141934 0.245837i
\(979\) −4.41992 7.65552i −0.141261 0.244672i
\(980\) 20.7875i 0.664031i
\(981\) −6.32682 + 3.65279i −0.202000 + 0.116625i
\(982\) −26.3527 + 15.2148i −0.840949 + 0.485522i
\(983\) 30.4370i 0.970790i −0.874295 0.485395i \(-0.838676\pi\)
0.874295 0.485395i \(-0.161324\pi\)
\(984\) 7.36174 + 12.7509i 0.234684 + 0.406484i
\(985\) 20.6703 35.8019i 0.658609 1.14074i
\(986\) −19.5139 11.2664i −0.621449 0.358794i
\(987\) 15.8914 0.505829
\(988\) 0 0
\(989\) −1.74525 −0.0554957
\(990\) −8.81293 5.08815i −0.280093 0.161712i
\(991\) −15.7235 + 27.2339i −0.499473 + 0.865112i −1.00000 0.000608632i \(-0.999806\pi\)
0.500527 + 0.865721i \(0.333140\pi\)
\(992\) −4.24698 7.35598i −0.134842 0.233553i
\(993\) 70.9154i 2.25043i
\(994\) 0.592068 0.341830i 0.0187792 0.0108422i
\(995\) 11.8586 6.84654i 0.375942 0.217050i
\(996\) 1.86831i 0.0591998i
\(997\) −9.55496 16.5497i −0.302609 0.524133i 0.674117 0.738624i \(-0.264524\pi\)
−0.976726 + 0.214491i \(0.931191\pi\)
\(998\) 7.98576 13.8317i 0.252785 0.437836i
\(999\) −15.6355 9.02715i −0.494685 0.285606i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.2.e.e.147.3 12
13.2 odd 12 338.2.c.h.315.3 6
13.3 even 3 inner 338.2.e.e.23.6 12
13.4 even 6 338.2.b.d.337.1 6
13.5 odd 4 338.2.c.h.191.3 6
13.6 odd 12 338.2.a.h.1.1 yes 3
13.7 odd 12 338.2.a.g.1.1 3
13.8 odd 4 338.2.c.i.191.3 6
13.9 even 3 338.2.b.d.337.4 6
13.10 even 6 inner 338.2.e.e.23.3 12
13.11 odd 12 338.2.c.i.315.3 6
13.12 even 2 inner 338.2.e.e.147.6 12
39.17 odd 6 3042.2.b.n.1351.6 6
39.20 even 12 3042.2.a.bi.1.3 3
39.32 even 12 3042.2.a.z.1.1 3
39.35 odd 6 3042.2.b.n.1351.1 6
52.7 even 12 2704.2.a.v.1.3 3
52.19 even 12 2704.2.a.w.1.3 3
52.35 odd 6 2704.2.f.m.337.6 6
52.43 odd 6 2704.2.f.m.337.5 6
65.19 odd 12 8450.2.a.bn.1.3 3
65.59 odd 12 8450.2.a.bx.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.2.a.g.1.1 3 13.7 odd 12
338.2.a.h.1.1 yes 3 13.6 odd 12
338.2.b.d.337.1 6 13.4 even 6
338.2.b.d.337.4 6 13.9 even 3
338.2.c.h.191.3 6 13.5 odd 4
338.2.c.h.315.3 6 13.2 odd 12
338.2.c.i.191.3 6 13.8 odd 4
338.2.c.i.315.3 6 13.11 odd 12
338.2.e.e.23.3 12 13.10 even 6 inner
338.2.e.e.23.6 12 13.3 even 3 inner
338.2.e.e.147.3 12 1.1 even 1 trivial
338.2.e.e.147.6 12 13.12 even 2 inner
2704.2.a.v.1.3 3 52.7 even 12
2704.2.a.w.1.3 3 52.19 even 12
2704.2.f.m.337.5 6 52.43 odd 6
2704.2.f.m.337.6 6 52.35 odd 6
3042.2.a.z.1.1 3 39.32 even 12
3042.2.a.bi.1.3 3 39.20 even 12
3042.2.b.n.1351.1 6 39.35 odd 6
3042.2.b.n.1351.6 6 39.17 odd 6
8450.2.a.bn.1.3 3 65.19 odd 12
8450.2.a.bx.1.3 3 65.59 odd 12