Properties

Label 338.2.b.d.337.4
Level $338$
Weight $2$
Character 338.337
Analytic conductor $2.699$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,2,Mod(337,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 338.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.69894358832\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.4
Root \(-1.80194i\) of defining polynomial
Character \(\chi\) \(=\) 338.337
Dual form 338.2.b.d.337.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -2.04892 q^{3} -1.00000 q^{4} +3.60388i q^{5} -2.04892i q^{6} +1.10992i q^{7} -1.00000i q^{8} +1.19806 q^{9} -3.60388 q^{10} -2.35690i q^{11} +2.04892 q^{12} -1.10992 q^{14} -7.38404i q^{15} +1.00000 q^{16} -5.96077 q^{17} +1.19806i q^{18} -0.911854i q^{19} -3.60388i q^{20} -2.27413i q^{21} +2.35690 q^{22} -3.38404 q^{23} +2.04892i q^{24} -7.98792 q^{25} +3.69202 q^{27} -1.10992i q^{28} -3.78017 q^{29} +7.38404 q^{30} -8.49396i q^{31} +1.00000i q^{32} +4.82908i q^{33} -5.96077i q^{34} -4.00000 q^{35} -1.19806 q^{36} +4.89008i q^{37} +0.911854 q^{38} +3.60388 q^{40} +7.18598i q^{41} +2.27413 q^{42} +0.515729 q^{43} +2.35690i q^{44} +4.31767i q^{45} -3.38404i q^{46} +6.98792i q^{47} -2.04892 q^{48} +5.76809 q^{49} -7.98792i q^{50} +12.2131 q^{51} -3.38404 q^{53} +3.69202i q^{54} +8.49396 q^{55} +1.10992 q^{56} +1.86831i q^{57} -3.78017i q^{58} +10.1468i q^{59} +7.38404i q^{60} -0.439665 q^{61} +8.49396 q^{62} +1.32975i q^{63} -1.00000 q^{64} -4.82908 q^{66} -2.14675i q^{67} +5.96077 q^{68} +6.93362 q^{69} -4.00000i q^{70} -0.615957i q^{71} -1.19806i q^{72} +6.32304i q^{73} -4.89008 q^{74} +16.3666 q^{75} +0.911854i q^{76} +2.61596 q^{77} -15.4819 q^{79} +3.60388i q^{80} -11.1588 q^{81} -7.18598 q^{82} +0.911854i q^{83} +2.27413i q^{84} -21.4819i q^{85} +0.515729i q^{86} +7.74525 q^{87} -2.35690 q^{88} +3.75063i q^{89} -4.31767 q^{90} +3.38404 q^{92} +17.4034i q^{93} -6.98792 q^{94} +3.28621 q^{95} -2.04892i q^{96} +14.6746i q^{97} +5.76809i q^{98} -2.82371i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} - 6 q^{4} + 16 q^{9} - 4 q^{10} - 6 q^{12} - 8 q^{14} + 6 q^{16} - 10 q^{17} + 6 q^{22} - 10 q^{25} + 12 q^{27} - 20 q^{29} + 24 q^{30} - 24 q^{35} - 16 q^{36} - 2 q^{38} + 4 q^{40} - 8 q^{42}+ \cdots + 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −2.04892 −1.18294 −0.591471 0.806326i \(-0.701453\pi\)
−0.591471 + 0.806326i \(0.701453\pi\)
\(4\) −1.00000 −0.500000
\(5\) 3.60388i 1.61170i 0.592118 + 0.805851i \(0.298292\pi\)
−0.592118 + 0.805851i \(0.701708\pi\)
\(6\) − 2.04892i − 0.836467i
\(7\) 1.10992i 0.419509i 0.977754 + 0.209754i \(0.0672665\pi\)
−0.977754 + 0.209754i \(0.932734\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 1.19806 0.399354
\(10\) −3.60388 −1.13965
\(11\) − 2.35690i − 0.710631i −0.934746 0.355315i \(-0.884373\pi\)
0.934746 0.355315i \(-0.115627\pi\)
\(12\) 2.04892 0.591471
\(13\) 0 0
\(14\) −1.10992 −0.296638
\(15\) − 7.38404i − 1.90655i
\(16\) 1.00000 0.250000
\(17\) −5.96077 −1.44570 −0.722850 0.691005i \(-0.757168\pi\)
−0.722850 + 0.691005i \(0.757168\pi\)
\(18\) 1.19806i 0.282386i
\(19\) − 0.911854i − 0.209194i −0.994515 0.104597i \(-0.966645\pi\)
0.994515 0.104597i \(-0.0333552\pi\)
\(20\) − 3.60388i − 0.805851i
\(21\) − 2.27413i − 0.496255i
\(22\) 2.35690 0.502492
\(23\) −3.38404 −0.705622 −0.352811 0.935695i \(-0.614774\pi\)
−0.352811 + 0.935695i \(0.614774\pi\)
\(24\) 2.04892i 0.418234i
\(25\) −7.98792 −1.59758
\(26\) 0 0
\(27\) 3.69202 0.710530
\(28\) − 1.10992i − 0.209754i
\(29\) −3.78017 −0.701959 −0.350980 0.936383i \(-0.614151\pi\)
−0.350980 + 0.936383i \(0.614151\pi\)
\(30\) 7.38404 1.34814
\(31\) − 8.49396i − 1.52556i −0.646658 0.762780i \(-0.723834\pi\)
0.646658 0.762780i \(-0.276166\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 4.82908i 0.840636i
\(34\) − 5.96077i − 1.02226i
\(35\) −4.00000 −0.676123
\(36\) −1.19806 −0.199677
\(37\) 4.89008i 0.803925i 0.915656 + 0.401962i \(0.131672\pi\)
−0.915656 + 0.401962i \(0.868328\pi\)
\(38\) 0.911854 0.147922
\(39\) 0 0
\(40\) 3.60388 0.569823
\(41\) 7.18598i 1.12226i 0.827727 + 0.561131i \(0.189634\pi\)
−0.827727 + 0.561131i \(0.810366\pi\)
\(42\) 2.27413 0.350905
\(43\) 0.515729 0.0786480 0.0393240 0.999227i \(-0.487480\pi\)
0.0393240 + 0.999227i \(0.487480\pi\)
\(44\) 2.35690i 0.355315i
\(45\) 4.31767i 0.643640i
\(46\) − 3.38404i − 0.498950i
\(47\) 6.98792i 1.01929i 0.860384 + 0.509646i \(0.170224\pi\)
−0.860384 + 0.509646i \(0.829776\pi\)
\(48\) −2.04892 −0.295736
\(49\) 5.76809 0.824012
\(50\) − 7.98792i − 1.12966i
\(51\) 12.2131 1.71018
\(52\) 0 0
\(53\) −3.38404 −0.464834 −0.232417 0.972616i \(-0.574663\pi\)
−0.232417 + 0.972616i \(0.574663\pi\)
\(54\) 3.69202i 0.502420i
\(55\) 8.49396 1.14533
\(56\) 1.10992 0.148319
\(57\) 1.86831i 0.247464i
\(58\) − 3.78017i − 0.496360i
\(59\) 10.1468i 1.32099i 0.750828 + 0.660497i \(0.229655\pi\)
−0.750828 + 0.660497i \(0.770345\pi\)
\(60\) 7.38404i 0.953276i
\(61\) −0.439665 −0.0562933 −0.0281467 0.999604i \(-0.508961\pi\)
−0.0281467 + 0.999604i \(0.508961\pi\)
\(62\) 8.49396 1.07873
\(63\) 1.32975i 0.167533i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −4.82908 −0.594419
\(67\) − 2.14675i − 0.262268i −0.991365 0.131134i \(-0.958138\pi\)
0.991365 0.131134i \(-0.0418617\pi\)
\(68\) 5.96077 0.722850
\(69\) 6.93362 0.834710
\(70\) − 4.00000i − 0.478091i
\(71\) − 0.615957i − 0.0731007i −0.999332 0.0365503i \(-0.988363\pi\)
0.999332 0.0365503i \(-0.0116369\pi\)
\(72\) − 1.19806i − 0.141193i
\(73\) 6.32304i 0.740056i 0.929021 + 0.370028i \(0.120652\pi\)
−0.929021 + 0.370028i \(0.879348\pi\)
\(74\) −4.89008 −0.568461
\(75\) 16.3666 1.88985
\(76\) 0.911854i 0.104597i
\(77\) 2.61596 0.298116
\(78\) 0 0
\(79\) −15.4819 −1.74185 −0.870924 0.491418i \(-0.836479\pi\)
−0.870924 + 0.491418i \(0.836479\pi\)
\(80\) 3.60388i 0.402926i
\(81\) −11.1588 −1.23987
\(82\) −7.18598 −0.793559
\(83\) 0.911854i 0.100089i 0.998747 + 0.0500445i \(0.0159363\pi\)
−0.998747 + 0.0500445i \(0.984064\pi\)
\(84\) 2.27413i 0.248128i
\(85\) − 21.4819i − 2.33004i
\(86\) 0.515729i 0.0556125i
\(87\) 7.74525 0.830378
\(88\) −2.35690 −0.251246
\(89\) 3.75063i 0.397566i 0.980044 + 0.198783i \(0.0636988\pi\)
−0.980044 + 0.198783i \(0.936301\pi\)
\(90\) −4.31767 −0.455122
\(91\) 0 0
\(92\) 3.38404 0.352811
\(93\) 17.4034i 1.80465i
\(94\) −6.98792 −0.720749
\(95\) 3.28621 0.337158
\(96\) − 2.04892i − 0.209117i
\(97\) 14.6746i 1.48998i 0.667078 + 0.744988i \(0.267545\pi\)
−0.667078 + 0.744988i \(0.732455\pi\)
\(98\) 5.76809i 0.582665i
\(99\) − 2.82371i − 0.283793i
\(100\) 7.98792 0.798792
\(101\) −8.76809 −0.872457 −0.436229 0.899836i \(-0.643686\pi\)
−0.436229 + 0.899836i \(0.643686\pi\)
\(102\) 12.2131i 1.20928i
\(103\) −18.8116 −1.85356 −0.926782 0.375599i \(-0.877437\pi\)
−0.926782 + 0.375599i \(0.877437\pi\)
\(104\) 0 0
\(105\) 8.19567 0.799815
\(106\) − 3.38404i − 0.328687i
\(107\) 18.0519 1.74514 0.872572 0.488486i \(-0.162451\pi\)
0.872572 + 0.488486i \(0.162451\pi\)
\(108\) −3.69202 −0.355265
\(109\) − 6.09783i − 0.584067i −0.956408 0.292033i \(-0.905668\pi\)
0.956408 0.292033i \(-0.0943318\pi\)
\(110\) 8.49396i 0.809867i
\(111\) − 10.0194i − 0.950997i
\(112\) 1.10992i 0.104877i
\(113\) −12.2010 −1.14778 −0.573889 0.818933i \(-0.694566\pi\)
−0.573889 + 0.818933i \(0.694566\pi\)
\(114\) −1.86831 −0.174984
\(115\) − 12.1957i − 1.13725i
\(116\) 3.78017 0.350980
\(117\) 0 0
\(118\) −10.1468 −0.934084
\(119\) − 6.61596i − 0.606484i
\(120\) −7.38404 −0.674068
\(121\) 5.44504 0.495004
\(122\) − 0.439665i − 0.0398054i
\(123\) − 14.7235i − 1.32757i
\(124\) 8.49396i 0.762780i
\(125\) − 10.7681i − 0.963127i
\(126\) −1.32975 −0.118463
\(127\) −11.4276 −1.01403 −0.507017 0.861936i \(-0.669252\pi\)
−0.507017 + 0.861936i \(0.669252\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −1.05669 −0.0930361
\(130\) 0 0
\(131\) 2.29590 0.200593 0.100297 0.994958i \(-0.468021\pi\)
0.100297 + 0.994958i \(0.468021\pi\)
\(132\) − 4.82908i − 0.420318i
\(133\) 1.01208 0.0877586
\(134\) 2.14675 0.185451
\(135\) 13.3056i 1.14516i
\(136\) 5.96077i 0.511132i
\(137\) 9.08038i 0.775789i 0.921704 + 0.387894i \(0.126797\pi\)
−0.921704 + 0.387894i \(0.873203\pi\)
\(138\) 6.93362i 0.590229i
\(139\) 18.9051 1.60351 0.801757 0.597650i \(-0.203899\pi\)
0.801757 + 0.597650i \(0.203899\pi\)
\(140\) 4.00000 0.338062
\(141\) − 14.3177i − 1.20577i
\(142\) 0.615957 0.0516900
\(143\) 0 0
\(144\) 1.19806 0.0998385
\(145\) − 13.6233i − 1.13135i
\(146\) −6.32304 −0.523299
\(147\) −11.8183 −0.974760
\(148\) − 4.89008i − 0.401962i
\(149\) − 18.6896i − 1.53111i −0.643368 0.765557i \(-0.722463\pi\)
0.643368 0.765557i \(-0.277537\pi\)
\(150\) 16.3666i 1.33633i
\(151\) − 0.317667i − 0.0258514i −0.999916 0.0129257i \(-0.995886\pi\)
0.999916 0.0129257i \(-0.00411449\pi\)
\(152\) −0.911854 −0.0739611
\(153\) −7.14138 −0.577346
\(154\) 2.61596i 0.210800i
\(155\) 30.6112 2.45875
\(156\) 0 0
\(157\) 18.8901 1.50759 0.753796 0.657108i \(-0.228220\pi\)
0.753796 + 0.657108i \(0.228220\pi\)
\(158\) − 15.4819i − 1.23167i
\(159\) 6.93362 0.549872
\(160\) −3.60388 −0.284911
\(161\) − 3.75600i − 0.296015i
\(162\) − 11.1588i − 0.876721i
\(163\) − 4.33273i − 0.339366i −0.985499 0.169683i \(-0.945726\pi\)
0.985499 0.169683i \(-0.0542744\pi\)
\(164\) − 7.18598i − 0.561131i
\(165\) −17.4034 −1.35485
\(166\) −0.911854 −0.0707736
\(167\) 14.0000i 1.08335i 0.840587 + 0.541676i \(0.182210\pi\)
−0.840587 + 0.541676i \(0.817790\pi\)
\(168\) −2.27413 −0.175453
\(169\) 0 0
\(170\) 21.4819 1.64758
\(171\) − 1.09246i − 0.0835423i
\(172\) −0.515729 −0.0393240
\(173\) 10.9879 0.835396 0.417698 0.908586i \(-0.362837\pi\)
0.417698 + 0.908586i \(0.362837\pi\)
\(174\) 7.74525i 0.587166i
\(175\) − 8.86592i − 0.670201i
\(176\) − 2.35690i − 0.177658i
\(177\) − 20.7899i − 1.56266i
\(178\) −3.75063 −0.281121
\(179\) −4.65519 −0.347945 −0.173972 0.984751i \(-0.555660\pi\)
−0.173972 + 0.984751i \(0.555660\pi\)
\(180\) − 4.31767i − 0.321820i
\(181\) 1.06638 0.0792631 0.0396315 0.999214i \(-0.487382\pi\)
0.0396315 + 0.999214i \(0.487382\pi\)
\(182\) 0 0
\(183\) 0.900837 0.0665918
\(184\) 3.38404i 0.249475i
\(185\) −17.6233 −1.29569
\(186\) −17.4034 −1.27608
\(187\) 14.0489i 1.02736i
\(188\) − 6.98792i − 0.509646i
\(189\) 4.09783i 0.298074i
\(190\) 3.28621i 0.238407i
\(191\) 0.890084 0.0644042 0.0322021 0.999481i \(-0.489748\pi\)
0.0322021 + 0.999481i \(0.489748\pi\)
\(192\) 2.04892 0.147868
\(193\) 16.2174i 1.16736i 0.811985 + 0.583678i \(0.198387\pi\)
−0.811985 + 0.583678i \(0.801613\pi\)
\(194\) −14.6746 −1.05357
\(195\) 0 0
\(196\) −5.76809 −0.412006
\(197\) 11.4711i 0.817284i 0.912695 + 0.408642i \(0.133997\pi\)
−0.912695 + 0.408642i \(0.866003\pi\)
\(198\) 2.82371 0.200672
\(199\) 3.79954 0.269343 0.134671 0.990890i \(-0.457002\pi\)
0.134671 + 0.990890i \(0.457002\pi\)
\(200\) 7.98792i 0.564831i
\(201\) 4.39852i 0.310247i
\(202\) − 8.76809i − 0.616920i
\(203\) − 4.19567i − 0.294478i
\(204\) −12.2131 −0.855090
\(205\) −25.8974 −1.80875
\(206\) − 18.8116i − 1.31067i
\(207\) −4.05429 −0.281793
\(208\) 0 0
\(209\) −2.14914 −0.148659
\(210\) 8.19567i 0.565555i
\(211\) −25.0465 −1.72427 −0.862137 0.506675i \(-0.830874\pi\)
−0.862137 + 0.506675i \(0.830874\pi\)
\(212\) 3.38404 0.232417
\(213\) 1.26205i 0.0864739i
\(214\) 18.0519i 1.23400i
\(215\) 1.85862i 0.126757i
\(216\) − 3.69202i − 0.251210i
\(217\) 9.42758 0.639986
\(218\) 6.09783 0.412997
\(219\) − 12.9554i − 0.875444i
\(220\) −8.49396 −0.572663
\(221\) 0 0
\(222\) 10.0194 0.672457
\(223\) − 12.9879i − 0.869735i −0.900494 0.434868i \(-0.856795\pi\)
0.900494 0.434868i \(-0.143205\pi\)
\(224\) −1.10992 −0.0741594
\(225\) −9.57002 −0.638002
\(226\) − 12.2010i − 0.811602i
\(227\) 13.8049i 0.916265i 0.888884 + 0.458132i \(0.151481\pi\)
−0.888884 + 0.458132i \(0.848519\pi\)
\(228\) − 1.86831i − 0.123732i
\(229\) − 11.5603i − 0.763928i −0.924177 0.381964i \(-0.875248\pi\)
0.924177 0.381964i \(-0.124752\pi\)
\(230\) 12.1957 0.804159
\(231\) −5.35988 −0.352654
\(232\) 3.78017i 0.248180i
\(233\) −9.77479 −0.640368 −0.320184 0.947355i \(-0.603745\pi\)
−0.320184 + 0.947355i \(0.603745\pi\)
\(234\) 0 0
\(235\) −25.1836 −1.64280
\(236\) − 10.1468i − 0.660497i
\(237\) 31.7211 2.06051
\(238\) 6.61596 0.428849
\(239\) 0.944378i 0.0610867i 0.999533 + 0.0305434i \(0.00972377\pi\)
−0.999533 + 0.0305434i \(0.990276\pi\)
\(240\) − 7.38404i − 0.476638i
\(241\) − 0.219833i − 0.0141607i −0.999975 0.00708033i \(-0.997746\pi\)
0.999975 0.00708033i \(-0.00225376\pi\)
\(242\) 5.44504i 0.350021i
\(243\) 11.7875 0.756166
\(244\) 0.439665 0.0281467
\(245\) 20.7875i 1.32806i
\(246\) 14.7235 0.938735
\(247\) 0 0
\(248\) −8.49396 −0.539367
\(249\) − 1.86831i − 0.118400i
\(250\) 10.7681 0.681034
\(251\) −16.2543 −1.02596 −0.512980 0.858400i \(-0.671459\pi\)
−0.512980 + 0.858400i \(0.671459\pi\)
\(252\) − 1.32975i − 0.0837663i
\(253\) 7.97584i 0.501437i
\(254\) − 11.4276i − 0.717030i
\(255\) 44.0146i 2.75630i
\(256\) 1.00000 0.0625000
\(257\) 22.4373 1.39960 0.699799 0.714340i \(-0.253273\pi\)
0.699799 + 0.714340i \(0.253273\pi\)
\(258\) − 1.05669i − 0.0657865i
\(259\) −5.42758 −0.337254
\(260\) 0 0
\(261\) −4.52888 −0.280330
\(262\) 2.29590i 0.141841i
\(263\) −10.4940 −0.647085 −0.323543 0.946214i \(-0.604874\pi\)
−0.323543 + 0.946214i \(0.604874\pi\)
\(264\) 4.82908 0.297210
\(265\) − 12.1957i − 0.749174i
\(266\) 1.01208i 0.0620547i
\(267\) − 7.68473i − 0.470298i
\(268\) 2.14675i 0.131134i
\(269\) 26.4155 1.61058 0.805291 0.592880i \(-0.202009\pi\)
0.805291 + 0.592880i \(0.202009\pi\)
\(270\) −13.3056 −0.809752
\(271\) − 22.0301i − 1.33824i −0.743157 0.669118i \(-0.766672\pi\)
0.743157 0.669118i \(-0.233328\pi\)
\(272\) −5.96077 −0.361425
\(273\) 0 0
\(274\) −9.08038 −0.548566
\(275\) 18.8267i 1.13529i
\(276\) −6.93362 −0.417355
\(277\) −2.17629 −0.130761 −0.0653804 0.997860i \(-0.520826\pi\)
−0.0653804 + 0.997860i \(0.520826\pi\)
\(278\) 18.9051i 1.13386i
\(279\) − 10.1763i − 0.609239i
\(280\) 4.00000i 0.239046i
\(281\) 25.0030i 1.49155i 0.666196 + 0.745776i \(0.267921\pi\)
−0.666196 + 0.745776i \(0.732079\pi\)
\(282\) 14.3177 0.852605
\(283\) 16.3153 0.969842 0.484921 0.874558i \(-0.338848\pi\)
0.484921 + 0.874558i \(0.338848\pi\)
\(284\) 0.615957i 0.0365503i
\(285\) −6.73317 −0.398839
\(286\) 0 0
\(287\) −7.97584 −0.470799
\(288\) 1.19806i 0.0705965i
\(289\) 18.5308 1.09005
\(290\) 13.6233 0.799985
\(291\) − 30.0670i − 1.76256i
\(292\) − 6.32304i − 0.370028i
\(293\) − 1.87800i − 0.109714i −0.998494 0.0548570i \(-0.982530\pi\)
0.998494 0.0548570i \(-0.0174703\pi\)
\(294\) − 11.8183i − 0.689259i
\(295\) −36.5676 −2.12905
\(296\) 4.89008 0.284230
\(297\) − 8.70171i − 0.504924i
\(298\) 18.6896 1.08266
\(299\) 0 0
\(300\) −16.3666 −0.944925
\(301\) 0.572417i 0.0329935i
\(302\) 0.317667 0.0182797
\(303\) 17.9651 1.03207
\(304\) − 0.911854i − 0.0522984i
\(305\) − 1.58450i − 0.0907281i
\(306\) − 7.14138i − 0.408245i
\(307\) − 23.9801i − 1.36862i −0.729192 0.684310i \(-0.760104\pi\)
0.729192 0.684310i \(-0.239896\pi\)
\(308\) −2.61596 −0.149058
\(309\) 38.5435 2.19266
\(310\) 30.6112i 1.73860i
\(311\) 5.38404 0.305301 0.152651 0.988280i \(-0.451219\pi\)
0.152651 + 0.988280i \(0.451219\pi\)
\(312\) 0 0
\(313\) 18.9487 1.07104 0.535522 0.844522i \(-0.320115\pi\)
0.535522 + 0.844522i \(0.320115\pi\)
\(314\) 18.8901i 1.06603i
\(315\) −4.79225 −0.270013
\(316\) 15.4819 0.870924
\(317\) 11.5013i 0.645975i 0.946403 + 0.322987i \(0.104687\pi\)
−0.946403 + 0.322987i \(0.895313\pi\)
\(318\) 6.93362i 0.388818i
\(319\) 8.90946i 0.498834i
\(320\) − 3.60388i − 0.201463i
\(321\) −36.9869 −2.06440
\(322\) 3.75600 0.209314
\(323\) 5.43535i 0.302431i
\(324\) 11.1588 0.619935
\(325\) 0 0
\(326\) 4.33273 0.239968
\(327\) 12.4940i 0.690918i
\(328\) 7.18598 0.396779
\(329\) −7.75600 −0.427602
\(330\) − 17.4034i − 0.958027i
\(331\) 34.6112i 1.90240i 0.308572 + 0.951201i \(0.400149\pi\)
−0.308572 + 0.951201i \(0.599851\pi\)
\(332\) − 0.911854i − 0.0500445i
\(333\) 5.85862i 0.321051i
\(334\) −14.0000 −0.766046
\(335\) 7.73663 0.422697
\(336\) − 2.27413i − 0.124064i
\(337\) −1.95407 −0.106445 −0.0532224 0.998583i \(-0.516949\pi\)
−0.0532224 + 0.998583i \(0.516949\pi\)
\(338\) 0 0
\(339\) 24.9989 1.35776
\(340\) 21.4819i 1.16502i
\(341\) −20.0194 −1.08411
\(342\) 1.09246 0.0590734
\(343\) 14.1715i 0.765189i
\(344\) − 0.515729i − 0.0278063i
\(345\) 24.9879i 1.34530i
\(346\) 10.9879i 0.590714i
\(347\) −6.41550 −0.344402 −0.172201 0.985062i \(-0.555088\pi\)
−0.172201 + 0.985062i \(0.555088\pi\)
\(348\) −7.74525 −0.415189
\(349\) − 1.08575i − 0.0581190i −0.999578 0.0290595i \(-0.990749\pi\)
0.999578 0.0290595i \(-0.00925123\pi\)
\(350\) 8.86592 0.473903
\(351\) 0 0
\(352\) 2.35690 0.125623
\(353\) 4.28919i 0.228291i 0.993464 + 0.114145i \(0.0364130\pi\)
−0.993464 + 0.114145i \(0.963587\pi\)
\(354\) 20.7899 1.10497
\(355\) 2.21983 0.117816
\(356\) − 3.75063i − 0.198783i
\(357\) 13.5555i 0.717436i
\(358\) − 4.65519i − 0.246034i
\(359\) 15.5060i 0.818378i 0.912450 + 0.409189i \(0.134188\pi\)
−0.912450 + 0.409189i \(0.865812\pi\)
\(360\) 4.31767 0.227561
\(361\) 18.1685 0.956238
\(362\) 1.06638i 0.0560475i
\(363\) −11.1564 −0.585561
\(364\) 0 0
\(365\) −22.7875 −1.19275
\(366\) 0.900837i 0.0470875i
\(367\) 17.4276 0.909712 0.454856 0.890565i \(-0.349691\pi\)
0.454856 + 0.890565i \(0.349691\pi\)
\(368\) −3.38404 −0.176405
\(369\) 8.60925i 0.448180i
\(370\) − 17.6233i − 0.916189i
\(371\) − 3.75600i − 0.195002i
\(372\) − 17.4034i − 0.902325i
\(373\) 8.19567 0.424356 0.212178 0.977231i \(-0.431944\pi\)
0.212178 + 0.977231i \(0.431944\pi\)
\(374\) −14.0489 −0.726452
\(375\) 22.0629i 1.13932i
\(376\) 6.98792 0.360374
\(377\) 0 0
\(378\) −4.09783 −0.210770
\(379\) − 15.0476i − 0.772943i −0.922301 0.386471i \(-0.873694\pi\)
0.922301 0.386471i \(-0.126306\pi\)
\(380\) −3.28621 −0.168579
\(381\) 23.4142 1.19954
\(382\) 0.890084i 0.0455406i
\(383\) − 11.1207i − 0.568240i −0.958789 0.284120i \(-0.908299\pi\)
0.958789 0.284120i \(-0.0917014\pi\)
\(384\) 2.04892i 0.104558i
\(385\) 9.42758i 0.480474i
\(386\) −16.2174 −0.825446
\(387\) 0.617876 0.0314084
\(388\) − 14.6746i − 0.744988i
\(389\) 8.04354 0.407824 0.203912 0.978989i \(-0.434634\pi\)
0.203912 + 0.978989i \(0.434634\pi\)
\(390\) 0 0
\(391\) 20.1715 1.02012
\(392\) − 5.76809i − 0.291332i
\(393\) −4.70410 −0.237291
\(394\) −11.4711 −0.577907
\(395\) − 55.7948i − 2.80734i
\(396\) 2.82371i 0.141897i
\(397\) 21.9081i 1.09954i 0.835317 + 0.549769i \(0.185284\pi\)
−0.835317 + 0.549769i \(0.814716\pi\)
\(398\) 3.79954i 0.190454i
\(399\) −2.07367 −0.103813
\(400\) −7.98792 −0.399396
\(401\) − 17.4426i − 0.871044i −0.900178 0.435522i \(-0.856564\pi\)
0.900178 0.435522i \(-0.143436\pi\)
\(402\) −4.39852 −0.219378
\(403\) 0 0
\(404\) 8.76809 0.436229
\(405\) − 40.2150i − 1.99830i
\(406\) 4.19567 0.208228
\(407\) 11.5254 0.571294
\(408\) − 12.2131i − 0.604640i
\(409\) − 17.4330i − 0.862004i −0.902351 0.431002i \(-0.858160\pi\)
0.902351 0.431002i \(-0.141840\pi\)
\(410\) − 25.8974i − 1.27898i
\(411\) − 18.6049i − 0.917714i
\(412\) 18.8116 0.926782
\(413\) −11.2620 −0.554169
\(414\) − 4.05429i − 0.199258i
\(415\) −3.28621 −0.161314
\(416\) 0 0
\(417\) −38.7351 −1.89687
\(418\) − 2.14914i − 0.105118i
\(419\) 9.97584 0.487352 0.243676 0.969857i \(-0.421647\pi\)
0.243676 + 0.969857i \(0.421647\pi\)
\(420\) −8.19567 −0.399908
\(421\) 0.615957i 0.0300199i 0.999887 + 0.0150100i \(0.00477800\pi\)
−0.999887 + 0.0150100i \(0.995222\pi\)
\(422\) − 25.0465i − 1.21925i
\(423\) 8.37196i 0.407059i
\(424\) 3.38404i 0.164344i
\(425\) 47.6142 2.30963
\(426\) −1.26205 −0.0611463
\(427\) − 0.487991i − 0.0236156i
\(428\) −18.0519 −0.872572
\(429\) 0 0
\(430\) −1.85862 −0.0896308
\(431\) − 14.7922i − 0.712518i −0.934387 0.356259i \(-0.884052\pi\)
0.934387 0.356259i \(-0.115948\pi\)
\(432\) 3.69202 0.177632
\(433\) −16.5321 −0.794483 −0.397242 0.917714i \(-0.630032\pi\)
−0.397242 + 0.917714i \(0.630032\pi\)
\(434\) 9.42758i 0.452538i
\(435\) 27.9129i 1.33832i
\(436\) 6.09783i 0.292033i
\(437\) 3.08575i 0.147612i
\(438\) 12.9554 0.619033
\(439\) −3.50125 −0.167106 −0.0835529 0.996503i \(-0.526627\pi\)
−0.0835529 + 0.996503i \(0.526627\pi\)
\(440\) − 8.49396i − 0.404934i
\(441\) 6.91053 0.329073
\(442\) 0 0
\(443\) 17.4077 0.827066 0.413533 0.910489i \(-0.364295\pi\)
0.413533 + 0.910489i \(0.364295\pi\)
\(444\) 10.0194i 0.475499i
\(445\) −13.5168 −0.640758
\(446\) 12.9879 0.614996
\(447\) 38.2935i 1.81122i
\(448\) − 1.10992i − 0.0524386i
\(449\) − 34.1497i − 1.61163i −0.592170 0.805813i \(-0.701729\pi\)
0.592170 0.805813i \(-0.298271\pi\)
\(450\) − 9.57002i − 0.451135i
\(451\) 16.9366 0.797514
\(452\) 12.2010 0.573889
\(453\) 0.650874i 0.0305807i
\(454\) −13.8049 −0.647897
\(455\) 0 0
\(456\) 1.86831 0.0874918
\(457\) 9.40342i 0.439873i 0.975514 + 0.219937i \(0.0705851\pi\)
−0.975514 + 0.219937i \(0.929415\pi\)
\(458\) 11.5603 0.540179
\(459\) −22.0073 −1.02721
\(460\) 12.1957i 0.568626i
\(461\) − 0.733169i − 0.0341471i −0.999854 0.0170735i \(-0.994565\pi\)
0.999854 0.0170735i \(-0.00543494\pi\)
\(462\) − 5.35988i − 0.249364i
\(463\) − 7.24267i − 0.336595i −0.985736 0.168298i \(-0.946173\pi\)
0.985736 0.168298i \(-0.0538270\pi\)
\(464\) −3.78017 −0.175490
\(465\) −62.7198 −2.90856
\(466\) − 9.77479i − 0.452808i
\(467\) −30.2446 −1.39955 −0.699776 0.714362i \(-0.746717\pi\)
−0.699776 + 0.714362i \(0.746717\pi\)
\(468\) 0 0
\(469\) 2.38271 0.110024
\(470\) − 25.1836i − 1.16163i
\(471\) −38.7042 −1.78340
\(472\) 10.1468 0.467042
\(473\) − 1.21552i − 0.0558897i
\(474\) 31.7211i 1.45700i
\(475\) 7.28382i 0.334204i
\(476\) 6.61596i 0.303242i
\(477\) −4.05429 −0.185633
\(478\) −0.944378 −0.0431948
\(479\) 36.7198i 1.67777i 0.544310 + 0.838884i \(0.316792\pi\)
−0.544310 + 0.838884i \(0.683208\pi\)
\(480\) 7.38404 0.337034
\(481\) 0 0
\(482\) 0.219833 0.0100131
\(483\) 7.69574i 0.350168i
\(484\) −5.44504 −0.247502
\(485\) −52.8853 −2.40140
\(486\) 11.7875i 0.534690i
\(487\) − 28.6547i − 1.29847i −0.760588 0.649234i \(-0.775089\pi\)
0.760588 0.649234i \(-0.224911\pi\)
\(488\) 0.439665i 0.0199027i
\(489\) 8.87741i 0.401450i
\(490\) −20.7875 −0.939082
\(491\) −30.4295 −1.37326 −0.686632 0.727005i \(-0.740912\pi\)
−0.686632 + 0.727005i \(0.740912\pi\)
\(492\) 14.7235i 0.663786i
\(493\) 22.5327 1.01482
\(494\) 0 0
\(495\) 10.1763 0.457390
\(496\) − 8.49396i − 0.381390i
\(497\) 0.683661 0.0306664
\(498\) 1.86831 0.0837211
\(499\) 15.9715i 0.714984i 0.933916 + 0.357492i \(0.116368\pi\)
−0.933916 + 0.357492i \(0.883632\pi\)
\(500\) 10.7681i 0.481563i
\(501\) − 28.6848i − 1.28154i
\(502\) − 16.2543i − 0.725464i
\(503\) −41.9711 −1.87140 −0.935698 0.352801i \(-0.885229\pi\)
−0.935698 + 0.352801i \(0.885229\pi\)
\(504\) 1.32975 0.0592317
\(505\) − 31.5991i − 1.40614i
\(506\) −7.97584 −0.354569
\(507\) 0 0
\(508\) 11.4276 0.507017
\(509\) 0.914247i 0.0405233i 0.999795 + 0.0202616i \(0.00644992\pi\)
−0.999795 + 0.0202616i \(0.993550\pi\)
\(510\) −44.0146 −1.94900
\(511\) −7.01805 −0.310460
\(512\) 1.00000i 0.0441942i
\(513\) − 3.36658i − 0.148638i
\(514\) 22.4373i 0.989666i
\(515\) − 67.7948i − 2.98739i
\(516\) 1.05669 0.0465181
\(517\) 16.4698 0.724341
\(518\) − 5.42758i − 0.238474i
\(519\) −22.5133 −0.988226
\(520\) 0 0
\(521\) −3.31096 −0.145056 −0.0725279 0.997366i \(-0.523107\pi\)
−0.0725279 + 0.997366i \(0.523107\pi\)
\(522\) − 4.52888i − 0.198224i
\(523\) −0.850855 −0.0372053 −0.0186026 0.999827i \(-0.505922\pi\)
−0.0186026 + 0.999827i \(0.505922\pi\)
\(524\) −2.29590 −0.100297
\(525\) 18.1655i 0.792809i
\(526\) − 10.4940i − 0.457558i
\(527\) 50.6305i 2.20550i
\(528\) 4.82908i 0.210159i
\(529\) −11.5483 −0.502098
\(530\) 12.1957 0.529746
\(531\) 12.1564i 0.527545i
\(532\) −1.01208 −0.0438793
\(533\) 0 0
\(534\) 7.68473 0.332551
\(535\) 65.0568i 2.81265i
\(536\) −2.14675 −0.0927256
\(537\) 9.53809 0.411599
\(538\) 26.4155i 1.13885i
\(539\) − 13.5948i − 0.585569i
\(540\) − 13.3056i − 0.572581i
\(541\) 40.8853i 1.75780i 0.477010 + 0.878898i \(0.341721\pi\)
−0.477010 + 0.878898i \(0.658279\pi\)
\(542\) 22.0301 0.946275
\(543\) −2.18492 −0.0937637
\(544\) − 5.96077i − 0.255566i
\(545\) 21.9758 0.941341
\(546\) 0 0
\(547\) −2.39075 −0.102221 −0.0511105 0.998693i \(-0.516276\pi\)
−0.0511105 + 0.998693i \(0.516276\pi\)
\(548\) − 9.08038i − 0.387894i
\(549\) −0.526746 −0.0224810
\(550\) −18.8267 −0.802773
\(551\) 3.44696i 0.146845i
\(552\) − 6.93362i − 0.295115i
\(553\) − 17.1836i − 0.730720i
\(554\) − 2.17629i − 0.0924618i
\(555\) 36.1086 1.53272
\(556\) −18.9051 −0.801757
\(557\) − 27.1508i − 1.15042i −0.818007 0.575208i \(-0.804921\pi\)
0.818007 0.575208i \(-0.195079\pi\)
\(558\) 10.1763 0.430797
\(559\) 0 0
\(560\) −4.00000 −0.169031
\(561\) − 28.7851i − 1.21531i
\(562\) −25.0030 −1.05469
\(563\) 6.52409 0.274958 0.137479 0.990505i \(-0.456100\pi\)
0.137479 + 0.990505i \(0.456100\pi\)
\(564\) 14.3177i 0.602883i
\(565\) − 43.9711i − 1.84988i
\(566\) 16.3153i 0.685782i
\(567\) − 12.3854i − 0.520137i
\(568\) −0.615957 −0.0258450
\(569\) −7.30021 −0.306041 −0.153020 0.988223i \(-0.548900\pi\)
−0.153020 + 0.988223i \(0.548900\pi\)
\(570\) − 6.73317i − 0.282021i
\(571\) 43.6722 1.82762 0.913812 0.406138i \(-0.133125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(572\) 0 0
\(573\) −1.82371 −0.0761865
\(574\) − 7.97584i − 0.332905i
\(575\) 27.0315 1.12729
\(576\) −1.19806 −0.0499193
\(577\) 16.8528i 0.701590i 0.936452 + 0.350795i \(0.114089\pi\)
−0.936452 + 0.350795i \(0.885911\pi\)
\(578\) 18.5308i 0.770779i
\(579\) − 33.2282i − 1.38092i
\(580\) 13.6233i 0.565675i
\(581\) −1.01208 −0.0419882
\(582\) 30.0670 1.24632
\(583\) 7.97584i 0.330325i
\(584\) 6.32304 0.261649
\(585\) 0 0
\(586\) 1.87800 0.0775796
\(587\) − 22.1825i − 0.915571i −0.889063 0.457785i \(-0.848643\pi\)
0.889063 0.457785i \(-0.151357\pi\)
\(588\) 11.8183 0.487380
\(589\) −7.74525 −0.319137
\(590\) − 36.5676i − 1.50547i
\(591\) − 23.5034i − 0.966800i
\(592\) 4.89008i 0.200981i
\(593\) − 3.98493i − 0.163642i −0.996647 0.0818208i \(-0.973926\pi\)
0.996647 0.0818208i \(-0.0260735\pi\)
\(594\) 8.70171 0.357035
\(595\) 23.8431 0.977471
\(596\) 18.6896i 0.765557i
\(597\) −7.78495 −0.318617
\(598\) 0 0
\(599\) 33.2379 1.35806 0.679032 0.734109i \(-0.262400\pi\)
0.679032 + 0.734109i \(0.262400\pi\)
\(600\) − 16.3666i − 0.668163i
\(601\) 9.79715 0.399634 0.199817 0.979833i \(-0.435965\pi\)
0.199817 + 0.979833i \(0.435965\pi\)
\(602\) −0.572417 −0.0233300
\(603\) − 2.57194i − 0.104738i
\(604\) 0.317667i 0.0129257i
\(605\) 19.6233i 0.797799i
\(606\) 17.9651i 0.729782i
\(607\) −24.2258 −0.983295 −0.491647 0.870794i \(-0.663605\pi\)
−0.491647 + 0.870794i \(0.663605\pi\)
\(608\) 0.911854 0.0369806
\(609\) 8.59658i 0.348351i
\(610\) 1.58450 0.0641545
\(611\) 0 0
\(612\) 7.14138 0.288673
\(613\) − 15.0556i − 0.608091i −0.952658 0.304045i \(-0.901663\pi\)
0.952658 0.304045i \(-0.0983375\pi\)
\(614\) 23.9801 0.967760
\(615\) 53.0616 2.13965
\(616\) − 2.61596i − 0.105400i
\(617\) − 2.01879i − 0.0812733i −0.999174 0.0406366i \(-0.987061\pi\)
0.999174 0.0406366i \(-0.0129386\pi\)
\(618\) 38.5435i 1.55045i
\(619\) 7.84309i 0.315240i 0.987500 + 0.157620i \(0.0503821\pi\)
−0.987500 + 0.157620i \(0.949618\pi\)
\(620\) −30.6112 −1.22937
\(621\) −12.4940 −0.501365
\(622\) 5.38404i 0.215880i
\(623\) −4.16288 −0.166782
\(624\) 0 0
\(625\) −1.13275 −0.0453101
\(626\) 18.9487i 0.757342i
\(627\) 4.40342 0.175856
\(628\) −18.8901 −0.753796
\(629\) − 29.1487i − 1.16223i
\(630\) − 4.79225i − 0.190928i
\(631\) − 24.5327i − 0.976632i −0.872667 0.488316i \(-0.837611\pi\)
0.872667 0.488316i \(-0.162389\pi\)
\(632\) 15.4819i 0.615836i
\(633\) 51.3183 2.03972
\(634\) −11.5013 −0.456773
\(635\) − 41.1836i − 1.63432i
\(636\) −6.93362 −0.274936
\(637\) 0 0
\(638\) −8.90946 −0.352729
\(639\) − 0.737955i − 0.0291930i
\(640\) 3.60388 0.142456
\(641\) 41.6015 1.64316 0.821580 0.570093i \(-0.193093\pi\)
0.821580 + 0.570093i \(0.193093\pi\)
\(642\) − 36.9869i − 1.45975i
\(643\) 45.4118i 1.79087i 0.445196 + 0.895433i \(0.353134\pi\)
−0.445196 + 0.895433i \(0.646866\pi\)
\(644\) 3.75600i 0.148007i
\(645\) − 3.80817i − 0.149946i
\(646\) −5.43535 −0.213851
\(647\) −35.8345 −1.40880 −0.704399 0.709804i \(-0.748783\pi\)
−0.704399 + 0.709804i \(0.748783\pi\)
\(648\) 11.1588i 0.438360i
\(649\) 23.9148 0.938740
\(650\) 0 0
\(651\) −19.3163 −0.757067
\(652\) 4.33273i 0.169683i
\(653\) 18.5590 0.726270 0.363135 0.931737i \(-0.381706\pi\)
0.363135 + 0.931737i \(0.381706\pi\)
\(654\) −12.4940 −0.488552
\(655\) 8.27413i 0.323297i
\(656\) 7.18598i 0.280565i
\(657\) 7.57540i 0.295545i
\(658\) − 7.75600i − 0.302361i
\(659\) −3.97525 −0.154854 −0.0774268 0.996998i \(-0.524670\pi\)
−0.0774268 + 0.996998i \(0.524670\pi\)
\(660\) 17.4034 0.677427
\(661\) − 1.23191i − 0.0479159i −0.999713 0.0239580i \(-0.992373\pi\)
0.999713 0.0239580i \(-0.00762678\pi\)
\(662\) −34.6112 −1.34520
\(663\) 0 0
\(664\) 0.911854 0.0353868
\(665\) 3.64742i 0.141441i
\(666\) −5.85862 −0.227017
\(667\) 12.7922 0.495318
\(668\) − 14.0000i − 0.541676i
\(669\) 26.6112i 1.02885i
\(670\) 7.73663i 0.298892i
\(671\) 1.03624i 0.0400038i
\(672\) 2.27413 0.0877263
\(673\) 36.8256 1.41952 0.709762 0.704442i \(-0.248803\pi\)
0.709762 + 0.704442i \(0.248803\pi\)
\(674\) − 1.95407i − 0.0752678i
\(675\) −29.4916 −1.13513
\(676\) 0 0
\(677\) −25.9215 −0.996246 −0.498123 0.867106i \(-0.665977\pi\)
−0.498123 + 0.867106i \(0.665977\pi\)
\(678\) 24.9989i 0.960078i
\(679\) −16.2875 −0.625058
\(680\) −21.4819 −0.823792
\(681\) − 28.2851i − 1.08389i
\(682\) − 20.0194i − 0.766582i
\(683\) − 37.5472i − 1.43670i −0.695680 0.718352i \(-0.744897\pi\)
0.695680 0.718352i \(-0.255103\pi\)
\(684\) 1.09246i 0.0417712i
\(685\) −32.7245 −1.25034
\(686\) −14.1715 −0.541071
\(687\) 23.6862i 0.903684i
\(688\) 0.515729 0.0196620
\(689\) 0 0
\(690\) −24.9879 −0.951274
\(691\) 45.2549i 1.72158i 0.508963 + 0.860788i \(0.330029\pi\)
−0.508963 + 0.860788i \(0.669971\pi\)
\(692\) −10.9879 −0.417698
\(693\) 3.13408 0.119054
\(694\) − 6.41550i − 0.243529i
\(695\) 68.1318i 2.58439i
\(696\) − 7.74525i − 0.293583i
\(697\) − 42.8340i − 1.62245i
\(698\) 1.08575 0.0410964
\(699\) 20.0277 0.757519
\(700\) 8.86592i 0.335100i
\(701\) −36.0823 −1.36281 −0.681405 0.731907i \(-0.738631\pi\)
−0.681405 + 0.731907i \(0.738631\pi\)
\(702\) 0 0
\(703\) 4.45904 0.168176
\(704\) 2.35690i 0.0888289i
\(705\) 51.5991 1.94333
\(706\) −4.28919 −0.161426
\(707\) − 9.73184i − 0.366004i
\(708\) 20.7899i 0.781331i
\(709\) 19.0664i 0.716053i 0.933711 + 0.358026i \(0.116550\pi\)
−0.933711 + 0.358026i \(0.883450\pi\)
\(710\) 2.21983i 0.0833088i
\(711\) −18.5483 −0.695614
\(712\) 3.75063 0.140561
\(713\) 28.7439i 1.07647i
\(714\) −13.5555 −0.507304
\(715\) 0 0
\(716\) 4.65519 0.173972
\(717\) − 1.93495i − 0.0722621i
\(718\) −15.5060 −0.578680
\(719\) 15.3056 0.570802 0.285401 0.958408i \(-0.407873\pi\)
0.285401 + 0.958408i \(0.407873\pi\)
\(720\) 4.31767i 0.160910i
\(721\) − 20.8793i − 0.777587i
\(722\) 18.1685i 0.676162i
\(723\) 0.450419i 0.0167513i
\(724\) −1.06638 −0.0396315
\(725\) 30.1957 1.12144
\(726\) − 11.1564i − 0.414054i
\(727\) −3.46250 −0.128417 −0.0642085 0.997937i \(-0.520452\pi\)
−0.0642085 + 0.997937i \(0.520452\pi\)
\(728\) 0 0
\(729\) 9.32496 0.345369
\(730\) − 22.7875i − 0.843402i
\(731\) −3.07415 −0.113701
\(732\) −0.900837 −0.0332959
\(733\) − 26.0930i − 0.963769i −0.876235 0.481884i \(-0.839953\pi\)
0.876235 0.481884i \(-0.160047\pi\)
\(734\) 17.4276i 0.643264i
\(735\) − 42.5918i − 1.57102i
\(736\) − 3.38404i − 0.124737i
\(737\) −5.05967 −0.186375
\(738\) −8.60925 −0.316911
\(739\) 26.4993i 0.974794i 0.873181 + 0.487397i \(0.162054\pi\)
−0.873181 + 0.487397i \(0.837946\pi\)
\(740\) 17.6233 0.647844
\(741\) 0 0
\(742\) 3.75600 0.137887
\(743\) − 0.415502i − 0.0152433i −0.999971 0.00762164i \(-0.997574\pi\)
0.999971 0.00762164i \(-0.00242607\pi\)
\(744\) 17.4034 0.638040
\(745\) 67.3551 2.46770
\(746\) 8.19567i 0.300065i
\(747\) 1.09246i 0.0399709i
\(748\) − 14.0489i − 0.513679i
\(749\) 20.0361i 0.732103i
\(750\) −22.0629 −0.805624
\(751\) −2.90946 −0.106168 −0.0530839 0.998590i \(-0.516905\pi\)
−0.0530839 + 0.998590i \(0.516905\pi\)
\(752\) 6.98792i 0.254823i
\(753\) 33.3037 1.21365
\(754\) 0 0
\(755\) 1.14483 0.0416647
\(756\) − 4.09783i − 0.149037i
\(757\) 12.3720 0.449667 0.224833 0.974397i \(-0.427816\pi\)
0.224833 + 0.974397i \(0.427816\pi\)
\(758\) 15.0476 0.546553
\(759\) − 16.3418i − 0.593171i
\(760\) − 3.28621i − 0.119203i
\(761\) − 42.4306i − 1.53811i −0.639184 0.769053i \(-0.720728\pi\)
0.639184 0.769053i \(-0.279272\pi\)
\(762\) 23.4142i 0.848206i
\(763\) 6.76809 0.245021
\(764\) −0.890084 −0.0322021
\(765\) − 25.7366i − 0.930510i
\(766\) 11.1207 0.401806
\(767\) 0 0
\(768\) −2.04892 −0.0739339
\(769\) 13.3341i 0.480839i 0.970669 + 0.240419i \(0.0772849\pi\)
−0.970669 + 0.240419i \(0.922715\pi\)
\(770\) −9.42758 −0.339747
\(771\) −45.9721 −1.65565
\(772\) − 16.2174i − 0.583678i
\(773\) − 5.85384i − 0.210548i −0.994443 0.105274i \(-0.966428\pi\)
0.994443 0.105274i \(-0.0335720\pi\)
\(774\) 0.617876i 0.0222091i
\(775\) 67.8491i 2.43721i
\(776\) 14.6746 0.526786
\(777\) 11.1207 0.398952
\(778\) 8.04354i 0.288375i
\(779\) 6.55257 0.234770
\(780\) 0 0
\(781\) −1.45175 −0.0519476
\(782\) 20.1715i 0.721332i
\(783\) −13.9565 −0.498763
\(784\) 5.76809 0.206003
\(785\) 68.0775i 2.42979i
\(786\) − 4.70410i − 0.167790i
\(787\) 23.2965i 0.830430i 0.909723 + 0.415215i \(0.136294\pi\)
−0.909723 + 0.415215i \(0.863706\pi\)
\(788\) − 11.4711i − 0.408642i
\(789\) 21.5013 0.765465
\(790\) 55.7948 1.98509
\(791\) − 13.5421i − 0.481503i
\(792\) −2.82371 −0.100336
\(793\) 0 0
\(794\) −21.9081 −0.777491
\(795\) 24.9879i 0.886230i
\(796\) −3.79954 −0.134671
\(797\) −35.8103 −1.26847 −0.634233 0.773142i \(-0.718684\pi\)
−0.634233 + 0.773142i \(0.718684\pi\)
\(798\) − 2.07367i − 0.0734072i
\(799\) − 41.6534i − 1.47359i
\(800\) − 7.98792i − 0.282416i
\(801\) 4.49349i 0.158769i
\(802\) 17.4426 0.615921
\(803\) 14.9028 0.525907
\(804\) − 4.39852i − 0.155124i
\(805\) 13.5362 0.477087
\(806\) 0 0
\(807\) −54.1232 −1.90523
\(808\) 8.76809i 0.308460i
\(809\) 28.3744 0.997589 0.498795 0.866720i \(-0.333776\pi\)
0.498795 + 0.866720i \(0.333776\pi\)
\(810\) 40.2150 1.41301
\(811\) 5.20344i 0.182717i 0.995818 + 0.0913587i \(0.0291210\pi\)
−0.995818 + 0.0913587i \(0.970879\pi\)
\(812\) 4.19567i 0.147239i
\(813\) 45.1379i 1.58306i
\(814\) 11.5254i 0.403966i
\(815\) 15.6146 0.546957
\(816\) 12.2131 0.427545
\(817\) − 0.470270i − 0.0164527i
\(818\) 17.4330 0.609529
\(819\) 0 0
\(820\) 25.8974 0.904376
\(821\) − 5.65338i − 0.197304i −0.995122 0.0986522i \(-0.968547\pi\)
0.995122 0.0986522i \(-0.0314531\pi\)
\(822\) 18.6049 0.648922
\(823\) −39.0616 −1.36160 −0.680801 0.732469i \(-0.738368\pi\)
−0.680801 + 0.732469i \(0.738368\pi\)
\(824\) 18.8116i 0.655334i
\(825\) − 38.5743i − 1.34299i
\(826\) − 11.2620i − 0.391857i
\(827\) 5.40283i 0.187875i 0.995578 + 0.0939374i \(0.0299454\pi\)
−0.995578 + 0.0939374i \(0.970055\pi\)
\(828\) 4.05429 0.140896
\(829\) 8.38537 0.291236 0.145618 0.989341i \(-0.453483\pi\)
0.145618 + 0.989341i \(0.453483\pi\)
\(830\) − 3.28621i − 0.114066i
\(831\) 4.45904 0.154682
\(832\) 0 0
\(833\) −34.3822 −1.19127
\(834\) − 38.7351i − 1.34129i
\(835\) −50.4543 −1.74604
\(836\) 2.14914 0.0743297
\(837\) − 31.3599i − 1.08396i
\(838\) 9.97584i 0.344610i
\(839\) 3.98062i 0.137426i 0.997636 + 0.0687132i \(0.0218893\pi\)
−0.997636 + 0.0687132i \(0.978111\pi\)
\(840\) − 8.19567i − 0.282777i
\(841\) −14.7103 −0.507253
\(842\) −0.615957 −0.0212273
\(843\) − 51.2290i − 1.76442i
\(844\) 25.0465 0.862137
\(845\) 0 0
\(846\) −8.37196 −0.287834
\(847\) 6.04354i 0.207659i
\(848\) −3.38404 −0.116209
\(849\) −33.4286 −1.14727
\(850\) 47.6142i 1.63315i
\(851\) − 16.5483i − 0.567267i
\(852\) − 1.26205i − 0.0432370i
\(853\) − 6.29350i − 0.215485i −0.994179 0.107743i \(-0.965638\pi\)
0.994179 0.107743i \(-0.0343623\pi\)
\(854\) 0.487991 0.0166987
\(855\) 3.93708 0.134645
\(856\) − 18.0519i − 0.617001i
\(857\) −4.37627 −0.149491 −0.0747453 0.997203i \(-0.523814\pi\)
−0.0747453 + 0.997203i \(0.523814\pi\)
\(858\) 0 0
\(859\) 15.0261 0.512683 0.256342 0.966586i \(-0.417483\pi\)
0.256342 + 0.966586i \(0.417483\pi\)
\(860\) − 1.85862i − 0.0633786i
\(861\) 16.3418 0.556928
\(862\) 14.7922 0.503826
\(863\) 6.21121i 0.211432i 0.994396 + 0.105716i \(0.0337134\pi\)
−0.994396 + 0.105716i \(0.966287\pi\)
\(864\) 3.69202i 0.125605i
\(865\) 39.5991i 1.34641i
\(866\) − 16.5321i − 0.561784i
\(867\) −37.9681 −1.28946
\(868\) −9.42758 −0.319993
\(869\) 36.4892i 1.23781i
\(870\) −27.9129 −0.946337
\(871\) 0 0
\(872\) −6.09783 −0.206499
\(873\) 17.5810i 0.595028i
\(874\) −3.08575 −0.104377
\(875\) 11.9517 0.404040
\(876\) 12.9554i 0.437722i
\(877\) 38.2198i 1.29059i 0.763933 + 0.645296i \(0.223266\pi\)
−0.763933 + 0.645296i \(0.776734\pi\)
\(878\) − 3.50125i − 0.118162i
\(879\) 3.84787i 0.129785i
\(880\) 8.49396 0.286331
\(881\) −26.7832 −0.902347 −0.451174 0.892436i \(-0.648994\pi\)
−0.451174 + 0.892436i \(0.648994\pi\)
\(882\) 6.91053i 0.232690i
\(883\) 34.4956 1.16087 0.580435 0.814307i \(-0.302883\pi\)
0.580435 + 0.814307i \(0.302883\pi\)
\(884\) 0 0
\(885\) 74.9241 2.51854
\(886\) 17.4077i 0.584824i
\(887\) −23.9866 −0.805391 −0.402695 0.915334i \(-0.631927\pi\)
−0.402695 + 0.915334i \(0.631927\pi\)
\(888\) −10.0194 −0.336228
\(889\) − 12.6837i − 0.425396i
\(890\) − 13.5168i − 0.453084i
\(891\) 26.3002i 0.881090i
\(892\) 12.9879i 0.434868i
\(893\) 6.37196 0.213230
\(894\) −38.2935 −1.28073
\(895\) − 16.7767i − 0.560784i
\(896\) 1.10992 0.0370797
\(897\) 0 0
\(898\) 34.1497 1.13959
\(899\) 32.1086i 1.07088i
\(900\) 9.57002 0.319001
\(901\) 20.1715 0.672010
\(902\) 16.9366i 0.563927i
\(903\) − 1.17283i − 0.0390295i
\(904\) 12.2010i 0.405801i
\(905\) 3.84309i 0.127748i
\(906\) −0.650874 −0.0216238
\(907\) −23.9269 −0.794480 −0.397240 0.917715i \(-0.630032\pi\)
−0.397240 + 0.917715i \(0.630032\pi\)
\(908\) − 13.8049i − 0.458132i
\(909\) −10.5047 −0.348419
\(910\) 0 0
\(911\) −35.8866 −1.18898 −0.594488 0.804104i \(-0.702645\pi\)
−0.594488 + 0.804104i \(0.702645\pi\)
\(912\) 1.86831i 0.0618660i
\(913\) 2.14914 0.0711263
\(914\) −9.40342 −0.311037
\(915\) 3.24651i 0.107326i
\(916\) 11.5603i 0.381964i
\(917\) 2.54825i 0.0841507i
\(918\) − 22.0073i − 0.726349i
\(919\) 33.2465 1.09670 0.548351 0.836249i \(-0.315256\pi\)
0.548351 + 0.836249i \(0.315256\pi\)
\(920\) −12.1957 −0.402079
\(921\) 49.1333i 1.61900i
\(922\) 0.733169 0.0241456
\(923\) 0 0
\(924\) 5.35988 0.176327
\(925\) − 39.0616i − 1.28434i
\(926\) 7.24267 0.238009
\(927\) −22.5375 −0.740229
\(928\) − 3.78017i − 0.124090i
\(929\) 54.2583i 1.78016i 0.455806 + 0.890079i \(0.349351\pi\)
−0.455806 + 0.890079i \(0.650649\pi\)
\(930\) − 62.7198i − 2.05666i
\(931\) − 5.25965i − 0.172378i
\(932\) 9.77479 0.320184
\(933\) −11.0315 −0.361154
\(934\) − 30.2446i − 0.989633i
\(935\) −50.6305 −1.65580
\(936\) 0 0
\(937\) 16.5265 0.539897 0.269948 0.962875i \(-0.412993\pi\)
0.269948 + 0.962875i \(0.412993\pi\)
\(938\) 2.38271i 0.0777984i
\(939\) −38.8243 −1.26698
\(940\) 25.1836 0.821398
\(941\) 41.7017i 1.35944i 0.733473 + 0.679718i \(0.237898\pi\)
−0.733473 + 0.679718i \(0.762102\pi\)
\(942\) − 38.7042i − 1.26105i
\(943\) − 24.3177i − 0.791892i
\(944\) 10.1468i 0.330249i
\(945\) −14.7681 −0.480406
\(946\) 1.21552 0.0395200
\(947\) 3.00106i 0.0975215i 0.998810 + 0.0487608i \(0.0155272\pi\)
−0.998810 + 0.0487608i \(0.984473\pi\)
\(948\) −31.7211 −1.03025
\(949\) 0 0
\(950\) −7.28382 −0.236318
\(951\) − 23.5651i − 0.764151i
\(952\) −6.61596 −0.214424
\(953\) −38.1450 −1.23564 −0.617818 0.786321i \(-0.711983\pi\)
−0.617818 + 0.786321i \(0.711983\pi\)
\(954\) − 4.05429i − 0.131263i
\(955\) 3.20775i 0.103800i
\(956\) − 0.944378i − 0.0305434i
\(957\) − 18.2547i − 0.590092i
\(958\) −36.7198 −1.18636
\(959\) −10.0785 −0.325450
\(960\) 7.38404i 0.238319i
\(961\) −41.1473 −1.32733
\(962\) 0 0
\(963\) 21.6273 0.696930
\(964\) 0.219833i 0.00708033i
\(965\) −58.4456 −1.88143
\(966\) −7.69574 −0.247606
\(967\) 26.8793i 0.864381i 0.901782 + 0.432190i \(0.142259\pi\)
−0.901782 + 0.432190i \(0.857741\pi\)
\(968\) − 5.44504i − 0.175010i
\(969\) − 11.1366i − 0.357759i
\(970\) − 52.8853i − 1.69804i
\(971\) 3.13647 0.100654 0.0503271 0.998733i \(-0.483974\pi\)
0.0503271 + 0.998733i \(0.483974\pi\)
\(972\) −11.7875 −0.378083
\(973\) 20.9831i 0.672688i
\(974\) 28.6547 0.918156
\(975\) 0 0
\(976\) −0.439665 −0.0140733
\(977\) − 35.8864i − 1.14811i −0.818818 0.574053i \(-0.805370\pi\)
0.818818 0.574053i \(-0.194630\pi\)
\(978\) −8.87741 −0.283868
\(979\) 8.83984 0.282522
\(980\) − 20.7875i − 0.664031i
\(981\) − 7.30559i − 0.233249i
\(982\) − 30.4295i − 0.971044i
\(983\) − 30.4370i − 0.970790i −0.874295 0.485395i \(-0.838676\pi\)
0.874295 0.485395i \(-0.161324\pi\)
\(984\) −14.7235 −0.469367
\(985\) −41.3405 −1.31722
\(986\) 22.5327i 0.717588i
\(987\) 15.8914 0.505829
\(988\) 0 0
\(989\) −1.74525 −0.0554957
\(990\) 10.1763i 0.323424i
\(991\) 31.4470 0.998946 0.499473 0.866330i \(-0.333527\pi\)
0.499473 + 0.866330i \(0.333527\pi\)
\(992\) 8.49396 0.269683
\(993\) − 70.9154i − 2.25043i
\(994\) 0.683661i 0.0216844i
\(995\) 13.6931i 0.434100i
\(996\) 1.86831i 0.0591998i
\(997\) 19.1099 0.605217 0.302609 0.953115i \(-0.402143\pi\)
0.302609 + 0.953115i \(0.402143\pi\)
\(998\) −15.9715 −0.505570
\(999\) 18.0543i 0.571213i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.2.b.d.337.4 6
3.2 odd 2 3042.2.b.n.1351.1 6
4.3 odd 2 2704.2.f.m.337.6 6
13.2 odd 12 338.2.c.h.191.3 6
13.3 even 3 338.2.e.e.147.3 12
13.4 even 6 338.2.e.e.23.3 12
13.5 odd 4 338.2.a.h.1.1 yes 3
13.6 odd 12 338.2.c.h.315.3 6
13.7 odd 12 338.2.c.i.315.3 6
13.8 odd 4 338.2.a.g.1.1 3
13.9 even 3 338.2.e.e.23.6 12
13.10 even 6 338.2.e.e.147.6 12
13.11 odd 12 338.2.c.i.191.3 6
13.12 even 2 inner 338.2.b.d.337.1 6
39.5 even 4 3042.2.a.z.1.1 3
39.8 even 4 3042.2.a.bi.1.3 3
39.38 odd 2 3042.2.b.n.1351.6 6
52.31 even 4 2704.2.a.w.1.3 3
52.47 even 4 2704.2.a.v.1.3 3
52.51 odd 2 2704.2.f.m.337.5 6
65.34 odd 4 8450.2.a.bx.1.3 3
65.44 odd 4 8450.2.a.bn.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.2.a.g.1.1 3 13.8 odd 4
338.2.a.h.1.1 yes 3 13.5 odd 4
338.2.b.d.337.1 6 13.12 even 2 inner
338.2.b.d.337.4 6 1.1 even 1 trivial
338.2.c.h.191.3 6 13.2 odd 12
338.2.c.h.315.3 6 13.6 odd 12
338.2.c.i.191.3 6 13.11 odd 12
338.2.c.i.315.3 6 13.7 odd 12
338.2.e.e.23.3 12 13.4 even 6
338.2.e.e.23.6 12 13.9 even 3
338.2.e.e.147.3 12 13.3 even 3
338.2.e.e.147.6 12 13.10 even 6
2704.2.a.v.1.3 3 52.47 even 4
2704.2.a.w.1.3 3 52.31 even 4
2704.2.f.m.337.5 6 52.51 odd 2
2704.2.f.m.337.6 6 4.3 odd 2
3042.2.a.z.1.1 3 39.5 even 4
3042.2.a.bi.1.3 3 39.8 even 4
3042.2.b.n.1351.1 6 3.2 odd 2
3042.2.b.n.1351.6 6 39.38 odd 2
8450.2.a.bn.1.3 3 65.44 odd 4
8450.2.a.bx.1.3 3 65.34 odd 4