Properties

Label 24-338e12-1.1-c5e12-0-0
Degree $24$
Conductor $2.223\times 10^{30}$
Sign $1$
Analytic cond. $6.44061\times 10^{20}$
Root an. cond. $7.36272$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 72·3-s − 96·4-s + 1.42e3·9-s + 6.91e3·12-s + 5.37e3·16-s + 1.96e3·17-s + 1.08e4·23-s + 2.12e4·25-s + 1.71e4·27-s + 6.55e3·29-s − 1.37e5·36-s + 3.21e4·43-s − 3.87e5·48-s + 1.62e5·49-s − 1.41e5·51-s − 4.46e4·53-s − 1.36e5·61-s − 2.29e5·64-s − 1.88e5·68-s − 7.78e5·69-s − 1.53e6·75-s − 1.32e5·79-s − 9.21e5·81-s − 4.72e5·87-s − 1.03e6·92-s − 2.04e6·100-s + 2.58e5·101-s + ⋯
L(s)  = 1  − 4.61·3-s − 3·4-s + 5.87·9-s + 13.8·12-s + 21/4·16-s + 1.64·17-s + 4.26·23-s + 6.80·25-s + 4.53·27-s + 1.44·29-s − 17.6·36-s + 2.64·43-s − 24.2·48-s + 9.66·49-s − 7.59·51-s − 2.18·53-s − 4.69·61-s − 7·64-s − 4.93·68-s − 19.6·69-s − 31.4·75-s − 2.38·79-s − 15.6·81-s − 6.68·87-s − 12.7·92-s − 20.4·100-s + 2.52·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 13^{24}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 13^{24}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(24\)
Conductor: \(2^{12} \cdot 13^{24}\)
Sign: $1$
Analytic conductor: \(6.44061\times 10^{20}\)
Root analytic conductor: \(7.36272\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((24,\ 2^{12} \cdot 13^{24} ,\ ( \ : [5/2]^{12} ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(0.9538437019\)
\(L(\frac12)\) \(\approx\) \(0.9538437019\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + p^{4} T^{2} )^{6} \)
13 \( 1 \)
good3 \( ( 1 + 4 p^{2} T + 410 p T^{2} + 30944 T^{3} + 78494 p^{2} T^{4} + 1466794 p^{2} T^{5} + 8145559 p^{3} T^{6} + 1466794 p^{7} T^{7} + 78494 p^{12} T^{8} + 30944 p^{15} T^{9} + 410 p^{21} T^{10} + 4 p^{27} T^{11} + p^{30} T^{12} )^{2} \)
5 \( 1 - 21272 T^{2} + 211527624 T^{4} - 1314676986882 T^{6} + 233797705572432 p^{2} T^{8} - 20806687438165628592 T^{10} + \)\(66\!\cdots\!79\)\( T^{12} - 20806687438165628592 p^{10} T^{14} + 233797705572432 p^{22} T^{16} - 1314676986882 p^{30} T^{18} + 211527624 p^{40} T^{20} - 21272 p^{50} T^{22} + p^{60} T^{24} \)
7 \( 1 - 162502 T^{2} + 12562749307 T^{4} - 611612142299164 T^{6} + 2986331094606780247 p T^{8} - \)\(10\!\cdots\!58\)\( p^{2} T^{10} + \)\(20\!\cdots\!75\)\( p^{2} T^{12} - \)\(10\!\cdots\!58\)\( p^{12} T^{14} + 2986331094606780247 p^{21} T^{16} - 611612142299164 p^{30} T^{18} + 12562749307 p^{40} T^{20} - 162502 p^{50} T^{22} + p^{60} T^{24} \)
11 \( 1 - 1187236 T^{2} + 705589763408 T^{4} - 278602603717994762 T^{6} + \)\(81\!\cdots\!76\)\( T^{8} - \)\(18\!\cdots\!04\)\( T^{10} + \)\(33\!\cdots\!75\)\( T^{12} - \)\(18\!\cdots\!04\)\( p^{10} T^{14} + \)\(81\!\cdots\!76\)\( p^{20} T^{16} - 278602603717994762 p^{30} T^{18} + 705589763408 p^{40} T^{20} - 1187236 p^{50} T^{22} + p^{60} T^{24} \)
17 \( ( 1 - 980 T + 5433784 T^{2} - 4928833714 T^{3} + 13758820110808 T^{4} - 11762601649747648 T^{5} + 22893103492509283075 T^{6} - 11762601649747648 p^{5} T^{7} + 13758820110808 p^{10} T^{8} - 4928833714 p^{15} T^{9} + 5433784 p^{20} T^{10} - 980 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
19 \( 1 - 17357500 T^{2} + 154229688109308 T^{4} - \)\(92\!\cdots\!50\)\( T^{6} + \)\(41\!\cdots\!12\)\( T^{8} - \)\(14\!\cdots\!20\)\( T^{10} + \)\(39\!\cdots\!79\)\( T^{12} - \)\(14\!\cdots\!20\)\( p^{10} T^{14} + \)\(41\!\cdots\!12\)\( p^{20} T^{16} - \)\(92\!\cdots\!50\)\( p^{30} T^{18} + 154229688109308 p^{40} T^{20} - 17357500 p^{50} T^{22} + p^{60} T^{24} \)
23 \( ( 1 - 5408 T + 30022239 T^{2} - 99076121168 T^{3} + 350443092650398 T^{4} - 885852301500460448 T^{5} + \)\(25\!\cdots\!71\)\( T^{6} - 885852301500460448 p^{5} T^{7} + 350443092650398 p^{10} T^{8} - 99076121168 p^{15} T^{9} + 30022239 p^{20} T^{10} - 5408 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
29 \( ( 1 - 3278 T + 81260211 T^{2} - 252294509008 T^{3} + 3420929052034245 T^{4} - 9130400891772958686 T^{5} + \)\(86\!\cdots\!35\)\( T^{6} - 9130400891772958686 p^{5} T^{7} + 3420929052034245 p^{10} T^{8} - 252294509008 p^{15} T^{9} + 81260211 p^{20} T^{10} - 3278 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
31 \( 1 - 298934606 T^{2} + 41987933783418427 T^{4} - \)\(36\!\cdots\!80\)\( T^{6} + \)\(22\!\cdots\!61\)\( T^{8} - \)\(97\!\cdots\!54\)\( T^{10} + \)\(32\!\cdots\!43\)\( T^{12} - \)\(97\!\cdots\!54\)\( p^{10} T^{14} + \)\(22\!\cdots\!61\)\( p^{20} T^{16} - \)\(36\!\cdots\!80\)\( p^{30} T^{18} + 41987933783418427 p^{40} T^{20} - 298934606 p^{50} T^{22} + p^{60} T^{24} \)
37 \( 1 - 483817864 T^{2} + 119508967478929816 T^{4} - \)\(19\!\cdots\!42\)\( T^{6} + \)\(24\!\cdots\!44\)\( T^{8} - \)\(23\!\cdots\!92\)\( T^{10} + \)\(18\!\cdots\!55\)\( T^{12} - \)\(23\!\cdots\!92\)\( p^{10} T^{14} + \)\(24\!\cdots\!44\)\( p^{20} T^{16} - \)\(19\!\cdots\!42\)\( p^{30} T^{18} + 119508967478929816 p^{40} T^{20} - 483817864 p^{50} T^{22} + p^{60} T^{24} \)
41 \( 1 - 2242606 T^{2} - 14660280441481091 T^{4} - \)\(17\!\cdots\!74\)\( T^{6} - \)\(11\!\cdots\!14\)\( T^{8} + \)\(95\!\cdots\!22\)\( T^{10} + \)\(39\!\cdots\!53\)\( T^{12} + \)\(95\!\cdots\!22\)\( p^{10} T^{14} - \)\(11\!\cdots\!14\)\( p^{20} T^{16} - \)\(17\!\cdots\!74\)\( p^{30} T^{18} - 14660280441481091 p^{40} T^{20} - 2242606 p^{50} T^{22} + p^{60} T^{24} \)
43 \( ( 1 - 16050 T + 355188653 T^{2} - 6051355408264 T^{3} + 87899237304223639 T^{4} - \)\(11\!\cdots\!28\)\( T^{5} + \)\(15\!\cdots\!21\)\( T^{6} - \)\(11\!\cdots\!28\)\( p^{5} T^{7} + 87899237304223639 p^{10} T^{8} - 6051355408264 p^{15} T^{9} + 355188653 p^{20} T^{10} - 16050 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
47 \( 1 - 1288428420 T^{2} + 858054130838034256 T^{4} - \)\(38\!\cdots\!62\)\( T^{6} + \)\(13\!\cdots\!00\)\( T^{8} - \)\(37\!\cdots\!56\)\( T^{10} + \)\(90\!\cdots\!75\)\( T^{12} - \)\(37\!\cdots\!56\)\( p^{10} T^{14} + \)\(13\!\cdots\!00\)\( p^{20} T^{16} - \)\(38\!\cdots\!62\)\( p^{30} T^{18} + 858054130838034256 p^{40} T^{20} - 1288428420 p^{50} T^{22} + p^{60} T^{24} \)
53 \( ( 1 + 22326 T + 1787665859 T^{2} + 32764270404244 T^{3} + 1541935343094270589 T^{4} + \)\(23\!\cdots\!38\)\( T^{5} + \)\(80\!\cdots\!63\)\( T^{6} + \)\(23\!\cdots\!38\)\( p^{5} T^{7} + 1541935343094270589 p^{10} T^{8} + 32764270404244 p^{15} T^{9} + 1787665859 p^{20} T^{10} + 22326 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
59 \( 1 - 5625510046 T^{2} + 15505742527393176045 T^{4} - \)\(27\!\cdots\!78\)\( T^{6} + \)\(36\!\cdots\!70\)\( T^{8} - \)\(37\!\cdots\!18\)\( T^{10} + \)\(29\!\cdots\!33\)\( T^{12} - \)\(37\!\cdots\!18\)\( p^{10} T^{14} + \)\(36\!\cdots\!70\)\( p^{20} T^{16} - \)\(27\!\cdots\!78\)\( p^{30} T^{18} + 15505742527393176045 p^{40} T^{20} - 5625510046 p^{50} T^{22} + p^{60} T^{24} \)
61 \( ( 1 + 68204 T + 5614052356 T^{2} + 249120175624274 T^{3} + 12083767206480375752 T^{4} + \)\(39\!\cdots\!68\)\( T^{5} + \)\(13\!\cdots\!51\)\( T^{6} + \)\(39\!\cdots\!68\)\( p^{5} T^{7} + 12083767206480375752 p^{10} T^{8} + 249120175624274 p^{15} T^{9} + 5614052356 p^{20} T^{10} + 68204 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
67 \( 1 - 7350772150 T^{2} + 30015657607535269871 T^{4} - \)\(87\!\cdots\!40\)\( T^{6} + \)\(19\!\cdots\!97\)\( T^{8} - \)\(35\!\cdots\!50\)\( T^{10} + \)\(53\!\cdots\!83\)\( T^{12} - \)\(35\!\cdots\!50\)\( p^{10} T^{14} + \)\(19\!\cdots\!97\)\( p^{20} T^{16} - \)\(87\!\cdots\!40\)\( p^{30} T^{18} + 30015657607535269871 p^{40} T^{20} - 7350772150 p^{50} T^{22} + p^{60} T^{24} \)
71 \( 1 - 4774597258 T^{2} + 12520702858599514575 T^{4} - \)\(31\!\cdots\!60\)\( T^{6} + \)\(79\!\cdots\!49\)\( T^{8} - \)\(15\!\cdots\!26\)\( T^{10} + \)\(26\!\cdots\!19\)\( T^{12} - \)\(15\!\cdots\!26\)\( p^{10} T^{14} + \)\(79\!\cdots\!49\)\( p^{20} T^{16} - \)\(31\!\cdots\!60\)\( p^{30} T^{18} + 12520702858599514575 p^{40} T^{20} - 4774597258 p^{50} T^{22} + p^{60} T^{24} \)
73 \( 1 - 9552593482 T^{2} + 48177285345398086899 T^{4} - \)\(18\!\cdots\!40\)\( T^{6} + \)\(57\!\cdots\!21\)\( T^{8} - \)\(15\!\cdots\!66\)\( T^{10} + \)\(33\!\cdots\!35\)\( T^{12} - \)\(15\!\cdots\!66\)\( p^{10} T^{14} + \)\(57\!\cdots\!21\)\( p^{20} T^{16} - \)\(18\!\cdots\!40\)\( p^{30} T^{18} + 48177285345398086899 p^{40} T^{20} - 9552593482 p^{50} T^{22} + p^{60} T^{24} \)
79 \( ( 1 + 66206 T + 4544241147 T^{2} + 483703469494 T^{3} + 5641007475847372879 T^{4} + \)\(14\!\cdots\!64\)\( T^{5} + \)\(50\!\cdots\!53\)\( T^{6} + \)\(14\!\cdots\!64\)\( p^{5} T^{7} + 5641007475847372879 p^{10} T^{8} + 483703469494 p^{15} T^{9} + 4544241147 p^{20} T^{10} + 66206 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
83 \( 1 - 11195217826 T^{2} + 99208519853795290879 T^{4} - \)\(63\!\cdots\!60\)\( T^{6} + \)\(34\!\cdots\!65\)\( T^{8} - \)\(16\!\cdots\!90\)\( T^{10} + \)\(67\!\cdots\!71\)\( T^{12} - \)\(16\!\cdots\!90\)\( p^{10} T^{14} + \)\(34\!\cdots\!65\)\( p^{20} T^{16} - \)\(63\!\cdots\!60\)\( p^{30} T^{18} + 99208519853795290879 p^{40} T^{20} - 11195217826 p^{50} T^{22} + p^{60} T^{24} \)
89 \( 1 - 39744869562 T^{2} + \)\(74\!\cdots\!83\)\( T^{4} - \)\(88\!\cdots\!96\)\( T^{6} + \)\(74\!\cdots\!81\)\( T^{8} - \)\(49\!\cdots\!62\)\( T^{10} + \)\(28\!\cdots\!51\)\( T^{12} - \)\(49\!\cdots\!62\)\( p^{10} T^{14} + \)\(74\!\cdots\!81\)\( p^{20} T^{16} - \)\(88\!\cdots\!96\)\( p^{30} T^{18} + \)\(74\!\cdots\!83\)\( p^{40} T^{20} - 39744869562 p^{50} T^{22} + p^{60} T^{24} \)
97 \( 1 - 46890378730 T^{2} + \)\(11\!\cdots\!91\)\( T^{4} - \)\(18\!\cdots\!96\)\( T^{6} + \)\(22\!\cdots\!33\)\( T^{8} - \)\(22\!\cdots\!90\)\( T^{10} + \)\(20\!\cdots\!43\)\( T^{12} - \)\(22\!\cdots\!90\)\( p^{10} T^{14} + \)\(22\!\cdots\!33\)\( p^{20} T^{16} - \)\(18\!\cdots\!96\)\( p^{30} T^{18} + \)\(11\!\cdots\!91\)\( p^{40} T^{20} - 46890378730 p^{50} T^{22} + p^{60} T^{24} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−2.96645480635832094116647350863, −2.95269351849685868150387010381, −2.88248654514464903411341706473, −2.69766364114234477399900453727, −2.68910260661456744412751390563, −2.60329493881020499147359156422, −2.27982005608374476364554169900, −2.24905047136271101041411470925, −2.15859646210862122855225398426, −1.92224117907262701330698405021, −1.49896563525021399970706860437, −1.34198845724976464221997413310, −1.30466601500246473987225316950, −1.22914563203969532833643333119, −1.12685071667879053083840302596, −1.10171756134007784484192969754, −0.943246242829028352767280161751, −0.76524932317131826944508084362, −0.67795552097630002957149073389, −0.59866564152673520650368664728, −0.59014141769556175699904993578, −0.50951498449683050153812740499, −0.34808911513049686040642931012, −0.21494319667386406552196360088, −0.15474624214874617988940589715, 0.15474624214874617988940589715, 0.21494319667386406552196360088, 0.34808911513049686040642931012, 0.50951498449683050153812740499, 0.59014141769556175699904993578, 0.59866564152673520650368664728, 0.67795552097630002957149073389, 0.76524932317131826944508084362, 0.943246242829028352767280161751, 1.10171756134007784484192969754, 1.12685071667879053083840302596, 1.22914563203969532833643333119, 1.30466601500246473987225316950, 1.34198845724976464221997413310, 1.49896563525021399970706860437, 1.92224117907262701330698405021, 2.15859646210862122855225398426, 2.24905047136271101041411470925, 2.27982005608374476364554169900, 2.60329493881020499147359156422, 2.68910260661456744412751390563, 2.69766364114234477399900453727, 2.88248654514464903411341706473, 2.95269351849685868150387010381, 2.96645480635832094116647350863

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.