Properties

Label 338.2.b.d.337.4
Level 338338
Weight 22
Character 338.337
Analytic conductor 2.6992.699
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,2,Mod(337,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 338=2132 338 = 2 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 338.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.698943588322.69894358832
Analytic rank: 00
Dimension: 66
Coefficient field: 6.0.153664.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6+5x4+6x2+1 x^{6} + 5x^{4} + 6x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 337.4
Root 1.80194i-1.80194i of defining polynomial
Character χ\chi == 338.337
Dual form 338.2.b.d.337.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq22.04892q31.00000q4+3.60388iq52.04892iq6+1.10992iq71.00000iq8+1.19806q93.60388q102.35690iq11+2.04892q121.10992q147.38404iq15+1.00000q165.96077q17+1.19806iq180.911854iq193.60388iq202.27413iq21+2.35690q223.38404q23+2.04892iq247.98792q25+3.69202q271.10992iq283.78017q29+7.38404q308.49396iq31+1.00000iq32+4.82908iq335.96077iq344.00000q351.19806q36+4.89008iq37+0.911854q38+3.60388q40+7.18598iq41+2.27413q42+0.515729q43+2.35690iq44+4.31767iq453.38404iq46+6.98792iq472.04892q48+5.76809q497.98792iq50+12.2131q513.38404q53+3.69202iq54+8.49396q55+1.10992q56+1.86831iq573.78017iq58+10.1468iq59+7.38404iq600.439665q61+8.49396q62+1.32975iq631.00000q644.82908q662.14675iq67+5.96077q68+6.93362q694.00000iq700.615957iq711.19806iq72+6.32304iq734.89008q74+16.3666q75+0.911854iq76+2.61596q7715.4819q79+3.60388iq8011.1588q817.18598q82+0.911854iq83+2.27413iq8421.4819iq85+0.515729iq86+7.74525q872.35690q88+3.75063iq894.31767q90+3.38404q92+17.4034iq936.98792q94+3.28621q952.04892iq96+14.6746iq97+5.76809iq982.82371iq99+O(q100)q+1.00000i q^{2} -2.04892 q^{3} -1.00000 q^{4} +3.60388i q^{5} -2.04892i q^{6} +1.10992i q^{7} -1.00000i q^{8} +1.19806 q^{9} -3.60388 q^{10} -2.35690i q^{11} +2.04892 q^{12} -1.10992 q^{14} -7.38404i q^{15} +1.00000 q^{16} -5.96077 q^{17} +1.19806i q^{18} -0.911854i q^{19} -3.60388i q^{20} -2.27413i q^{21} +2.35690 q^{22} -3.38404 q^{23} +2.04892i q^{24} -7.98792 q^{25} +3.69202 q^{27} -1.10992i q^{28} -3.78017 q^{29} +7.38404 q^{30} -8.49396i q^{31} +1.00000i q^{32} +4.82908i q^{33} -5.96077i q^{34} -4.00000 q^{35} -1.19806 q^{36} +4.89008i q^{37} +0.911854 q^{38} +3.60388 q^{40} +7.18598i q^{41} +2.27413 q^{42} +0.515729 q^{43} +2.35690i q^{44} +4.31767i q^{45} -3.38404i q^{46} +6.98792i q^{47} -2.04892 q^{48} +5.76809 q^{49} -7.98792i q^{50} +12.2131 q^{51} -3.38404 q^{53} +3.69202i q^{54} +8.49396 q^{55} +1.10992 q^{56} +1.86831i q^{57} -3.78017i q^{58} +10.1468i q^{59} +7.38404i q^{60} -0.439665 q^{61} +8.49396 q^{62} +1.32975i q^{63} -1.00000 q^{64} -4.82908 q^{66} -2.14675i q^{67} +5.96077 q^{68} +6.93362 q^{69} -4.00000i q^{70} -0.615957i q^{71} -1.19806i q^{72} +6.32304i q^{73} -4.89008 q^{74} +16.3666 q^{75} +0.911854i q^{76} +2.61596 q^{77} -15.4819 q^{79} +3.60388i q^{80} -11.1588 q^{81} -7.18598 q^{82} +0.911854i q^{83} +2.27413i q^{84} -21.4819i q^{85} +0.515729i q^{86} +7.74525 q^{87} -2.35690 q^{88} +3.75063i q^{89} -4.31767 q^{90} +3.38404 q^{92} +17.4034i q^{93} -6.98792 q^{94} +3.28621 q^{95} -2.04892i q^{96} +14.6746i q^{97} +5.76809i q^{98} -2.82371i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+6q36q4+16q94q106q128q14+6q1610q17+6q2210q25+12q2720q29+24q3024q3516q362q38+4q408q42++36q95+O(q100) 6 q + 6 q^{3} - 6 q^{4} + 16 q^{9} - 4 q^{10} - 6 q^{12} - 8 q^{14} + 6 q^{16} - 10 q^{17} + 6 q^{22} - 10 q^{25} + 12 q^{27} - 20 q^{29} + 24 q^{30} - 24 q^{35} - 16 q^{36} - 2 q^{38} + 4 q^{40} - 8 q^{42}+ \cdots + 36 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/338Z)×\left(\mathbb{Z}/338\mathbb{Z}\right)^\times.

nn 171171
χ(n)\chi(n) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 0.707107i
33 −2.04892 −1.18294 −0.591471 0.806326i 0.701453π-0.701453\pi
−0.591471 + 0.806326i 0.701453π0.701453\pi
44 −1.00000 −0.500000
55 3.60388i 1.61170i 0.592118 + 0.805851i 0.298292π0.298292\pi
−0.592118 + 0.805851i 0.701708π0.701708\pi
66 − 2.04892i − 0.836467i
77 1.10992i 0.419509i 0.977754 + 0.209754i 0.0672665π0.0672665\pi
−0.977754 + 0.209754i 0.932734π0.932734\pi
88 − 1.00000i − 0.353553i
99 1.19806 0.399354
1010 −3.60388 −1.13965
1111 − 2.35690i − 0.710631i −0.934746 0.355315i 0.884373π-0.884373\pi
0.934746 0.355315i 0.115627π-0.115627\pi
1212 2.04892 0.591471
1313 0 0
1414 −1.10992 −0.296638
1515 − 7.38404i − 1.90655i
1616 1.00000 0.250000
1717 −5.96077 −1.44570 −0.722850 0.691005i 0.757168π-0.757168\pi
−0.722850 + 0.691005i 0.757168π0.757168\pi
1818 1.19806i 0.282386i
1919 − 0.911854i − 0.209194i −0.994515 0.104597i 0.966645π-0.966645\pi
0.994515 0.104597i 0.0333552π-0.0333552\pi
2020 − 3.60388i − 0.805851i
2121 − 2.27413i − 0.496255i
2222 2.35690 0.502492
2323 −3.38404 −0.705622 −0.352811 0.935695i 0.614774π-0.614774\pi
−0.352811 + 0.935695i 0.614774π0.614774\pi
2424 2.04892i 0.418234i
2525 −7.98792 −1.59758
2626 0 0
2727 3.69202 0.710530
2828 − 1.10992i − 0.209754i
2929 −3.78017 −0.701959 −0.350980 0.936383i 0.614151π-0.614151\pi
−0.350980 + 0.936383i 0.614151π0.614151\pi
3030 7.38404 1.34814
3131 − 8.49396i − 1.52556i −0.646658 0.762780i 0.723834π-0.723834\pi
0.646658 0.762780i 0.276166π-0.276166\pi
3232 1.00000i 0.176777i
3333 4.82908i 0.840636i
3434 − 5.96077i − 1.02226i
3535 −4.00000 −0.676123
3636 −1.19806 −0.199677
3737 4.89008i 0.803925i 0.915656 + 0.401962i 0.131672π0.131672\pi
−0.915656 + 0.401962i 0.868328π0.868328\pi
3838 0.911854 0.147922
3939 0 0
4040 3.60388 0.569823
4141 7.18598i 1.12226i 0.827727 + 0.561131i 0.189634π0.189634\pi
−0.827727 + 0.561131i 0.810366π0.810366\pi
4242 2.27413 0.350905
4343 0.515729 0.0786480 0.0393240 0.999227i 0.487480π-0.487480\pi
0.0393240 + 0.999227i 0.487480π0.487480\pi
4444 2.35690i 0.355315i
4545 4.31767i 0.643640i
4646 − 3.38404i − 0.498950i
4747 6.98792i 1.01929i 0.860384 + 0.509646i 0.170224π0.170224\pi
−0.860384 + 0.509646i 0.829776π0.829776\pi
4848 −2.04892 −0.295736
4949 5.76809 0.824012
5050 − 7.98792i − 1.12966i
5151 12.2131 1.71018
5252 0 0
5353 −3.38404 −0.464834 −0.232417 0.972616i 0.574663π-0.574663\pi
−0.232417 + 0.972616i 0.574663π0.574663\pi
5454 3.69202i 0.502420i
5555 8.49396 1.14533
5656 1.10992 0.148319
5757 1.86831i 0.247464i
5858 − 3.78017i − 0.496360i
5959 10.1468i 1.32099i 0.750828 + 0.660497i 0.229655π0.229655\pi
−0.750828 + 0.660497i 0.770345π0.770345\pi
6060 7.38404i 0.953276i
6161 −0.439665 −0.0562933 −0.0281467 0.999604i 0.508961π-0.508961\pi
−0.0281467 + 0.999604i 0.508961π0.508961\pi
6262 8.49396 1.07873
6363 1.32975i 0.167533i
6464 −1.00000 −0.125000
6565 0 0
6666 −4.82908 −0.594419
6767 − 2.14675i − 0.262268i −0.991365 0.131134i 0.958138π-0.958138\pi
0.991365 0.131134i 0.0418617π-0.0418617\pi
6868 5.96077 0.722850
6969 6.93362 0.834710
7070 − 4.00000i − 0.478091i
7171 − 0.615957i − 0.0731007i −0.999332 0.0365503i 0.988363π-0.988363\pi
0.999332 0.0365503i 0.0116369π-0.0116369\pi
7272 − 1.19806i − 0.141193i
7373 6.32304i 0.740056i 0.929021 + 0.370028i 0.120652π0.120652\pi
−0.929021 + 0.370028i 0.879348π0.879348\pi
7474 −4.89008 −0.568461
7575 16.3666 1.88985
7676 0.911854i 0.104597i
7777 2.61596 0.298116
7878 0 0
7979 −15.4819 −1.74185 −0.870924 0.491418i 0.836479π-0.836479\pi
−0.870924 + 0.491418i 0.836479π0.836479\pi
8080 3.60388i 0.402926i
8181 −11.1588 −1.23987
8282 −7.18598 −0.793559
8383 0.911854i 0.100089i 0.998747 + 0.0500445i 0.0159363π0.0159363\pi
−0.998747 + 0.0500445i 0.984064π0.984064\pi
8484 2.27413i 0.248128i
8585 − 21.4819i − 2.33004i
8686 0.515729i 0.0556125i
8787 7.74525 0.830378
8888 −2.35690 −0.251246
8989 3.75063i 0.397566i 0.980044 + 0.198783i 0.0636988π0.0636988\pi
−0.980044 + 0.198783i 0.936301π0.936301\pi
9090 −4.31767 −0.455122
9191 0 0
9292 3.38404 0.352811
9393 17.4034i 1.80465i
9494 −6.98792 −0.720749
9595 3.28621 0.337158
9696 − 2.04892i − 0.209117i
9797 14.6746i 1.48998i 0.667078 + 0.744988i 0.267545π0.267545\pi
−0.667078 + 0.744988i 0.732455π0.732455\pi
9898 5.76809i 0.582665i
9999 − 2.82371i − 0.283793i
100100 7.98792 0.798792
101101 −8.76809 −0.872457 −0.436229 0.899836i 0.643686π-0.643686\pi
−0.436229 + 0.899836i 0.643686π0.643686\pi
102102 12.2131i 1.20928i
103103 −18.8116 −1.85356 −0.926782 0.375599i 0.877437π-0.877437\pi
−0.926782 + 0.375599i 0.877437π0.877437\pi
104104 0 0
105105 8.19567 0.799815
106106 − 3.38404i − 0.328687i
107107 18.0519 1.74514 0.872572 0.488486i 0.162451π-0.162451\pi
0.872572 + 0.488486i 0.162451π0.162451\pi
108108 −3.69202 −0.355265
109109 − 6.09783i − 0.584067i −0.956408 0.292033i 0.905668π-0.905668\pi
0.956408 0.292033i 0.0943318π-0.0943318\pi
110110 8.49396i 0.809867i
111111 − 10.0194i − 0.950997i
112112 1.10992i 0.104877i
113113 −12.2010 −1.14778 −0.573889 0.818933i 0.694566π-0.694566\pi
−0.573889 + 0.818933i 0.694566π0.694566\pi
114114 −1.86831 −0.174984
115115 − 12.1957i − 1.13725i
116116 3.78017 0.350980
117117 0 0
118118 −10.1468 −0.934084
119119 − 6.61596i − 0.606484i
120120 −7.38404 −0.674068
121121 5.44504 0.495004
122122 − 0.439665i − 0.0398054i
123123 − 14.7235i − 1.32757i
124124 8.49396i 0.762780i
125125 − 10.7681i − 0.963127i
126126 −1.32975 −0.118463
127127 −11.4276 −1.01403 −0.507017 0.861936i 0.669252π-0.669252\pi
−0.507017 + 0.861936i 0.669252π0.669252\pi
128128 − 1.00000i − 0.0883883i
129129 −1.05669 −0.0930361
130130 0 0
131131 2.29590 0.200593 0.100297 0.994958i 0.468021π-0.468021\pi
0.100297 + 0.994958i 0.468021π0.468021\pi
132132 − 4.82908i − 0.420318i
133133 1.01208 0.0877586
134134 2.14675 0.185451
135135 13.3056i 1.14516i
136136 5.96077i 0.511132i
137137 9.08038i 0.775789i 0.921704 + 0.387894i 0.126797π0.126797\pi
−0.921704 + 0.387894i 0.873203π0.873203\pi
138138 6.93362i 0.590229i
139139 18.9051 1.60351 0.801757 0.597650i 0.203899π-0.203899\pi
0.801757 + 0.597650i 0.203899π0.203899\pi
140140 4.00000 0.338062
141141 − 14.3177i − 1.20577i
142142 0.615957 0.0516900
143143 0 0
144144 1.19806 0.0998385
145145 − 13.6233i − 1.13135i
146146 −6.32304 −0.523299
147147 −11.8183 −0.974760
148148 − 4.89008i − 0.401962i
149149 − 18.6896i − 1.53111i −0.643368 0.765557i 0.722463π-0.722463\pi
0.643368 0.765557i 0.277537π-0.277537\pi
150150 16.3666i 1.33633i
151151 − 0.317667i − 0.0258514i −0.999916 0.0129257i 0.995886π-0.995886\pi
0.999916 0.0129257i 0.00411449π-0.00411449\pi
152152 −0.911854 −0.0739611
153153 −7.14138 −0.577346
154154 2.61596i 0.210800i
155155 30.6112 2.45875
156156 0 0
157157 18.8901 1.50759 0.753796 0.657108i 0.228220π-0.228220\pi
0.753796 + 0.657108i 0.228220π0.228220\pi
158158 − 15.4819i − 1.23167i
159159 6.93362 0.549872
160160 −3.60388 −0.284911
161161 − 3.75600i − 0.296015i
162162 − 11.1588i − 0.876721i
163163 − 4.33273i − 0.339366i −0.985499 0.169683i 0.945726π-0.945726\pi
0.985499 0.169683i 0.0542744π-0.0542744\pi
164164 − 7.18598i − 0.561131i
165165 −17.4034 −1.35485
166166 −0.911854 −0.0707736
167167 14.0000i 1.08335i 0.840587 + 0.541676i 0.182210π0.182210\pi
−0.840587 + 0.541676i 0.817790π0.817790\pi
168168 −2.27413 −0.175453
169169 0 0
170170 21.4819 1.64758
171171 − 1.09246i − 0.0835423i
172172 −0.515729 −0.0393240
173173 10.9879 0.835396 0.417698 0.908586i 0.362837π-0.362837\pi
0.417698 + 0.908586i 0.362837π0.362837\pi
174174 7.74525i 0.587166i
175175 − 8.86592i − 0.670201i
176176 − 2.35690i − 0.177658i
177177 − 20.7899i − 1.56266i
178178 −3.75063 −0.281121
179179 −4.65519 −0.347945 −0.173972 0.984751i 0.555660π-0.555660\pi
−0.173972 + 0.984751i 0.555660π0.555660\pi
180180 − 4.31767i − 0.321820i
181181 1.06638 0.0792631 0.0396315 0.999214i 0.487382π-0.487382\pi
0.0396315 + 0.999214i 0.487382π0.487382\pi
182182 0 0
183183 0.900837 0.0665918
184184 3.38404i 0.249475i
185185 −17.6233 −1.29569
186186 −17.4034 −1.27608
187187 14.0489i 1.02736i
188188 − 6.98792i − 0.509646i
189189 4.09783i 0.298074i
190190 3.28621i 0.238407i
191191 0.890084 0.0644042 0.0322021 0.999481i 0.489748π-0.489748\pi
0.0322021 + 0.999481i 0.489748π0.489748\pi
192192 2.04892 0.147868
193193 16.2174i 1.16736i 0.811985 + 0.583678i 0.198387π0.198387\pi
−0.811985 + 0.583678i 0.801613π0.801613\pi
194194 −14.6746 −1.05357
195195 0 0
196196 −5.76809 −0.412006
197197 11.4711i 0.817284i 0.912695 + 0.408642i 0.133997π0.133997\pi
−0.912695 + 0.408642i 0.866003π0.866003\pi
198198 2.82371 0.200672
199199 3.79954 0.269343 0.134671 0.990890i 0.457002π-0.457002\pi
0.134671 + 0.990890i 0.457002π0.457002\pi
200200 7.98792i 0.564831i
201201 4.39852i 0.310247i
202202 − 8.76809i − 0.616920i
203203 − 4.19567i − 0.294478i
204204 −12.2131 −0.855090
205205 −25.8974 −1.80875
206206 − 18.8116i − 1.31067i
207207 −4.05429 −0.281793
208208 0 0
209209 −2.14914 −0.148659
210210 8.19567i 0.565555i
211211 −25.0465 −1.72427 −0.862137 0.506675i 0.830874π-0.830874\pi
−0.862137 + 0.506675i 0.830874π0.830874\pi
212212 3.38404 0.232417
213213 1.26205i 0.0864739i
214214 18.0519i 1.23400i
215215 1.85862i 0.126757i
216216 − 3.69202i − 0.251210i
217217 9.42758 0.639986
218218 6.09783 0.412997
219219 − 12.9554i − 0.875444i
220220 −8.49396 −0.572663
221221 0 0
222222 10.0194 0.672457
223223 − 12.9879i − 0.869735i −0.900494 0.434868i 0.856795π-0.856795\pi
0.900494 0.434868i 0.143205π-0.143205\pi
224224 −1.10992 −0.0741594
225225 −9.57002 −0.638002
226226 − 12.2010i − 0.811602i
227227 13.8049i 0.916265i 0.888884 + 0.458132i 0.151481π0.151481\pi
−0.888884 + 0.458132i 0.848519π0.848519\pi
228228 − 1.86831i − 0.123732i
229229 − 11.5603i − 0.763928i −0.924177 0.381964i 0.875248π-0.875248\pi
0.924177 0.381964i 0.124752π-0.124752\pi
230230 12.1957 0.804159
231231 −5.35988 −0.352654
232232 3.78017i 0.248180i
233233 −9.77479 −0.640368 −0.320184 0.947355i 0.603745π-0.603745\pi
−0.320184 + 0.947355i 0.603745π0.603745\pi
234234 0 0
235235 −25.1836 −1.64280
236236 − 10.1468i − 0.660497i
237237 31.7211 2.06051
238238 6.61596 0.428849
239239 0.944378i 0.0610867i 0.999533 + 0.0305434i 0.00972377π0.00972377\pi
−0.999533 + 0.0305434i 0.990276π0.990276\pi
240240 − 7.38404i − 0.476638i
241241 − 0.219833i − 0.0141607i −0.999975 0.00708033i 0.997746π-0.997746\pi
0.999975 0.00708033i 0.00225376π-0.00225376\pi
242242 5.44504i 0.350021i
243243 11.7875 0.756166
244244 0.439665 0.0281467
245245 20.7875i 1.32806i
246246 14.7235 0.938735
247247 0 0
248248 −8.49396 −0.539367
249249 − 1.86831i − 0.118400i
250250 10.7681 0.681034
251251 −16.2543 −1.02596 −0.512980 0.858400i 0.671459π-0.671459\pi
−0.512980 + 0.858400i 0.671459π0.671459\pi
252252 − 1.32975i − 0.0837663i
253253 7.97584i 0.501437i
254254 − 11.4276i − 0.717030i
255255 44.0146i 2.75630i
256256 1.00000 0.0625000
257257 22.4373 1.39960 0.699799 0.714340i 0.253273π-0.253273\pi
0.699799 + 0.714340i 0.253273π0.253273\pi
258258 − 1.05669i − 0.0657865i
259259 −5.42758 −0.337254
260260 0 0
261261 −4.52888 −0.280330
262262 2.29590i 0.141841i
263263 −10.4940 −0.647085 −0.323543 0.946214i 0.604874π-0.604874\pi
−0.323543 + 0.946214i 0.604874π0.604874\pi
264264 4.82908 0.297210
265265 − 12.1957i − 0.749174i
266266 1.01208i 0.0620547i
267267 − 7.68473i − 0.470298i
268268 2.14675i 0.131134i
269269 26.4155 1.61058 0.805291 0.592880i 0.202009π-0.202009\pi
0.805291 + 0.592880i 0.202009π0.202009\pi
270270 −13.3056 −0.809752
271271 − 22.0301i − 1.33824i −0.743157 0.669118i 0.766672π-0.766672\pi
0.743157 0.669118i 0.233328π-0.233328\pi
272272 −5.96077 −0.361425
273273 0 0
274274 −9.08038 −0.548566
275275 18.8267i 1.13529i
276276 −6.93362 −0.417355
277277 −2.17629 −0.130761 −0.0653804 0.997860i 0.520826π-0.520826\pi
−0.0653804 + 0.997860i 0.520826π0.520826\pi
278278 18.9051i 1.13386i
279279 − 10.1763i − 0.609239i
280280 4.00000i 0.239046i
281281 25.0030i 1.49155i 0.666196 + 0.745776i 0.267921π0.267921\pi
−0.666196 + 0.745776i 0.732079π0.732079\pi
282282 14.3177 0.852605
283283 16.3153 0.969842 0.484921 0.874558i 0.338848π-0.338848\pi
0.484921 + 0.874558i 0.338848π0.338848\pi
284284 0.615957i 0.0365503i
285285 −6.73317 −0.398839
286286 0 0
287287 −7.97584 −0.470799
288288 1.19806i 0.0705965i
289289 18.5308 1.09005
290290 13.6233 0.799985
291291 − 30.0670i − 1.76256i
292292 − 6.32304i − 0.370028i
293293 − 1.87800i − 0.109714i −0.998494 0.0548570i 0.982530π-0.982530\pi
0.998494 0.0548570i 0.0174703π-0.0174703\pi
294294 − 11.8183i − 0.689259i
295295 −36.5676 −2.12905
296296 4.89008 0.284230
297297 − 8.70171i − 0.504924i
298298 18.6896 1.08266
299299 0 0
300300 −16.3666 −0.944925
301301 0.572417i 0.0329935i
302302 0.317667 0.0182797
303303 17.9651 1.03207
304304 − 0.911854i − 0.0522984i
305305 − 1.58450i − 0.0907281i
306306 − 7.14138i − 0.408245i
307307 − 23.9801i − 1.36862i −0.729192 0.684310i 0.760104π-0.760104\pi
0.729192 0.684310i 0.239896π-0.239896\pi
308308 −2.61596 −0.149058
309309 38.5435 2.19266
310310 30.6112i 1.73860i
311311 5.38404 0.305301 0.152651 0.988280i 0.451219π-0.451219\pi
0.152651 + 0.988280i 0.451219π0.451219\pi
312312 0 0
313313 18.9487 1.07104 0.535522 0.844522i 0.320115π-0.320115\pi
0.535522 + 0.844522i 0.320115π0.320115\pi
314314 18.8901i 1.06603i
315315 −4.79225 −0.270013
316316 15.4819 0.870924
317317 11.5013i 0.645975i 0.946403 + 0.322987i 0.104687π0.104687\pi
−0.946403 + 0.322987i 0.895313π0.895313\pi
318318 6.93362i 0.388818i
319319 8.90946i 0.498834i
320320 − 3.60388i − 0.201463i
321321 −36.9869 −2.06440
322322 3.75600 0.209314
323323 5.43535i 0.302431i
324324 11.1588 0.619935
325325 0 0
326326 4.33273 0.239968
327327 12.4940i 0.690918i
328328 7.18598 0.396779
329329 −7.75600 −0.427602
330330 − 17.4034i − 0.958027i
331331 34.6112i 1.90240i 0.308572 + 0.951201i 0.400149π0.400149\pi
−0.308572 + 0.951201i 0.599851π0.599851\pi
332332 − 0.911854i − 0.0500445i
333333 5.85862i 0.321051i
334334 −14.0000 −0.766046
335335 7.73663 0.422697
336336 − 2.27413i − 0.124064i
337337 −1.95407 −0.106445 −0.0532224 0.998583i 0.516949π-0.516949\pi
−0.0532224 + 0.998583i 0.516949π0.516949\pi
338338 0 0
339339 24.9989 1.35776
340340 21.4819i 1.16502i
341341 −20.0194 −1.08411
342342 1.09246 0.0590734
343343 14.1715i 0.765189i
344344 − 0.515729i − 0.0278063i
345345 24.9879i 1.34530i
346346 10.9879i 0.590714i
347347 −6.41550 −0.344402 −0.172201 0.985062i 0.555088π-0.555088\pi
−0.172201 + 0.985062i 0.555088π0.555088\pi
348348 −7.74525 −0.415189
349349 − 1.08575i − 0.0581190i −0.999578 0.0290595i 0.990749π-0.990749\pi
0.999578 0.0290595i 0.00925123π-0.00925123\pi
350350 8.86592 0.473903
351351 0 0
352352 2.35690 0.125623
353353 4.28919i 0.228291i 0.993464 + 0.114145i 0.0364130π0.0364130\pi
−0.993464 + 0.114145i 0.963587π0.963587\pi
354354 20.7899 1.10497
355355 2.21983 0.117816
356356 − 3.75063i − 0.198783i
357357 13.5555i 0.717436i
358358 − 4.65519i − 0.246034i
359359 15.5060i 0.818378i 0.912450 + 0.409189i 0.134188π0.134188\pi
−0.912450 + 0.409189i 0.865812π0.865812\pi
360360 4.31767 0.227561
361361 18.1685 0.956238
362362 1.06638i 0.0560475i
363363 −11.1564 −0.585561
364364 0 0
365365 −22.7875 −1.19275
366366 0.900837i 0.0470875i
367367 17.4276 0.909712 0.454856 0.890565i 0.349691π-0.349691\pi
0.454856 + 0.890565i 0.349691π0.349691\pi
368368 −3.38404 −0.176405
369369 8.60925i 0.448180i
370370 − 17.6233i − 0.916189i
371371 − 3.75600i − 0.195002i
372372 − 17.4034i − 0.902325i
373373 8.19567 0.424356 0.212178 0.977231i 0.431944π-0.431944\pi
0.212178 + 0.977231i 0.431944π0.431944\pi
374374 −14.0489 −0.726452
375375 22.0629i 1.13932i
376376 6.98792 0.360374
377377 0 0
378378 −4.09783 −0.210770
379379 − 15.0476i − 0.772943i −0.922301 0.386471i 0.873694π-0.873694\pi
0.922301 0.386471i 0.126306π-0.126306\pi
380380 −3.28621 −0.168579
381381 23.4142 1.19954
382382 0.890084i 0.0455406i
383383 − 11.1207i − 0.568240i −0.958789 0.284120i 0.908299π-0.908299\pi
0.958789 0.284120i 0.0917014π-0.0917014\pi
384384 2.04892i 0.104558i
385385 9.42758i 0.480474i
386386 −16.2174 −0.825446
387387 0.617876 0.0314084
388388 − 14.6746i − 0.744988i
389389 8.04354 0.407824 0.203912 0.978989i 0.434634π-0.434634\pi
0.203912 + 0.978989i 0.434634π0.434634\pi
390390 0 0
391391 20.1715 1.02012
392392 − 5.76809i − 0.291332i
393393 −4.70410 −0.237291
394394 −11.4711 −0.577907
395395 − 55.7948i − 2.80734i
396396 2.82371i 0.141897i
397397 21.9081i 1.09954i 0.835317 + 0.549769i 0.185284π0.185284\pi
−0.835317 + 0.549769i 0.814716π0.814716\pi
398398 3.79954i 0.190454i
399399 −2.07367 −0.103813
400400 −7.98792 −0.399396
401401 − 17.4426i − 0.871044i −0.900178 0.435522i 0.856564π-0.856564\pi
0.900178 0.435522i 0.143436π-0.143436\pi
402402 −4.39852 −0.219378
403403 0 0
404404 8.76809 0.436229
405405 − 40.2150i − 1.99830i
406406 4.19567 0.208228
407407 11.5254 0.571294
408408 − 12.2131i − 0.604640i
409409 − 17.4330i − 0.862004i −0.902351 0.431002i 0.858160π-0.858160\pi
0.902351 0.431002i 0.141840π-0.141840\pi
410410 − 25.8974i − 1.27898i
411411 − 18.6049i − 0.917714i
412412 18.8116 0.926782
413413 −11.2620 −0.554169
414414 − 4.05429i − 0.199258i
415415 −3.28621 −0.161314
416416 0 0
417417 −38.7351 −1.89687
418418 − 2.14914i − 0.105118i
419419 9.97584 0.487352 0.243676 0.969857i 0.421647π-0.421647\pi
0.243676 + 0.969857i 0.421647π0.421647\pi
420420 −8.19567 −0.399908
421421 0.615957i 0.0300199i 0.999887 + 0.0150100i 0.00477800π0.00477800\pi
−0.999887 + 0.0150100i 0.995222π0.995222\pi
422422 − 25.0465i − 1.21925i
423423 8.37196i 0.407059i
424424 3.38404i 0.164344i
425425 47.6142 2.30963
426426 −1.26205 −0.0611463
427427 − 0.487991i − 0.0236156i
428428 −18.0519 −0.872572
429429 0 0
430430 −1.85862 −0.0896308
431431 − 14.7922i − 0.712518i −0.934387 0.356259i 0.884052π-0.884052\pi
0.934387 0.356259i 0.115948π-0.115948\pi
432432 3.69202 0.177632
433433 −16.5321 −0.794483 −0.397242 0.917714i 0.630032π-0.630032\pi
−0.397242 + 0.917714i 0.630032π0.630032\pi
434434 9.42758i 0.452538i
435435 27.9129i 1.33832i
436436 6.09783i 0.292033i
437437 3.08575i 0.147612i
438438 12.9554 0.619033
439439 −3.50125 −0.167106 −0.0835529 0.996503i 0.526627π-0.526627\pi
−0.0835529 + 0.996503i 0.526627π0.526627\pi
440440 − 8.49396i − 0.404934i
441441 6.91053 0.329073
442442 0 0
443443 17.4077 0.827066 0.413533 0.910489i 0.364295π-0.364295\pi
0.413533 + 0.910489i 0.364295π0.364295\pi
444444 10.0194i 0.475499i
445445 −13.5168 −0.640758
446446 12.9879 0.614996
447447 38.2935i 1.81122i
448448 − 1.10992i − 0.0524386i
449449 − 34.1497i − 1.61163i −0.592170 0.805813i 0.701729π-0.701729\pi
0.592170 0.805813i 0.298271π-0.298271\pi
450450 − 9.57002i − 0.451135i
451451 16.9366 0.797514
452452 12.2010 0.573889
453453 0.650874i 0.0305807i
454454 −13.8049 −0.647897
455455 0 0
456456 1.86831 0.0874918
457457 9.40342i 0.439873i 0.975514 + 0.219937i 0.0705851π0.0705851\pi
−0.975514 + 0.219937i 0.929415π0.929415\pi
458458 11.5603 0.540179
459459 −22.0073 −1.02721
460460 12.1957i 0.568626i
461461 − 0.733169i − 0.0341471i −0.999854 0.0170735i 0.994565π-0.994565\pi
0.999854 0.0170735i 0.00543494π-0.00543494\pi
462462 − 5.35988i − 0.249364i
463463 − 7.24267i − 0.336595i −0.985736 0.168298i 0.946173π-0.946173\pi
0.985736 0.168298i 0.0538270π-0.0538270\pi
464464 −3.78017 −0.175490
465465 −62.7198 −2.90856
466466 − 9.77479i − 0.452808i
467467 −30.2446 −1.39955 −0.699776 0.714362i 0.746717π-0.746717\pi
−0.699776 + 0.714362i 0.746717π0.746717\pi
468468 0 0
469469 2.38271 0.110024
470470 − 25.1836i − 1.16163i
471471 −38.7042 −1.78340
472472 10.1468 0.467042
473473 − 1.21552i − 0.0558897i
474474 31.7211i 1.45700i
475475 7.28382i 0.334204i
476476 6.61596i 0.303242i
477477 −4.05429 −0.185633
478478 −0.944378 −0.0431948
479479 36.7198i 1.67777i 0.544310 + 0.838884i 0.316792π0.316792\pi
−0.544310 + 0.838884i 0.683208π0.683208\pi
480480 7.38404 0.337034
481481 0 0
482482 0.219833 0.0100131
483483 7.69574i 0.350168i
484484 −5.44504 −0.247502
485485 −52.8853 −2.40140
486486 11.7875i 0.534690i
487487 − 28.6547i − 1.29847i −0.760588 0.649234i 0.775089π-0.775089\pi
0.760588 0.649234i 0.224911π-0.224911\pi
488488 0.439665i 0.0199027i
489489 8.87741i 0.401450i
490490 −20.7875 −0.939082
491491 −30.4295 −1.37326 −0.686632 0.727005i 0.740912π-0.740912\pi
−0.686632 + 0.727005i 0.740912π0.740912\pi
492492 14.7235i 0.663786i
493493 22.5327 1.01482
494494 0 0
495495 10.1763 0.457390
496496 − 8.49396i − 0.381390i
497497 0.683661 0.0306664
498498 1.86831 0.0837211
499499 15.9715i 0.714984i 0.933916 + 0.357492i 0.116368π0.116368\pi
−0.933916 + 0.357492i 0.883632π0.883632\pi
500500 10.7681i 0.481563i
501501 − 28.6848i − 1.28154i
502502 − 16.2543i − 0.725464i
503503 −41.9711 −1.87140 −0.935698 0.352801i 0.885229π-0.885229\pi
−0.935698 + 0.352801i 0.885229π0.885229\pi
504504 1.32975 0.0592317
505505 − 31.5991i − 1.40614i
506506 −7.97584 −0.354569
507507 0 0
508508 11.4276 0.507017
509509 0.914247i 0.0405233i 0.999795 + 0.0202616i 0.00644992π0.00644992\pi
−0.999795 + 0.0202616i 0.993550π0.993550\pi
510510 −44.0146 −1.94900
511511 −7.01805 −0.310460
512512 1.00000i 0.0441942i
513513 − 3.36658i − 0.148638i
514514 22.4373i 0.989666i
515515 − 67.7948i − 2.98739i
516516 1.05669 0.0465181
517517 16.4698 0.724341
518518 − 5.42758i − 0.238474i
519519 −22.5133 −0.988226
520520 0 0
521521 −3.31096 −0.145056 −0.0725279 0.997366i 0.523107π-0.523107\pi
−0.0725279 + 0.997366i 0.523107π0.523107\pi
522522 − 4.52888i − 0.198224i
523523 −0.850855 −0.0372053 −0.0186026 0.999827i 0.505922π-0.505922\pi
−0.0186026 + 0.999827i 0.505922π0.505922\pi
524524 −2.29590 −0.100297
525525 18.1655i 0.792809i
526526 − 10.4940i − 0.457558i
527527 50.6305i 2.20550i
528528 4.82908i 0.210159i
529529 −11.5483 −0.502098
530530 12.1957 0.529746
531531 12.1564i 0.527545i
532532 −1.01208 −0.0438793
533533 0 0
534534 7.68473 0.332551
535535 65.0568i 2.81265i
536536 −2.14675 −0.0927256
537537 9.53809 0.411599
538538 26.4155i 1.13885i
539539 − 13.5948i − 0.585569i
540540 − 13.3056i − 0.572581i
541541 40.8853i 1.75780i 0.477010 + 0.878898i 0.341721π0.341721\pi
−0.477010 + 0.878898i 0.658279π0.658279\pi
542542 22.0301 0.946275
543543 −2.18492 −0.0937637
544544 − 5.96077i − 0.255566i
545545 21.9758 0.941341
546546 0 0
547547 −2.39075 −0.102221 −0.0511105 0.998693i 0.516276π-0.516276\pi
−0.0511105 + 0.998693i 0.516276π0.516276\pi
548548 − 9.08038i − 0.387894i
549549 −0.526746 −0.0224810
550550 −18.8267 −0.802773
551551 3.44696i 0.146845i
552552 − 6.93362i − 0.295115i
553553 − 17.1836i − 0.730720i
554554 − 2.17629i − 0.0924618i
555555 36.1086 1.53272
556556 −18.9051 −0.801757
557557 − 27.1508i − 1.15042i −0.818007 0.575208i 0.804921π-0.804921\pi
0.818007 0.575208i 0.195079π-0.195079\pi
558558 10.1763 0.430797
559559 0 0
560560 −4.00000 −0.169031
561561 − 28.7851i − 1.21531i
562562 −25.0030 −1.05469
563563 6.52409 0.274958 0.137479 0.990505i 0.456100π-0.456100\pi
0.137479 + 0.990505i 0.456100π0.456100\pi
564564 14.3177i 0.602883i
565565 − 43.9711i − 1.84988i
566566 16.3153i 0.685782i
567567 − 12.3854i − 0.520137i
568568 −0.615957 −0.0258450
569569 −7.30021 −0.306041 −0.153020 0.988223i 0.548900π-0.548900\pi
−0.153020 + 0.988223i 0.548900π0.548900\pi
570570 − 6.73317i − 0.282021i
571571 43.6722 1.82762 0.913812 0.406138i 0.133125π-0.133125\pi
0.913812 + 0.406138i 0.133125π0.133125\pi
572572 0 0
573573 −1.82371 −0.0761865
574574 − 7.97584i − 0.332905i
575575 27.0315 1.12729
576576 −1.19806 −0.0499193
577577 16.8528i 0.701590i 0.936452 + 0.350795i 0.114089π0.114089\pi
−0.936452 + 0.350795i 0.885911π0.885911\pi
578578 18.5308i 0.770779i
579579 − 33.2282i − 1.38092i
580580 13.6233i 0.565675i
581581 −1.01208 −0.0419882
582582 30.0670 1.24632
583583 7.97584i 0.330325i
584584 6.32304 0.261649
585585 0 0
586586 1.87800 0.0775796
587587 − 22.1825i − 0.915571i −0.889063 0.457785i 0.848643π-0.848643\pi
0.889063 0.457785i 0.151357π-0.151357\pi
588588 11.8183 0.487380
589589 −7.74525 −0.319137
590590 − 36.5676i − 1.50547i
591591 − 23.5034i − 0.966800i
592592 4.89008i 0.200981i
593593 − 3.98493i − 0.163642i −0.996647 0.0818208i 0.973926π-0.973926\pi
0.996647 0.0818208i 0.0260735π-0.0260735\pi
594594 8.70171 0.357035
595595 23.8431 0.977471
596596 18.6896i 0.765557i
597597 −7.78495 −0.318617
598598 0 0
599599 33.2379 1.35806 0.679032 0.734109i 0.262400π-0.262400\pi
0.679032 + 0.734109i 0.262400π0.262400\pi
600600 − 16.3666i − 0.668163i
601601 9.79715 0.399634 0.199817 0.979833i 0.435965π-0.435965\pi
0.199817 + 0.979833i 0.435965π0.435965\pi
602602 −0.572417 −0.0233300
603603 − 2.57194i − 0.104738i
604604 0.317667i 0.0129257i
605605 19.6233i 0.797799i
606606 17.9651i 0.729782i
607607 −24.2258 −0.983295 −0.491647 0.870794i 0.663605π-0.663605\pi
−0.491647 + 0.870794i 0.663605π0.663605\pi
608608 0.911854 0.0369806
609609 8.59658i 0.348351i
610610 1.58450 0.0641545
611611 0 0
612612 7.14138 0.288673
613613 − 15.0556i − 0.608091i −0.952658 0.304045i 0.901663π-0.901663\pi
0.952658 0.304045i 0.0983375π-0.0983375\pi
614614 23.9801 0.967760
615615 53.0616 2.13965
616616 − 2.61596i − 0.105400i
617617 − 2.01879i − 0.0812733i −0.999174 0.0406366i 0.987061π-0.987061\pi
0.999174 0.0406366i 0.0129386π-0.0129386\pi
618618 38.5435i 1.55045i
619619 7.84309i 0.315240i 0.987500 + 0.157620i 0.0503821π0.0503821\pi
−0.987500 + 0.157620i 0.949618π0.949618\pi
620620 −30.6112 −1.22937
621621 −12.4940 −0.501365
622622 5.38404i 0.215880i
623623 −4.16288 −0.166782
624624 0 0
625625 −1.13275 −0.0453101
626626 18.9487i 0.757342i
627627 4.40342 0.175856
628628 −18.8901 −0.753796
629629 − 29.1487i − 1.16223i
630630 − 4.79225i − 0.190928i
631631 − 24.5327i − 0.976632i −0.872667 0.488316i 0.837611π-0.837611\pi
0.872667 0.488316i 0.162389π-0.162389\pi
632632 15.4819i 0.615836i
633633 51.3183 2.03972
634634 −11.5013 −0.456773
635635 − 41.1836i − 1.63432i
636636 −6.93362 −0.274936
637637 0 0
638638 −8.90946 −0.352729
639639 − 0.737955i − 0.0291930i
640640 3.60388 0.142456
641641 41.6015 1.64316 0.821580 0.570093i 0.193093π-0.193093\pi
0.821580 + 0.570093i 0.193093π0.193093\pi
642642 − 36.9869i − 1.45975i
643643 45.4118i 1.79087i 0.445196 + 0.895433i 0.353134π0.353134\pi
−0.445196 + 0.895433i 0.646866π0.646866\pi
644644 3.75600i 0.148007i
645645 − 3.80817i − 0.149946i
646646 −5.43535 −0.213851
647647 −35.8345 −1.40880 −0.704399 0.709804i 0.748783π-0.748783\pi
−0.704399 + 0.709804i 0.748783π0.748783\pi
648648 11.1588i 0.438360i
649649 23.9148 0.938740
650650 0 0
651651 −19.3163 −0.757067
652652 4.33273i 0.169683i
653653 18.5590 0.726270 0.363135 0.931737i 0.381706π-0.381706\pi
0.363135 + 0.931737i 0.381706π0.381706\pi
654654 −12.4940 −0.488552
655655 8.27413i 0.323297i
656656 7.18598i 0.280565i
657657 7.57540i 0.295545i
658658 − 7.75600i − 0.302361i
659659 −3.97525 −0.154854 −0.0774268 0.996998i 0.524670π-0.524670\pi
−0.0774268 + 0.996998i 0.524670π0.524670\pi
660660 17.4034 0.677427
661661 − 1.23191i − 0.0479159i −0.999713 0.0239580i 0.992373π-0.992373\pi
0.999713 0.0239580i 0.00762678π-0.00762678\pi
662662 −34.6112 −1.34520
663663 0 0
664664 0.911854 0.0353868
665665 3.64742i 0.141441i
666666 −5.85862 −0.227017
667667 12.7922 0.495318
668668 − 14.0000i − 0.541676i
669669 26.6112i 1.02885i
670670 7.73663i 0.298892i
671671 1.03624i 0.0400038i
672672 2.27413 0.0877263
673673 36.8256 1.41952 0.709762 0.704442i 0.248803π-0.248803\pi
0.709762 + 0.704442i 0.248803π0.248803\pi
674674 − 1.95407i − 0.0752678i
675675 −29.4916 −1.13513
676676 0 0
677677 −25.9215 −0.996246 −0.498123 0.867106i 0.665977π-0.665977\pi
−0.498123 + 0.867106i 0.665977π0.665977\pi
678678 24.9989i 0.960078i
679679 −16.2875 −0.625058
680680 −21.4819 −0.823792
681681 − 28.2851i − 1.08389i
682682 − 20.0194i − 0.766582i
683683 − 37.5472i − 1.43670i −0.695680 0.718352i 0.744897π-0.744897\pi
0.695680 0.718352i 0.255103π-0.255103\pi
684684 1.09246i 0.0417712i
685685 −32.7245 −1.25034
686686 −14.1715 −0.541071
687687 23.6862i 0.903684i
688688 0.515729 0.0196620
689689 0 0
690690 −24.9879 −0.951274
691691 45.2549i 1.72158i 0.508963 + 0.860788i 0.330029π0.330029\pi
−0.508963 + 0.860788i 0.669971π0.669971\pi
692692 −10.9879 −0.417698
693693 3.13408 0.119054
694694 − 6.41550i − 0.243529i
695695 68.1318i 2.58439i
696696 − 7.74525i − 0.293583i
697697 − 42.8340i − 1.62245i
698698 1.08575 0.0410964
699699 20.0277 0.757519
700700 8.86592i 0.335100i
701701 −36.0823 −1.36281 −0.681405 0.731907i 0.738631π-0.738631\pi
−0.681405 + 0.731907i 0.738631π0.738631\pi
702702 0 0
703703 4.45904 0.168176
704704 2.35690i 0.0888289i
705705 51.5991 1.94333
706706 −4.28919 −0.161426
707707 − 9.73184i − 0.366004i
708708 20.7899i 0.781331i
709709 19.0664i 0.716053i 0.933711 + 0.358026i 0.116550π0.116550\pi
−0.933711 + 0.358026i 0.883450π0.883450\pi
710710 2.21983i 0.0833088i
711711 −18.5483 −0.695614
712712 3.75063 0.140561
713713 28.7439i 1.07647i
714714 −13.5555 −0.507304
715715 0 0
716716 4.65519 0.173972
717717 − 1.93495i − 0.0722621i
718718 −15.5060 −0.578680
719719 15.3056 0.570802 0.285401 0.958408i 0.407873π-0.407873\pi
0.285401 + 0.958408i 0.407873π0.407873\pi
720720 4.31767i 0.160910i
721721 − 20.8793i − 0.777587i
722722 18.1685i 0.676162i
723723 0.450419i 0.0167513i
724724 −1.06638 −0.0396315
725725 30.1957 1.12144
726726 − 11.1564i − 0.414054i
727727 −3.46250 −0.128417 −0.0642085 0.997937i 0.520452π-0.520452\pi
−0.0642085 + 0.997937i 0.520452π0.520452\pi
728728 0 0
729729 9.32496 0.345369
730730 − 22.7875i − 0.843402i
731731 −3.07415 −0.113701
732732 −0.900837 −0.0332959
733733 − 26.0930i − 0.963769i −0.876235 0.481884i 0.839953π-0.839953\pi
0.876235 0.481884i 0.160047π-0.160047\pi
734734 17.4276i 0.643264i
735735 − 42.5918i − 1.57102i
736736 − 3.38404i − 0.124737i
737737 −5.05967 −0.186375
738738 −8.60925 −0.316911
739739 26.4993i 0.974794i 0.873181 + 0.487397i 0.162054π0.162054\pi
−0.873181 + 0.487397i 0.837946π0.837946\pi
740740 17.6233 0.647844
741741 0 0
742742 3.75600 0.137887
743743 − 0.415502i − 0.0152433i −0.999971 0.00762164i 0.997574π-0.997574\pi
0.999971 0.00762164i 0.00242607π-0.00242607\pi
744744 17.4034 0.638040
745745 67.3551 2.46770
746746 8.19567i 0.300065i
747747 1.09246i 0.0399709i
748748 − 14.0489i − 0.513679i
749749 20.0361i 0.732103i
750750 −22.0629 −0.805624
751751 −2.90946 −0.106168 −0.0530839 0.998590i 0.516905π-0.516905\pi
−0.0530839 + 0.998590i 0.516905π0.516905\pi
752752 6.98792i 0.254823i
753753 33.3037 1.21365
754754 0 0
755755 1.14483 0.0416647
756756 − 4.09783i − 0.149037i
757757 12.3720 0.449667 0.224833 0.974397i 0.427816π-0.427816\pi
0.224833 + 0.974397i 0.427816π0.427816\pi
758758 15.0476 0.546553
759759 − 16.3418i − 0.593171i
760760 − 3.28621i − 0.119203i
761761 − 42.4306i − 1.53811i −0.639184 0.769053i 0.720728π-0.720728\pi
0.639184 0.769053i 0.279272π-0.279272\pi
762762 23.4142i 0.848206i
763763 6.76809 0.245021
764764 −0.890084 −0.0322021
765765 − 25.7366i − 0.930510i
766766 11.1207 0.401806
767767 0 0
768768 −2.04892 −0.0739339
769769 13.3341i 0.480839i 0.970669 + 0.240419i 0.0772849π0.0772849\pi
−0.970669 + 0.240419i 0.922715π0.922715\pi
770770 −9.42758 −0.339747
771771 −45.9721 −1.65565
772772 − 16.2174i − 0.583678i
773773 − 5.85384i − 0.210548i −0.994443 0.105274i 0.966428π-0.966428\pi
0.994443 0.105274i 0.0335720π-0.0335720\pi
774774 0.617876i 0.0222091i
775775 67.8491i 2.43721i
776776 14.6746 0.526786
777777 11.1207 0.398952
778778 8.04354i 0.288375i
779779 6.55257 0.234770
780780 0 0
781781 −1.45175 −0.0519476
782782 20.1715i 0.721332i
783783 −13.9565 −0.498763
784784 5.76809 0.206003
785785 68.0775i 2.42979i
786786 − 4.70410i − 0.167790i
787787 23.2965i 0.830430i 0.909723 + 0.415215i 0.136294π0.136294\pi
−0.909723 + 0.415215i 0.863706π0.863706\pi
788788 − 11.4711i − 0.408642i
789789 21.5013 0.765465
790790 55.7948 1.98509
791791 − 13.5421i − 0.481503i
792792 −2.82371 −0.100336
793793 0 0
794794 −21.9081 −0.777491
795795 24.9879i 0.886230i
796796 −3.79954 −0.134671
797797 −35.8103 −1.26847 −0.634233 0.773142i 0.718684π-0.718684\pi
−0.634233 + 0.773142i 0.718684π0.718684\pi
798798 − 2.07367i − 0.0734072i
799799 − 41.6534i − 1.47359i
800800 − 7.98792i − 0.282416i
801801 4.49349i 0.158769i
802802 17.4426 0.615921
803803 14.9028 0.525907
804804 − 4.39852i − 0.155124i
805805 13.5362 0.477087
806806 0 0
807807 −54.1232 −1.90523
808808 8.76809i 0.308460i
809809 28.3744 0.997589 0.498795 0.866720i 0.333776π-0.333776\pi
0.498795 + 0.866720i 0.333776π0.333776\pi
810810 40.2150 1.41301
811811 5.20344i 0.182717i 0.995818 + 0.0913587i 0.0291210π0.0291210\pi
−0.995818 + 0.0913587i 0.970879π0.970879\pi
812812 4.19567i 0.147239i
813813 45.1379i 1.58306i
814814 11.5254i 0.403966i
815815 15.6146 0.546957
816816 12.2131 0.427545
817817 − 0.470270i − 0.0164527i
818818 17.4330 0.609529
819819 0 0
820820 25.8974 0.904376
821821 − 5.65338i − 0.197304i −0.995122 0.0986522i 0.968547π-0.968547\pi
0.995122 0.0986522i 0.0314531π-0.0314531\pi
822822 18.6049 0.648922
823823 −39.0616 −1.36160 −0.680801 0.732469i 0.738368π-0.738368\pi
−0.680801 + 0.732469i 0.738368π0.738368\pi
824824 18.8116i 0.655334i
825825 − 38.5743i − 1.34299i
826826 − 11.2620i − 0.391857i
827827 5.40283i 0.187875i 0.995578 + 0.0939374i 0.0299454π0.0299454\pi
−0.995578 + 0.0939374i 0.970055π0.970055\pi
828828 4.05429 0.140896
829829 8.38537 0.291236 0.145618 0.989341i 0.453483π-0.453483\pi
0.145618 + 0.989341i 0.453483π0.453483\pi
830830 − 3.28621i − 0.114066i
831831 4.45904 0.154682
832832 0 0
833833 −34.3822 −1.19127
834834 − 38.7351i − 1.34129i
835835 −50.4543 −1.74604
836836 2.14914 0.0743297
837837 − 31.3599i − 1.08396i
838838 9.97584i 0.344610i
839839 3.98062i 0.137426i 0.997636 + 0.0687132i 0.0218893π0.0218893\pi
−0.997636 + 0.0687132i 0.978111π0.978111\pi
840840 − 8.19567i − 0.282777i
841841 −14.7103 −0.507253
842842 −0.615957 −0.0212273
843843 − 51.2290i − 1.76442i
844844 25.0465 0.862137
845845 0 0
846846 −8.37196 −0.287834
847847 6.04354i 0.207659i
848848 −3.38404 −0.116209
849849 −33.4286 −1.14727
850850 47.6142i 1.63315i
851851 − 16.5483i − 0.567267i
852852 − 1.26205i − 0.0432370i
853853 − 6.29350i − 0.215485i −0.994179 0.107743i 0.965638π-0.965638\pi
0.994179 0.107743i 0.0343623π-0.0343623\pi
854854 0.487991 0.0166987
855855 3.93708 0.134645
856856 − 18.0519i − 0.617001i
857857 −4.37627 −0.149491 −0.0747453 0.997203i 0.523814π-0.523814\pi
−0.0747453 + 0.997203i 0.523814π0.523814\pi
858858 0 0
859859 15.0261 0.512683 0.256342 0.966586i 0.417483π-0.417483\pi
0.256342 + 0.966586i 0.417483π0.417483\pi
860860 − 1.85862i − 0.0633786i
861861 16.3418 0.556928
862862 14.7922 0.503826
863863 6.21121i 0.211432i 0.994396 + 0.105716i 0.0337134π0.0337134\pi
−0.994396 + 0.105716i 0.966287π0.966287\pi
864864 3.69202i 0.125605i
865865 39.5991i 1.34641i
866866 − 16.5321i − 0.561784i
867867 −37.9681 −1.28946
868868 −9.42758 −0.319993
869869 36.4892i 1.23781i
870870 −27.9129 −0.946337
871871 0 0
872872 −6.09783 −0.206499
873873 17.5810i 0.595028i
874874 −3.08575 −0.104377
875875 11.9517 0.404040
876876 12.9554i 0.437722i
877877 38.2198i 1.29059i 0.763933 + 0.645296i 0.223266π0.223266\pi
−0.763933 + 0.645296i 0.776734π0.776734\pi
878878 − 3.50125i − 0.118162i
879879 3.84787i 0.129785i
880880 8.49396 0.286331
881881 −26.7832 −0.902347 −0.451174 0.892436i 0.648994π-0.648994\pi
−0.451174 + 0.892436i 0.648994π0.648994\pi
882882 6.91053i 0.232690i
883883 34.4956 1.16087 0.580435 0.814307i 0.302883π-0.302883\pi
0.580435 + 0.814307i 0.302883π0.302883\pi
884884 0 0
885885 74.9241 2.51854
886886 17.4077i 0.584824i
887887 −23.9866 −0.805391 −0.402695 0.915334i 0.631927π-0.631927\pi
−0.402695 + 0.915334i 0.631927π0.631927\pi
888888 −10.0194 −0.336228
889889 − 12.6837i − 0.425396i
890890 − 13.5168i − 0.453084i
891891 26.3002i 0.881090i
892892 12.9879i 0.434868i
893893 6.37196 0.213230
894894 −38.2935 −1.28073
895895 − 16.7767i − 0.560784i
896896 1.10992 0.0370797
897897 0 0
898898 34.1497 1.13959
899899 32.1086i 1.07088i
900900 9.57002 0.319001
901901 20.1715 0.672010
902902 16.9366i 0.563927i
903903 − 1.17283i − 0.0390295i
904904 12.2010i 0.405801i
905905 3.84309i 0.127748i
906906 −0.650874 −0.0216238
907907 −23.9269 −0.794480 −0.397240 0.917715i 0.630032π-0.630032\pi
−0.397240 + 0.917715i 0.630032π0.630032\pi
908908 − 13.8049i − 0.458132i
909909 −10.5047 −0.348419
910910 0 0
911911 −35.8866 −1.18898 −0.594488 0.804104i 0.702645π-0.702645\pi
−0.594488 + 0.804104i 0.702645π0.702645\pi
912912 1.86831i 0.0618660i
913913 2.14914 0.0711263
914914 −9.40342 −0.311037
915915 3.24651i 0.107326i
916916 11.5603i 0.381964i
917917 2.54825i 0.0841507i
918918 − 22.0073i − 0.726349i
919919 33.2465 1.09670 0.548351 0.836249i 0.315256π-0.315256\pi
0.548351 + 0.836249i 0.315256π0.315256\pi
920920 −12.1957 −0.402079
921921 49.1333i 1.61900i
922922 0.733169 0.0241456
923923 0 0
924924 5.35988 0.176327
925925 − 39.0616i − 1.28434i
926926 7.24267 0.238009
927927 −22.5375 −0.740229
928928 − 3.78017i − 0.124090i
929929 54.2583i 1.78016i 0.455806 + 0.890079i 0.349351π0.349351\pi
−0.455806 + 0.890079i 0.650649π0.650649\pi
930930 − 62.7198i − 2.05666i
931931 − 5.25965i − 0.172378i
932932 9.77479 0.320184
933933 −11.0315 −0.361154
934934 − 30.2446i − 0.989633i
935935 −50.6305 −1.65580
936936 0 0
937937 16.5265 0.539897 0.269948 0.962875i 0.412993π-0.412993\pi
0.269948 + 0.962875i 0.412993π0.412993\pi
938938 2.38271i 0.0777984i
939939 −38.8243 −1.26698
940940 25.1836 0.821398
941941 41.7017i 1.35944i 0.733473 + 0.679718i 0.237898π0.237898\pi
−0.733473 + 0.679718i 0.762102π0.762102\pi
942942 − 38.7042i − 1.26105i
943943 − 24.3177i − 0.791892i
944944 10.1468i 0.330249i
945945 −14.7681 −0.480406
946946 1.21552 0.0395200
947947 3.00106i 0.0975215i 0.998810 + 0.0487608i 0.0155272π0.0155272\pi
−0.998810 + 0.0487608i 0.984473π0.984473\pi
948948 −31.7211 −1.03025
949949 0 0
950950 −7.28382 −0.236318
951951 − 23.5651i − 0.764151i
952952 −6.61596 −0.214424
953953 −38.1450 −1.23564 −0.617818 0.786321i 0.711983π-0.711983\pi
−0.617818 + 0.786321i 0.711983π0.711983\pi
954954 − 4.05429i − 0.131263i
955955 3.20775i 0.103800i
956956 − 0.944378i − 0.0305434i
957957 − 18.2547i − 0.590092i
958958 −36.7198 −1.18636
959959 −10.0785 −0.325450
960960 7.38404i 0.238319i
961961 −41.1473 −1.32733
962962 0 0
963963 21.6273 0.696930
964964 0.219833i 0.00708033i
965965 −58.4456 −1.88143
966966 −7.69574 −0.247606
967967 26.8793i 0.864381i 0.901782 + 0.432190i 0.142259π0.142259\pi
−0.901782 + 0.432190i 0.857741π0.857741\pi
968968 − 5.44504i − 0.175010i
969969 − 11.1366i − 0.357759i
970970 − 52.8853i − 1.69804i
971971 3.13647 0.100654 0.0503271 0.998733i 0.483974π-0.483974\pi
0.0503271 + 0.998733i 0.483974π0.483974\pi
972972 −11.7875 −0.378083
973973 20.9831i 0.672688i
974974 28.6547 0.918156
975975 0 0
976976 −0.439665 −0.0140733
977977 − 35.8864i − 1.14811i −0.818818 0.574053i 0.805370π-0.805370\pi
0.818818 0.574053i 0.194630π-0.194630\pi
978978 −8.87741 −0.283868
979979 8.83984 0.282522
980980 − 20.7875i − 0.664031i
981981 − 7.30559i − 0.233249i
982982 − 30.4295i − 0.971044i
983983 − 30.4370i − 0.970790i −0.874295 0.485395i 0.838676π-0.838676\pi
0.874295 0.485395i 0.161324π-0.161324\pi
984984 −14.7235 −0.469367
985985 −41.3405 −1.31722
986986 22.5327i 0.717588i
987987 15.8914 0.505829
988988 0 0
989989 −1.74525 −0.0554957
990990 10.1763i 0.323424i
991991 31.4470 0.998946 0.499473 0.866330i 0.333527π-0.333527\pi
0.499473 + 0.866330i 0.333527π0.333527\pi
992992 8.49396 0.269683
993993 − 70.9154i − 2.25043i
994994 0.683661i 0.0216844i
995995 13.6931i 0.434100i
996996 1.86831i 0.0591998i
997997 19.1099 0.605217 0.302609 0.953115i 0.402143π-0.402143\pi
0.302609 + 0.953115i 0.402143π0.402143\pi
998998 −15.9715 −0.505570
999999 18.0543i 0.571213i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.2.b.d.337.4 6
3.2 odd 2 3042.2.b.n.1351.1 6
4.3 odd 2 2704.2.f.m.337.6 6
13.2 odd 12 338.2.c.h.191.3 6
13.3 even 3 338.2.e.e.147.3 12
13.4 even 6 338.2.e.e.23.3 12
13.5 odd 4 338.2.a.h.1.1 yes 3
13.6 odd 12 338.2.c.h.315.3 6
13.7 odd 12 338.2.c.i.315.3 6
13.8 odd 4 338.2.a.g.1.1 3
13.9 even 3 338.2.e.e.23.6 12
13.10 even 6 338.2.e.e.147.6 12
13.11 odd 12 338.2.c.i.191.3 6
13.12 even 2 inner 338.2.b.d.337.1 6
39.5 even 4 3042.2.a.z.1.1 3
39.8 even 4 3042.2.a.bi.1.3 3
39.38 odd 2 3042.2.b.n.1351.6 6
52.31 even 4 2704.2.a.w.1.3 3
52.47 even 4 2704.2.a.v.1.3 3
52.51 odd 2 2704.2.f.m.337.5 6
65.34 odd 4 8450.2.a.bx.1.3 3
65.44 odd 4 8450.2.a.bn.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.2.a.g.1.1 3 13.8 odd 4
338.2.a.h.1.1 yes 3 13.5 odd 4
338.2.b.d.337.1 6 13.12 even 2 inner
338.2.b.d.337.4 6 1.1 even 1 trivial
338.2.c.h.191.3 6 13.2 odd 12
338.2.c.h.315.3 6 13.6 odd 12
338.2.c.i.191.3 6 13.11 odd 12
338.2.c.i.315.3 6 13.7 odd 12
338.2.e.e.23.3 12 13.4 even 6
338.2.e.e.23.6 12 13.9 even 3
338.2.e.e.147.3 12 13.3 even 3
338.2.e.e.147.6 12 13.10 even 6
2704.2.a.v.1.3 3 52.47 even 4
2704.2.a.w.1.3 3 52.31 even 4
2704.2.f.m.337.5 6 52.51 odd 2
2704.2.f.m.337.6 6 4.3 odd 2
3042.2.a.z.1.1 3 39.5 even 4
3042.2.a.bi.1.3 3 39.8 even 4
3042.2.b.n.1351.1 6 3.2 odd 2
3042.2.b.n.1351.6 6 39.38 odd 2
8450.2.a.bn.1.3 3 65.44 odd 4
8450.2.a.bx.1.3 3 65.34 odd 4