Properties

Label 338.6.b.f.337.4
Level $338$
Weight $6$
Character 338.337
Analytic conductor $54.210$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,6,Mod(337,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.337");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 338.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(54.2097310968\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 366x^{10} + 54661x^{8} + 4259913x^{6} + 182592336x^{4} + 4080040448x^{2} + 37134831616 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 13^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.4
Root \(-8.91319i\) of defining polynomial
Character \(\chi\) \(=\) 338.337
Dual form 338.6.b.f.337.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} +7.64039 q^{3} -16.0000 q^{4} +7.89924i q^{5} -30.5616i q^{6} -19.7414i q^{7} +64.0000i q^{8} -184.624 q^{9} +31.5970 q^{10} -191.688i q^{11} -122.246 q^{12} -78.9657 q^{14} +60.3533i q^{15} +256.000 q^{16} -626.910 q^{17} +738.498i q^{18} +166.142i q^{19} -126.388i q^{20} -150.832i q^{21} -766.750 q^{22} +2094.88 q^{23} +488.985i q^{24} +3062.60 q^{25} -3267.22 q^{27} +315.863i q^{28} -2637.10 q^{29} +241.413 q^{30} +4239.82i q^{31} -1024.00i q^{32} -1464.57i q^{33} +2507.64i q^{34} +155.942 q^{35} +2953.99 q^{36} +3248.76i q^{37} +664.568 q^{38} -505.551 q^{40} +13951.1i q^{41} -603.329 q^{42} -3448.84 q^{43} +3067.00i q^{44} -1458.39i q^{45} -8379.51i q^{46} +18989.0i q^{47} +1955.94 q^{48} +16417.3 q^{49} -12250.4i q^{50} -4789.84 q^{51} -16815.3 q^{53} +13068.9i q^{54} +1514.19 q^{55} +1263.45 q^{56} +1269.39i q^{57} +10548.4i q^{58} +1190.77i q^{59} -965.653i q^{60} +16179.7 q^{61} +16959.3 q^{62} +3644.75i q^{63} -4096.00 q^{64} -5858.27 q^{66} +41861.8i q^{67} +10030.6 q^{68} +16005.7 q^{69} -623.769i q^{70} +65659.8i q^{71} -11816.0i q^{72} +61713.3i q^{73} +12995.0 q^{74} +23399.5 q^{75} -2658.27i q^{76} -3784.19 q^{77} -82077.3 q^{79} +2022.21i q^{80} +19900.9 q^{81} +55804.2 q^{82} -83347.9i q^{83} +2413.32i q^{84} -4952.12i q^{85} +13795.4i q^{86} -20148.5 q^{87} +12268.0 q^{88} +48879.0i q^{89} -5833.57 q^{90} -33518.0 q^{92} +32393.9i q^{93} +75955.8 q^{94} -1312.40 q^{95} -7823.76i q^{96} +44969.4i q^{97} -65669.1i q^{98} +35390.2i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 72 q^{3} - 192 q^{4} + 588 q^{9} + 992 q^{10} + 1152 q^{12} - 928 q^{14} + 3072 q^{16} + 1960 q^{17} + 1664 q^{22} + 10816 q^{23} + 5044 q^{25} - 30792 q^{27} + 6556 q^{29} - 9744 q^{30} + 13436 q^{35}+ \cdots + 501812 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.00000i − 0.707107i
\(3\) 7.64039 0.490131 0.245066 0.969506i \(-0.421190\pi\)
0.245066 + 0.969506i \(0.421190\pi\)
\(4\) −16.0000 −0.500000
\(5\) 7.89924i 0.141306i 0.997501 + 0.0706529i \(0.0225083\pi\)
−0.997501 + 0.0706529i \(0.977492\pi\)
\(6\) − 30.5616i − 0.346575i
\(7\) − 19.7414i − 0.152277i −0.997097 0.0761384i \(-0.975741\pi\)
0.997097 0.0761384i \(-0.0242591\pi\)
\(8\) 64.0000i 0.353553i
\(9\) −184.624 −0.759771
\(10\) 31.5970 0.0999184
\(11\) − 191.688i − 0.477653i −0.971062 0.238826i \(-0.923237\pi\)
0.971062 0.238826i \(-0.0767627\pi\)
\(12\) −122.246 −0.245066
\(13\) 0 0
\(14\) −78.9657 −0.107676
\(15\) 60.3533i 0.0692585i
\(16\) 256.000 0.250000
\(17\) −626.910 −0.526118 −0.263059 0.964780i \(-0.584731\pi\)
−0.263059 + 0.964780i \(0.584731\pi\)
\(18\) 738.498i 0.537239i
\(19\) 166.142i 0.105583i 0.998606 + 0.0527917i \(0.0168119\pi\)
−0.998606 + 0.0527917i \(0.983188\pi\)
\(20\) − 126.388i − 0.0706529i
\(21\) − 150.832i − 0.0746356i
\(22\) −766.750 −0.337752
\(23\) 2094.88 0.825731 0.412866 0.910792i \(-0.364528\pi\)
0.412866 + 0.910792i \(0.364528\pi\)
\(24\) 488.985i 0.173288i
\(25\) 3062.60 0.980033
\(26\) 0 0
\(27\) −3267.22 −0.862519
\(28\) 315.863i 0.0761384i
\(29\) −2637.10 −0.582280 −0.291140 0.956680i \(-0.594035\pi\)
−0.291140 + 0.956680i \(0.594035\pi\)
\(30\) 241.413 0.0489731
\(31\) 4239.82i 0.792397i 0.918165 + 0.396199i \(0.129671\pi\)
−0.918165 + 0.396199i \(0.870329\pi\)
\(32\) − 1024.00i − 0.176777i
\(33\) − 1464.57i − 0.234113i
\(34\) 2507.64i 0.372022i
\(35\) 155.942 0.0215176
\(36\) 2953.99 0.379886
\(37\) 3248.76i 0.390133i 0.980790 + 0.195067i \(0.0624923\pi\)
−0.980790 + 0.195067i \(0.937508\pi\)
\(38\) 664.568 0.0746587
\(39\) 0 0
\(40\) −505.551 −0.0499592
\(41\) 13951.1i 1.29613i 0.761587 + 0.648063i \(0.224421\pi\)
−0.761587 + 0.648063i \(0.775579\pi\)
\(42\) −603.329 −0.0527753
\(43\) −3448.84 −0.284448 −0.142224 0.989835i \(-0.545425\pi\)
−0.142224 + 0.989835i \(0.545425\pi\)
\(44\) 3067.00i 0.238826i
\(45\) − 1458.39i − 0.107360i
\(46\) − 8379.51i − 0.583880i
\(47\) 18989.0i 1.25388i 0.779067 + 0.626941i \(0.215693\pi\)
−0.779067 + 0.626941i \(0.784307\pi\)
\(48\) 1955.94 0.122533
\(49\) 16417.3 0.976812
\(50\) − 12250.4i − 0.692988i
\(51\) −4789.84 −0.257867
\(52\) 0 0
\(53\) −16815.3 −0.822271 −0.411135 0.911574i \(-0.634868\pi\)
−0.411135 + 0.911574i \(0.634868\pi\)
\(54\) 13068.9i 0.609893i
\(55\) 1514.19 0.0674952
\(56\) 1263.45 0.0538379
\(57\) 1269.39i 0.0517497i
\(58\) 10548.4i 0.411734i
\(59\) 1190.77i 0.0445346i 0.999752 + 0.0222673i \(0.00708849\pi\)
−0.999752 + 0.0222673i \(0.992912\pi\)
\(60\) − 965.653i − 0.0346292i
\(61\) 16179.7 0.556731 0.278366 0.960475i \(-0.410207\pi\)
0.278366 + 0.960475i \(0.410207\pi\)
\(62\) 16959.3 0.560309
\(63\) 3644.75i 0.115695i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) −5858.27 −0.165543
\(67\) 41861.8i 1.13928i 0.821894 + 0.569640i \(0.192917\pi\)
−0.821894 + 0.569640i \(0.807083\pi\)
\(68\) 10030.6 0.263059
\(69\) 16005.7 0.404717
\(70\) − 623.769i − 0.0152152i
\(71\) 65659.8i 1.54580i 0.634527 + 0.772901i \(0.281195\pi\)
−0.634527 + 0.772901i \(0.718805\pi\)
\(72\) − 11816.0i − 0.268620i
\(73\) 61713.3i 1.35541i 0.735332 + 0.677707i \(0.237026\pi\)
−0.735332 + 0.677707i \(0.762974\pi\)
\(74\) 12995.0 0.275866
\(75\) 23399.5 0.480345
\(76\) − 2658.27i − 0.0527917i
\(77\) −3784.19 −0.0727354
\(78\) 0 0
\(79\) −82077.3 −1.47964 −0.739819 0.672806i \(-0.765089\pi\)
−0.739819 + 0.672806i \(0.765089\pi\)
\(80\) 2022.21i 0.0353265i
\(81\) 19900.9 0.337024
\(82\) 55804.2 0.916500
\(83\) − 83347.9i − 1.32800i −0.747731 0.664002i \(-0.768857\pi\)
0.747731 0.664002i \(-0.231143\pi\)
\(84\) 2413.32i 0.0373178i
\(85\) − 4952.12i − 0.0743436i
\(86\) 13795.4i 0.201135i
\(87\) −20148.5 −0.285394
\(88\) 12268.0 0.168876
\(89\) 48879.0i 0.654104i 0.945006 + 0.327052i \(0.106055\pi\)
−0.945006 + 0.327052i \(0.893945\pi\)
\(90\) −5833.57 −0.0759151
\(91\) 0 0
\(92\) −33518.0 −0.412866
\(93\) 32393.9i 0.388379i
\(94\) 75955.8 0.886628
\(95\) −1312.40 −0.0149196
\(96\) − 7823.76i − 0.0866438i
\(97\) 44969.4i 0.485275i 0.970117 + 0.242638i \(0.0780126\pi\)
−0.970117 + 0.242638i \(0.921987\pi\)
\(98\) − 65669.1i − 0.690710i
\(99\) 35390.2i 0.362907i
\(100\) −49001.6 −0.490016
\(101\) 196960. 1.92121 0.960604 0.277921i \(-0.0896455\pi\)
0.960604 + 0.277921i \(0.0896455\pi\)
\(102\) 19159.4i 0.182339i
\(103\) −3601.43 −0.0334489 −0.0167244 0.999860i \(-0.505324\pi\)
−0.0167244 + 0.999860i \(0.505324\pi\)
\(104\) 0 0
\(105\) 1191.46 0.0105464
\(106\) 67261.2i 0.581433i
\(107\) 113378. 0.957344 0.478672 0.877994i \(-0.341118\pi\)
0.478672 + 0.877994i \(0.341118\pi\)
\(108\) 52275.5 0.431260
\(109\) − 226249.i − 1.82398i −0.410210 0.911991i \(-0.634544\pi\)
0.410210 0.911991i \(-0.365456\pi\)
\(110\) − 6056.75i − 0.0477263i
\(111\) 24821.8i 0.191217i
\(112\) − 5053.81i − 0.0380692i
\(113\) −117866. −0.868345 −0.434173 0.900830i \(-0.642959\pi\)
−0.434173 + 0.900830i \(0.642959\pi\)
\(114\) 5077.56 0.0365926
\(115\) 16547.9i 0.116681i
\(116\) 42193.6 0.291140
\(117\) 0 0
\(118\) 4763.08 0.0314907
\(119\) 12376.1i 0.0801155i
\(120\) −3862.61 −0.0244866
\(121\) 124307. 0.771848
\(122\) − 64718.8i − 0.393669i
\(123\) 106592.i 0.635272i
\(124\) − 67837.1i − 0.396199i
\(125\) 48877.4i 0.279790i
\(126\) 14579.0 0.0818090
\(127\) 251718. 1.38486 0.692429 0.721486i \(-0.256541\pi\)
0.692429 + 0.721486i \(0.256541\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) −26350.5 −0.139417
\(130\) 0 0
\(131\) −2258.42 −0.0114981 −0.00574907 0.999983i \(-0.501830\pi\)
−0.00574907 + 0.999983i \(0.501830\pi\)
\(132\) 23433.1i 0.117056i
\(133\) 3279.88 0.0160779
\(134\) 167447. 0.805593
\(135\) − 25808.5i − 0.121879i
\(136\) − 40122.3i − 0.186011i
\(137\) 276784.i 1.25991i 0.776631 + 0.629956i \(0.216927\pi\)
−0.776631 + 0.629956i \(0.783073\pi\)
\(138\) − 64022.7i − 0.286178i
\(139\) −210899. −0.925842 −0.462921 0.886399i \(-0.653199\pi\)
−0.462921 + 0.886399i \(0.653199\pi\)
\(140\) −2495.08 −0.0107588
\(141\) 145083.i 0.614567i
\(142\) 262639. 1.09305
\(143\) 0 0
\(144\) −47263.8 −0.189943
\(145\) − 20831.1i − 0.0822796i
\(146\) 246853. 0.958422
\(147\) 125434. 0.478766
\(148\) − 51980.1i − 0.195067i
\(149\) 171949.i 0.634504i 0.948341 + 0.317252i \(0.102760\pi\)
−0.948341 + 0.317252i \(0.897240\pi\)
\(150\) − 93597.9i − 0.339655i
\(151\) 345547.i 1.23329i 0.787242 + 0.616644i \(0.211508\pi\)
−0.787242 + 0.616644i \(0.788492\pi\)
\(152\) −10633.1 −0.0373294
\(153\) 115743. 0.399729
\(154\) 15136.7i 0.0514317i
\(155\) −33491.3 −0.111970
\(156\) 0 0
\(157\) 153393. 0.496656 0.248328 0.968676i \(-0.420119\pi\)
0.248328 + 0.968676i \(0.420119\pi\)
\(158\) 328309.i 1.04626i
\(159\) −128475. −0.403021
\(160\) 8088.82 0.0249796
\(161\) − 41355.9i − 0.125740i
\(162\) − 79603.6i − 0.238312i
\(163\) 257757.i 0.759873i 0.925013 + 0.379937i \(0.124054\pi\)
−0.925013 + 0.379937i \(0.875946\pi\)
\(164\) − 223217.i − 0.648063i
\(165\) 11569.0 0.0330815
\(166\) −333392. −0.939041
\(167\) − 274189.i − 0.760779i −0.924826 0.380390i \(-0.875790\pi\)
0.924826 0.380390i \(-0.124210\pi\)
\(168\) 9653.26 0.0263877
\(169\) 0 0
\(170\) −19808.5 −0.0525688
\(171\) − 30673.9i − 0.0802192i
\(172\) 55181.5 0.142224
\(173\) −227782. −0.578635 −0.289317 0.957233i \(-0.593428\pi\)
−0.289317 + 0.957233i \(0.593428\pi\)
\(174\) 80594.0i 0.201804i
\(175\) − 60460.1i − 0.149236i
\(176\) − 49072.0i − 0.119413i
\(177\) 9097.95i 0.0218278i
\(178\) 195516. 0.462522
\(179\) 81060.2 0.189093 0.0945465 0.995520i \(-0.469860\pi\)
0.0945465 + 0.995520i \(0.469860\pi\)
\(180\) 23334.3i 0.0536801i
\(181\) −213265. −0.483863 −0.241932 0.970293i \(-0.577781\pi\)
−0.241932 + 0.970293i \(0.577781\pi\)
\(182\) 0 0
\(183\) 123619. 0.272872
\(184\) 134072.i 0.291940i
\(185\) −25662.7 −0.0551281
\(186\) 129575. 0.274625
\(187\) 120171.i 0.251302i
\(188\) − 303823.i − 0.626941i
\(189\) 64499.6i 0.131342i
\(190\) 5249.59i 0.0105497i
\(191\) 356122. 0.706343 0.353172 0.935559i \(-0.385103\pi\)
0.353172 + 0.935559i \(0.385103\pi\)
\(192\) −31295.0 −0.0612664
\(193\) − 331586.i − 0.640772i −0.947287 0.320386i \(-0.896187\pi\)
0.947287 0.320386i \(-0.103813\pi\)
\(194\) 179878. 0.343141
\(195\) 0 0
\(196\) −262676. −0.488406
\(197\) − 525162.i − 0.964113i −0.876140 0.482056i \(-0.839890\pi\)
0.876140 0.482056i \(-0.160110\pi\)
\(198\) 141561. 0.256614
\(199\) −774344. −1.38612 −0.693061 0.720879i \(-0.743738\pi\)
−0.693061 + 0.720879i \(0.743738\pi\)
\(200\) 196007.i 0.346494i
\(201\) 319840.i 0.558397i
\(202\) − 787839.i − 1.35850i
\(203\) 52060.2i 0.0886677i
\(204\) 76637.5 0.128933
\(205\) −110203. −0.183150
\(206\) 14405.7i 0.0236519i
\(207\) −386765. −0.627367
\(208\) 0 0
\(209\) 31847.4 0.0504322
\(210\) − 4765.84i − 0.00745747i
\(211\) −1.21664e6 −1.88129 −0.940647 0.339386i \(-0.889781\pi\)
−0.940647 + 0.339386i \(0.889781\pi\)
\(212\) 269045. 0.411135
\(213\) 501667.i 0.757646i
\(214\) − 453511.i − 0.676945i
\(215\) − 27243.2i − 0.0401941i
\(216\) − 209102.i − 0.304947i
\(217\) 83700.1 0.120664
\(218\) −904997. −1.28975
\(219\) 471514.i 0.664331i
\(220\) −24227.0 −0.0337476
\(221\) 0 0
\(222\) 99287.1 0.135211
\(223\) − 759944.i − 1.02334i −0.859183 0.511669i \(-0.829027\pi\)
0.859183 0.511669i \(-0.170973\pi\)
\(224\) −20215.2 −0.0269190
\(225\) −565431. −0.744601
\(226\) 471464.i 0.614013i
\(227\) − 50248.5i − 0.0647230i −0.999476 0.0323615i \(-0.989697\pi\)
0.999476 0.0323615i \(-0.0103028\pi\)
\(228\) − 20310.3i − 0.0258749i
\(229\) − 372379.i − 0.469241i −0.972087 0.234621i \(-0.924615\pi\)
0.972087 0.234621i \(-0.0753848\pi\)
\(230\) 66191.7 0.0825057
\(231\) −28912.7 −0.0356499
\(232\) − 168775.i − 0.205867i
\(233\) −737473. −0.889931 −0.444966 0.895548i \(-0.646784\pi\)
−0.444966 + 0.895548i \(0.646784\pi\)
\(234\) 0 0
\(235\) −149998. −0.177181
\(236\) − 19052.3i − 0.0222673i
\(237\) −627103. −0.725217
\(238\) 49504.4 0.0566502
\(239\) 897518.i 1.01636i 0.861250 + 0.508181i \(0.169682\pi\)
−0.861250 + 0.508181i \(0.830318\pi\)
\(240\) 15450.4i 0.0173146i
\(241\) 448304.i 0.497199i 0.968606 + 0.248599i \(0.0799702\pi\)
−0.968606 + 0.248599i \(0.920030\pi\)
\(242\) − 497227.i − 0.545779i
\(243\) 945985. 1.02770
\(244\) −258875. −0.278366
\(245\) 129684.i 0.138029i
\(246\) 426366. 0.449205
\(247\) 0 0
\(248\) −271348. −0.280155
\(249\) − 636811.i − 0.650897i
\(250\) 195509. 0.197842
\(251\) −1.83575e6 −1.83920 −0.919600 0.392855i \(-0.871487\pi\)
−0.919600 + 0.392855i \(0.871487\pi\)
\(252\) − 58316.0i − 0.0578477i
\(253\) − 401562.i − 0.394413i
\(254\) − 1.00687e6i − 0.979242i
\(255\) − 37836.1i − 0.0364381i
\(256\) 65536.0 0.0625000
\(257\) −1.51773e6 −1.43338 −0.716689 0.697393i \(-0.754343\pi\)
−0.716689 + 0.697393i \(0.754343\pi\)
\(258\) 105402.i 0.0985825i
\(259\) 64135.1 0.0594082
\(260\) 0 0
\(261\) 486874. 0.442400
\(262\) 9033.70i 0.00813041i
\(263\) −220646. −0.196701 −0.0983504 0.995152i \(-0.531357\pi\)
−0.0983504 + 0.995152i \(0.531357\pi\)
\(264\) 93732.4 0.0827713
\(265\) − 132828.i − 0.116192i
\(266\) − 13119.5i − 0.0113688i
\(267\) 373455.i 0.320597i
\(268\) − 669788.i − 0.569640i
\(269\) −1.45268e6 −1.22402 −0.612011 0.790849i \(-0.709639\pi\)
−0.612011 + 0.790849i \(0.709639\pi\)
\(270\) −103234. −0.0861815
\(271\) − 831510.i − 0.687771i −0.939012 0.343886i \(-0.888257\pi\)
0.939012 0.343886i \(-0.111743\pi\)
\(272\) −160489. −0.131530
\(273\) 0 0
\(274\) 1.10714e6 0.890892
\(275\) − 587063.i − 0.468115i
\(276\) −256091. −0.202358
\(277\) −674969. −0.528548 −0.264274 0.964448i \(-0.585132\pi\)
−0.264274 + 0.964448i \(0.585132\pi\)
\(278\) 843595.i 0.654669i
\(279\) − 782774.i − 0.602041i
\(280\) 9980.31i 0.00760762i
\(281\) − 674842.i − 0.509843i −0.966962 0.254921i \(-0.917950\pi\)
0.966962 0.254921i \(-0.0820496\pi\)
\(282\) 580332. 0.434564
\(283\) −805117. −0.597576 −0.298788 0.954320i \(-0.596582\pi\)
−0.298788 + 0.954320i \(0.596582\pi\)
\(284\) − 1.05056e6i − 0.772901i
\(285\) −10027.2 −0.00731254
\(286\) 0 0
\(287\) 275414. 0.197370
\(288\) 189055.i 0.134310i
\(289\) −1.02684e6 −0.723200
\(290\) −83324.4 −0.0581805
\(291\) 343584.i 0.237849i
\(292\) − 987414.i − 0.677707i
\(293\) 2.06384e6i 1.40445i 0.711955 + 0.702225i \(0.247810\pi\)
−0.711955 + 0.702225i \(0.752190\pi\)
\(294\) − 501738.i − 0.338539i
\(295\) −9406.18 −0.00629301
\(296\) −207920. −0.137933
\(297\) 626285.i 0.411985i
\(298\) 687797. 0.448662
\(299\) 0 0
\(300\) −374392. −0.240172
\(301\) 68085.1i 0.0433148i
\(302\) 1.38219e6 0.872066
\(303\) 1.50485e6 0.941644
\(304\) 42532.4i 0.0263959i
\(305\) 127807.i 0.0786694i
\(306\) − 462972.i − 0.282651i
\(307\) 772333.i 0.467691i 0.972274 + 0.233845i \(0.0751309\pi\)
−0.972274 + 0.233845i \(0.924869\pi\)
\(308\) 60547.0 0.0363677
\(309\) −27516.3 −0.0163943
\(310\) 133965.i 0.0791750i
\(311\) −15325.1 −0.00898470 −0.00449235 0.999990i \(-0.501430\pi\)
−0.00449235 + 0.999990i \(0.501430\pi\)
\(312\) 0 0
\(313\) 2.83907e6 1.63800 0.819001 0.573792i \(-0.194528\pi\)
0.819001 + 0.573792i \(0.194528\pi\)
\(314\) − 613571.i − 0.351189i
\(315\) −28790.7 −0.0163485
\(316\) 1.31324e6 0.739819
\(317\) − 651243.i − 0.363995i −0.983299 0.181997i \(-0.941744\pi\)
0.983299 0.181997i \(-0.0582562\pi\)
\(318\) 513902.i 0.284979i
\(319\) 505500.i 0.278128i
\(320\) − 32355.3i − 0.0176632i
\(321\) 866250. 0.469224
\(322\) −165423. −0.0889114
\(323\) − 104156.i − 0.0555493i
\(324\) −318414. −0.168512
\(325\) 0 0
\(326\) 1.03103e6 0.537311
\(327\) − 1.72863e6i − 0.893991i
\(328\) −892867. −0.458250
\(329\) 374869. 0.190937
\(330\) − 46275.9i − 0.0233922i
\(331\) − 929149.i − 0.466139i −0.972460 0.233069i \(-0.925123\pi\)
0.972460 0.233069i \(-0.0748769\pi\)
\(332\) 1.33357e6i 0.664002i
\(333\) − 599800.i − 0.296412i
\(334\) −1.09676e6 −0.537952
\(335\) −330676. −0.160987
\(336\) − 38613.1i − 0.0186589i
\(337\) 1.72888e6 0.829258 0.414629 0.909990i \(-0.363911\pi\)
0.414629 + 0.909990i \(0.363911\pi\)
\(338\) 0 0
\(339\) −900543. −0.425603
\(340\) 79233.8i 0.0371718i
\(341\) 812721. 0.378491
\(342\) −122696. −0.0567236
\(343\) − 655895.i − 0.301022i
\(344\) − 220726.i − 0.100567i
\(345\) 126433.i 0.0571889i
\(346\) 911129.i 0.409157i
\(347\) −101581. −0.0452886 −0.0226443 0.999744i \(-0.507209\pi\)
−0.0226443 + 0.999744i \(0.507209\pi\)
\(348\) 322376. 0.142697
\(349\) 798134.i 0.350762i 0.984501 + 0.175381i \(0.0561157\pi\)
−0.984501 + 0.175381i \(0.943884\pi\)
\(350\) −241841. −0.105526
\(351\) 0 0
\(352\) −196288. −0.0844379
\(353\) 1.37965e6i 0.589296i 0.955606 + 0.294648i \(0.0952024\pi\)
−0.955606 + 0.294648i \(0.904798\pi\)
\(354\) 36391.8 0.0154346
\(355\) −518663. −0.218431
\(356\) − 782064.i − 0.327052i
\(357\) 94558.3i 0.0392671i
\(358\) − 324241.i − 0.133709i
\(359\) − 953405.i − 0.390428i −0.980761 0.195214i \(-0.937460\pi\)
0.980761 0.195214i \(-0.0625402\pi\)
\(360\) 93337.1 0.0379575
\(361\) 2.44850e6 0.988852
\(362\) 853059.i 0.342143i
\(363\) 949753. 0.378307
\(364\) 0 0
\(365\) −487489. −0.191528
\(366\) − 494477.i − 0.192949i
\(367\) 2.19900e6 0.852237 0.426119 0.904667i \(-0.359881\pi\)
0.426119 + 0.904667i \(0.359881\pi\)
\(368\) 536288. 0.206433
\(369\) − 2.57570e6i − 0.984760i
\(370\) 102651.i 0.0389815i
\(371\) 331958.i 0.125213i
\(372\) − 518302.i − 0.194189i
\(373\) −1.83392e6 −0.682511 −0.341255 0.939971i \(-0.610852\pi\)
−0.341255 + 0.939971i \(0.610852\pi\)
\(374\) 480684. 0.177697
\(375\) 373442.i 0.137134i
\(376\) −1.21529e6 −0.443314
\(377\) 0 0
\(378\) 257998. 0.0928725
\(379\) 2.31121e6i 0.826497i 0.910618 + 0.413248i \(0.135606\pi\)
−0.910618 + 0.413248i \(0.864394\pi\)
\(380\) 20998.3 0.00745978
\(381\) 1.92322e6 0.678762
\(382\) − 1.42449e6i − 0.499460i
\(383\) 3.63010e6i 1.26451i 0.774761 + 0.632254i \(0.217870\pi\)
−0.774761 + 0.632254i \(0.782130\pi\)
\(384\) 125180.i 0.0433219i
\(385\) − 29892.2i − 0.0102779i
\(386\) −1.32635e6 −0.453094
\(387\) 636741. 0.216115
\(388\) − 719511.i − 0.242638i
\(389\) −1.90596e6 −0.638618 −0.319309 0.947651i \(-0.603451\pi\)
−0.319309 + 0.947651i \(0.603451\pi\)
\(390\) 0 0
\(391\) −1.31330e6 −0.434432
\(392\) 1.05071e6i 0.345355i
\(393\) −17255.2 −0.00563560
\(394\) −2.10065e6 −0.681731
\(395\) − 648348.i − 0.209082i
\(396\) − 566243.i − 0.181453i
\(397\) − 3.89970e6i − 1.24181i −0.783886 0.620905i \(-0.786765\pi\)
0.783886 0.620905i \(-0.213235\pi\)
\(398\) 3.09738e6i 0.980136i
\(399\) 25059.6 0.00788028
\(400\) 784026. 0.245008
\(401\) − 281948.i − 0.0875604i −0.999041 0.0437802i \(-0.986060\pi\)
0.999041 0.0437802i \(-0.0139401\pi\)
\(402\) 1.27936e6 0.394846
\(403\) 0 0
\(404\) −3.15136e6 −0.960604
\(405\) 157202.i 0.0476234i
\(406\) 208241. 0.0626975
\(407\) 622747. 0.186348
\(408\) − 306550.i − 0.0911697i
\(409\) − 667978.i − 0.197448i −0.995115 0.0987242i \(-0.968524\pi\)
0.995115 0.0987242i \(-0.0314762\pi\)
\(410\) 440811.i 0.129507i
\(411\) 2.11474e6i 0.617522i
\(412\) 57622.8 0.0167244
\(413\) 23507.5 0.00678159
\(414\) 1.54706e6i 0.443615i
\(415\) 658385. 0.187655
\(416\) 0 0
\(417\) −1.61135e6 −0.453784
\(418\) − 127390.i − 0.0356610i
\(419\) 4.71505e6 1.31205 0.656027 0.754738i \(-0.272236\pi\)
0.656027 + 0.754738i \(0.272236\pi\)
\(420\) −19063.4 −0.00527322
\(421\) 282812.i 0.0777665i 0.999244 + 0.0388833i \(0.0123800\pi\)
−0.999244 + 0.0388833i \(0.987620\pi\)
\(422\) 4.86657e6i 1.33028i
\(423\) − 3.50582e6i − 0.952663i
\(424\) − 1.07618e6i − 0.290717i
\(425\) −1.91998e6 −0.515613
\(426\) 2.00667e6 0.535737
\(427\) − 319410.i − 0.0847772i
\(428\) −1.81404e6 −0.478672
\(429\) 0 0
\(430\) −108973. −0.0284215
\(431\) 933504.i 0.242060i 0.992649 + 0.121030i \(0.0386197\pi\)
−0.992649 + 0.121030i \(0.961380\pi\)
\(432\) −836408. −0.215630
\(433\) 6.10852e6 1.56573 0.782864 0.622193i \(-0.213758\pi\)
0.782864 + 0.622193i \(0.213758\pi\)
\(434\) − 334800.i − 0.0853221i
\(435\) − 159158.i − 0.0403278i
\(436\) 3.61999e6i 0.911991i
\(437\) 348047.i 0.0871835i
\(438\) 1.88606e6 0.469753
\(439\) 5.77404e6 1.42994 0.714971 0.699154i \(-0.246440\pi\)
0.714971 + 0.699154i \(0.246440\pi\)
\(440\) 96907.9i 0.0238631i
\(441\) −3.03103e6 −0.742153
\(442\) 0 0
\(443\) −7.75717e6 −1.87799 −0.938997 0.343925i \(-0.888243\pi\)
−0.938997 + 0.343925i \(0.888243\pi\)
\(444\) − 397149.i − 0.0956083i
\(445\) −386107. −0.0924288
\(446\) −3.03977e6 −0.723609
\(447\) 1.31376e6i 0.310990i
\(448\) 80860.9i 0.0190346i
\(449\) − 5.82572e6i − 1.36375i −0.731470 0.681874i \(-0.761165\pi\)
0.731470 0.681874i \(-0.238835\pi\)
\(450\) 2.26172e6i 0.526512i
\(451\) 2.67424e6 0.619098
\(452\) 1.88586e6 0.434173
\(453\) 2.64011e6i 0.604473i
\(454\) −200994. −0.0457660
\(455\) 0 0
\(456\) −81241.0 −0.0182963
\(457\) 7.98941e6i 1.78947i 0.446599 + 0.894734i \(0.352635\pi\)
−0.446599 + 0.894734i \(0.647365\pi\)
\(458\) −1.48952e6 −0.331804
\(459\) 2.04825e6 0.453787
\(460\) − 264767.i − 0.0583404i
\(461\) 6.13769e6i 1.34509i 0.740055 + 0.672547i \(0.234800\pi\)
−0.740055 + 0.672547i \(0.765200\pi\)
\(462\) 115651.i 0.0252083i
\(463\) 4.55816e6i 0.988181i 0.869410 + 0.494091i \(0.164499\pi\)
−0.869410 + 0.494091i \(0.835501\pi\)
\(464\) −675098. −0.145570
\(465\) −255887. −0.0548802
\(466\) 2.94989e6i 0.629277i
\(467\) 4.63782e6 0.984060 0.492030 0.870578i \(-0.336255\pi\)
0.492030 + 0.870578i \(0.336255\pi\)
\(468\) 0 0
\(469\) 826411. 0.173486
\(470\) 599993.i 0.125286i
\(471\) 1.17198e6 0.243427
\(472\) −76209.3 −0.0157454
\(473\) 661101.i 0.135867i
\(474\) 2.50841e6i 0.512806i
\(475\) 508827.i 0.103475i
\(476\) − 198018.i − 0.0400578i
\(477\) 3.10451e6 0.624737
\(478\) 3.59007e6 0.718676
\(479\) − 6.87591e6i − 1.36928i −0.728883 0.684638i \(-0.759960\pi\)
0.728883 0.684638i \(-0.240040\pi\)
\(480\) 61801.8 0.0122433
\(481\) 0 0
\(482\) 1.79322e6 0.351572
\(483\) − 315975.i − 0.0616290i
\(484\) −1.98891e6 −0.385924
\(485\) −355224. −0.0685722
\(486\) − 3.78394e6i − 0.726697i
\(487\) − 6.16885e6i − 1.17864i −0.807899 0.589321i \(-0.799395\pi\)
0.807899 0.589321i \(-0.200605\pi\)
\(488\) 1.03550e6i 0.196834i
\(489\) 1.96936e6i 0.372438i
\(490\) 518736. 0.0976014
\(491\) −250672. −0.0469248 −0.0234624 0.999725i \(-0.507469\pi\)
−0.0234624 + 0.999725i \(0.507469\pi\)
\(492\) − 1.70546e6i − 0.317636i
\(493\) 1.65323e6 0.306348
\(494\) 0 0
\(495\) −279556. −0.0512809
\(496\) 1.08539e6i 0.198099i
\(497\) 1.29622e6 0.235390
\(498\) −2.54724e6 −0.460253
\(499\) 324783.i 0.0583904i 0.999574 + 0.0291952i \(0.00929444\pi\)
−0.999574 + 0.0291952i \(0.990706\pi\)
\(500\) − 782038.i − 0.139895i
\(501\) − 2.09491e6i − 0.372882i
\(502\) 7.34300e6i 1.30051i
\(503\) 1.54529e6 0.272327 0.136163 0.990686i \(-0.456523\pi\)
0.136163 + 0.990686i \(0.456523\pi\)
\(504\) −233264. −0.0409045
\(505\) 1.55583e6i 0.271478i
\(506\) −1.60625e6 −0.278892
\(507\) 0 0
\(508\) −4.02749e6 −0.692429
\(509\) 9.63563e6i 1.64849i 0.566236 + 0.824243i \(0.308399\pi\)
−0.566236 + 0.824243i \(0.691601\pi\)
\(510\) −151344. −0.0257656
\(511\) 1.21831e6 0.206398
\(512\) − 262144.i − 0.0441942i
\(513\) − 542823.i − 0.0910677i
\(514\) 6.07091e6i 1.01355i
\(515\) − 28448.5i − 0.00472652i
\(516\) 421608. 0.0697084
\(517\) 3.63995e6 0.598920
\(518\) − 256540.i − 0.0420079i
\(519\) −1.74035e6 −0.283607
\(520\) 0 0
\(521\) −2.86040e6 −0.461670 −0.230835 0.972993i \(-0.574146\pi\)
−0.230835 + 0.972993i \(0.574146\pi\)
\(522\) − 1.94749e6i − 0.312824i
\(523\) 5.00224e6 0.799670 0.399835 0.916587i \(-0.369068\pi\)
0.399835 + 0.916587i \(0.369068\pi\)
\(524\) 36134.8 0.00574907
\(525\) − 461939.i − 0.0731453i
\(526\) 882583.i 0.139088i
\(527\) − 2.65799e6i − 0.416894i
\(528\) − 374930.i − 0.0585282i
\(529\) −2.04784e6 −0.318168
\(530\) −531312. −0.0821599
\(531\) − 219845.i − 0.0338361i
\(532\) −52478.1 −0.00803895
\(533\) 0 0
\(534\) 1.49382e6 0.226696
\(535\) 895597.i 0.135278i
\(536\) −2.67915e6 −0.402796
\(537\) 619332. 0.0926804
\(538\) 5.81072e6i 0.865514i
\(539\) − 3.14699e6i − 0.466577i
\(540\) 412937.i 0.0609395i
\(541\) − 7.10054e6i − 1.04303i −0.853241 0.521516i \(-0.825367\pi\)
0.853241 0.521516i \(-0.174633\pi\)
\(542\) −3.32604e6 −0.486328
\(543\) −1.62943e6 −0.237156
\(544\) 641956.i 0.0930054i
\(545\) 1.78720e6 0.257739
\(546\) 0 0
\(547\) 6.22951e6 0.890196 0.445098 0.895482i \(-0.353169\pi\)
0.445098 + 0.895482i \(0.353169\pi\)
\(548\) − 4.42855e6i − 0.629956i
\(549\) −2.98717e6 −0.422988
\(550\) −2.34825e6 −0.331008
\(551\) − 438134.i − 0.0614791i
\(552\) 1.02436e6i 0.143089i
\(553\) 1.62032e6i 0.225314i
\(554\) 2.69988e6i 0.373740i
\(555\) −196073. −0.0270200
\(556\) 3.37438e6 0.462921
\(557\) − 740978.i − 0.101197i −0.998719 0.0505985i \(-0.983887\pi\)
0.998719 0.0505985i \(-0.0161129\pi\)
\(558\) −3.13110e6 −0.425707
\(559\) 0 0
\(560\) 39921.2 0.00537940
\(561\) 918153.i 0.123171i
\(562\) −2.69937e6 −0.360513
\(563\) 4.43102e6 0.589159 0.294580 0.955627i \(-0.404820\pi\)
0.294580 + 0.955627i \(0.404820\pi\)
\(564\) − 2.32133e6i − 0.307283i
\(565\) − 931052.i − 0.122702i
\(566\) 3.22047e6i 0.422550i
\(567\) − 392872.i − 0.0513208i
\(568\) −4.20223e6 −0.546523
\(569\) −1.13478e7 −1.46936 −0.734682 0.678411i \(-0.762669\pi\)
−0.734682 + 0.678411i \(0.762669\pi\)
\(570\) 40108.9i 0.00517075i
\(571\) 1.42572e7 1.82997 0.914987 0.403484i \(-0.132201\pi\)
0.914987 + 0.403484i \(0.132201\pi\)
\(572\) 0 0
\(573\) 2.72091e6 0.346201
\(574\) − 1.10165e6i − 0.139562i
\(575\) 6.41577e6 0.809244
\(576\) 756222. 0.0949714
\(577\) 1.06731e7i 1.33460i 0.744788 + 0.667301i \(0.232550\pi\)
−0.744788 + 0.667301i \(0.767450\pi\)
\(578\) 4.10736e6i 0.511380i
\(579\) − 2.53345e6i − 0.314062i
\(580\) 333298.i 0.0411398i
\(581\) −1.64541e6 −0.202224
\(582\) 1.37434e6 0.168184
\(583\) 3.22328e6i 0.392760i
\(584\) −3.94965e6 −0.479211
\(585\) 0 0
\(586\) 8.25535e6 0.993096
\(587\) − 1.19910e7i − 1.43636i −0.695860 0.718178i \(-0.744976\pi\)
0.695860 0.718178i \(-0.255024\pi\)
\(588\) −2.00695e6 −0.239383
\(589\) −704412. −0.0836640
\(590\) 37624.7i 0.00444983i
\(591\) − 4.01244e6i − 0.472542i
\(592\) 831682.i 0.0975333i
\(593\) − 1.09751e7i − 1.28165i −0.767686 0.640826i \(-0.778592\pi\)
0.767686 0.640826i \(-0.221408\pi\)
\(594\) 2.50514e6 0.291317
\(595\) −97761.8 −0.0113208
\(596\) − 2.75119e6i − 0.317252i
\(597\) −5.91629e6 −0.679382
\(598\) 0 0
\(599\) −4.11161e6 −0.468214 −0.234107 0.972211i \(-0.575217\pi\)
−0.234107 + 0.972211i \(0.575217\pi\)
\(600\) 1.49757e6i 0.169828i
\(601\) −5.22300e6 −0.589840 −0.294920 0.955522i \(-0.595293\pi\)
−0.294920 + 0.955522i \(0.595293\pi\)
\(602\) 272340. 0.0306282
\(603\) − 7.72870e6i − 0.865592i
\(604\) − 5.52875e6i − 0.616644i
\(605\) 981930.i 0.109067i
\(606\) − 6.01940e6i − 0.665843i
\(607\) 1.17012e6 0.128902 0.0644508 0.997921i \(-0.479470\pi\)
0.0644508 + 0.997921i \(0.479470\pi\)
\(608\) 170130. 0.0186647
\(609\) 397760.i 0.0434588i
\(610\) 511229. 0.0556277
\(611\) 0 0
\(612\) −1.85189e6 −0.199865
\(613\) − 1.16250e6i − 0.124951i −0.998046 0.0624757i \(-0.980100\pi\)
0.998046 0.0624757i \(-0.0198996\pi\)
\(614\) 3.08933e6 0.330707
\(615\) −841992. −0.0897677
\(616\) − 242188.i − 0.0257158i
\(617\) 8.51152e6i 0.900107i 0.893002 + 0.450053i \(0.148595\pi\)
−0.893002 + 0.450053i \(0.851405\pi\)
\(618\) 110065.i 0.0115925i
\(619\) − 6.03620e6i − 0.633194i −0.948560 0.316597i \(-0.897460\pi\)
0.948560 0.316597i \(-0.102540\pi\)
\(620\) 535861. 0.0559852
\(621\) −6.84442e6 −0.712209
\(622\) 61300.6i 0.00635314i
\(623\) 964941. 0.0996049
\(624\) 0 0
\(625\) 9.18454e6 0.940497
\(626\) − 1.13563e7i − 1.15824i
\(627\) 243327. 0.0247184
\(628\) −2.45428e6 −0.248328
\(629\) − 2.03668e6i − 0.205256i
\(630\) 115163.i 0.0115601i
\(631\) 6.04074e6i 0.603972i 0.953312 + 0.301986i \(0.0976495\pi\)
−0.953312 + 0.301986i \(0.902350\pi\)
\(632\) − 5.25295e6i − 0.523131i
\(633\) −9.29562e6 −0.922081
\(634\) −2.60497e6 −0.257383
\(635\) 1.98838e6i 0.195688i
\(636\) 2.05561e6 0.201510
\(637\) 0 0
\(638\) 2.02200e6 0.196666
\(639\) − 1.21224e7i − 1.17446i
\(640\) −129421. −0.0124898
\(641\) −5.48840e6 −0.527595 −0.263797 0.964578i \(-0.584975\pi\)
−0.263797 + 0.964578i \(0.584975\pi\)
\(642\) − 3.46500e6i − 0.331792i
\(643\) − 1.97963e7i − 1.88823i −0.329610 0.944117i \(-0.606917\pi\)
0.329610 0.944117i \(-0.393083\pi\)
\(644\) 661694.i 0.0628698i
\(645\) − 208149.i − 0.0197004i
\(646\) −416625. −0.0392793
\(647\) −1.89495e7 −1.77966 −0.889832 0.456288i \(-0.849179\pi\)
−0.889832 + 0.456288i \(0.849179\pi\)
\(648\) 1.27366e6i 0.119156i
\(649\) 228256. 0.0212721
\(650\) 0 0
\(651\) 639501. 0.0591410
\(652\) − 4.12411e6i − 0.379937i
\(653\) −8.52088e6 −0.781990 −0.390995 0.920393i \(-0.627869\pi\)
−0.390995 + 0.920393i \(0.627869\pi\)
\(654\) −6.91453e6 −0.632147
\(655\) − 17839.8i − 0.00162475i
\(656\) 3.57147e6i 0.324032i
\(657\) − 1.13938e7i − 1.02980i
\(658\) − 1.49948e6i − 0.135013i
\(659\) 7.47936e6 0.670889 0.335445 0.942060i \(-0.391113\pi\)
0.335445 + 0.942060i \(0.391113\pi\)
\(660\) −185104. −0.0165407
\(661\) 4.66740e6i 0.415500i 0.978182 + 0.207750i \(0.0666141\pi\)
−0.978182 + 0.207750i \(0.933386\pi\)
\(662\) −3.71660e6 −0.329610
\(663\) 0 0
\(664\) 5.33427e6 0.469520
\(665\) 25908.6i 0.00227190i
\(666\) −2.39920e6 −0.209595
\(667\) −5.52440e6 −0.480807
\(668\) 4.38702e6i 0.380390i
\(669\) − 5.80627e6i − 0.501570i
\(670\) 1.32270e6i 0.113835i
\(671\) − 3.10145e6i − 0.265924i
\(672\) −154452. −0.0131938
\(673\) −5.63150e6 −0.479277 −0.239638 0.970862i \(-0.577029\pi\)
−0.239638 + 0.970862i \(0.577029\pi\)
\(674\) − 6.91552e6i − 0.586374i
\(675\) −1.00062e7 −0.845297
\(676\) 0 0
\(677\) 9.19599e6 0.771129 0.385564 0.922681i \(-0.374007\pi\)
0.385564 + 0.922681i \(0.374007\pi\)
\(678\) 3.60217e6i 0.300947i
\(679\) 887761. 0.0738961
\(680\) 316935. 0.0262844
\(681\) − 383918.i − 0.0317228i
\(682\) − 3.25088e6i − 0.267633i
\(683\) 8.08689e6i 0.663330i 0.943397 + 0.331665i \(0.107610\pi\)
−0.943397 + 0.331665i \(0.892390\pi\)
\(684\) 490782.i 0.0401096i
\(685\) −2.18639e6 −0.178033
\(686\) −2.62358e6 −0.212855
\(687\) − 2.84512e6i − 0.229990i
\(688\) −882904. −0.0711119
\(689\) 0 0
\(690\) 505731. 0.0404386
\(691\) − 1.37327e7i − 1.09411i −0.837097 0.547055i \(-0.815749\pi\)
0.837097 0.547055i \(-0.184251\pi\)
\(692\) 3.64451e6 0.289317
\(693\) 698653. 0.0552623
\(694\) 406325.i 0.0320239i
\(695\) − 1.66594e6i − 0.130827i
\(696\) − 1.28950e6i − 0.100902i
\(697\) − 8.74606e6i − 0.681915i
\(698\) 3.19253e6 0.248026
\(699\) −5.63459e6 −0.436183
\(700\) 967362.i 0.0746181i
\(701\) −1.28324e7 −0.986306 −0.493153 0.869943i \(-0.664156\pi\)
−0.493153 + 0.869943i \(0.664156\pi\)
\(702\) 0 0
\(703\) −539755. −0.0411916
\(704\) 785152.i 0.0597066i
\(705\) −1.14605e6 −0.0868419
\(706\) 5.51862e6 0.416695
\(707\) − 3.88827e6i − 0.292555i
\(708\) − 145567.i − 0.0109139i
\(709\) 1.63596e7i 1.22224i 0.791537 + 0.611121i \(0.209281\pi\)
−0.791537 + 0.611121i \(0.790719\pi\)
\(710\) 2.07465e6i 0.154454i
\(711\) 1.51535e7 1.12419
\(712\) −3.12825e6 −0.231261
\(713\) 8.88189e6i 0.654307i
\(714\) 378233. 0.0277661
\(715\) 0 0
\(716\) −1.29696e6 −0.0945465
\(717\) 6.85739e6i 0.498151i
\(718\) −3.81362e6 −0.276074
\(719\) −5.07377e6 −0.366023 −0.183012 0.983111i \(-0.558585\pi\)
−0.183012 + 0.983111i \(0.558585\pi\)
\(720\) − 373348.i − 0.0268400i
\(721\) 71097.3i 0.00509348i
\(722\) − 9.79398e6i − 0.699224i
\(723\) 3.42522e6i 0.243693i
\(724\) 3.41223e6 0.241932
\(725\) −8.07640e6 −0.570654
\(726\) − 3.79901e6i − 0.267503i
\(727\) 2.26620e7 1.59024 0.795119 0.606454i \(-0.207408\pi\)
0.795119 + 0.606454i \(0.207408\pi\)
\(728\) 0 0
\(729\) 2.39178e6 0.166687
\(730\) 1.94995e6i 0.135431i
\(731\) 2.16212e6 0.149653
\(732\) −1.97791e6 −0.136436
\(733\) 2.62116e7i 1.80191i 0.433910 + 0.900956i \(0.357134\pi\)
−0.433910 + 0.900956i \(0.642866\pi\)
\(734\) − 8.79601e6i − 0.602623i
\(735\) 990837.i 0.0676525i
\(736\) − 2.14515e6i − 0.145970i
\(737\) 8.02438e6 0.544180
\(738\) −1.03028e7 −0.696330
\(739\) − 2.80735e7i − 1.89097i −0.325663 0.945486i \(-0.605587\pi\)
0.325663 0.945486i \(-0.394413\pi\)
\(740\) 410603. 0.0275641
\(741\) 0 0
\(742\) 1.32783e6 0.0885387
\(743\) − 2.74094e7i − 1.82149i −0.412968 0.910746i \(-0.635508\pi\)
0.412968 0.910746i \(-0.364492\pi\)
\(744\) −2.07321e6 −0.137313
\(745\) −1.35827e6 −0.0896592
\(746\) 7.33570e6i 0.482608i
\(747\) 1.53881e7i 1.00898i
\(748\) − 1.92274e6i − 0.125651i
\(749\) − 2.23824e6i − 0.145781i
\(750\) 1.49377e6 0.0969684
\(751\) 1.45703e7 0.942688 0.471344 0.881949i \(-0.343769\pi\)
0.471344 + 0.881949i \(0.343769\pi\)
\(752\) 4.86117e6i 0.313470i
\(753\) −1.40258e7 −0.901450
\(754\) 0 0
\(755\) −2.72956e6 −0.174271
\(756\) − 1.03199e6i − 0.0656708i
\(757\) −2.54940e7 −1.61696 −0.808478 0.588527i \(-0.799708\pi\)
−0.808478 + 0.588527i \(0.799708\pi\)
\(758\) 9.24483e6 0.584421
\(759\) − 3.06809e6i − 0.193314i
\(760\) − 83993.4i − 0.00527486i
\(761\) − 8.76773e6i − 0.548814i −0.961614 0.274407i \(-0.911518\pi\)
0.961614 0.274407i \(-0.0884816\pi\)
\(762\) − 7.69290e6i − 0.479957i
\(763\) −4.46648e6 −0.277750
\(764\) −5.69796e6 −0.353172
\(765\) 914281.i 0.0564841i
\(766\) 1.45204e7 0.894142
\(767\) 0 0
\(768\) 500721. 0.0306332
\(769\) 2.85273e7i 1.73958i 0.493419 + 0.869792i \(0.335747\pi\)
−0.493419 + 0.869792i \(0.664253\pi\)
\(770\) −119569. −0.00726760
\(771\) −1.15960e7 −0.702544
\(772\) 5.30538e6i 0.320386i
\(773\) 1.13022e7i 0.680319i 0.940368 + 0.340159i \(0.110481\pi\)
−0.940368 + 0.340159i \(0.889519\pi\)
\(774\) − 2.54696e6i − 0.152817i
\(775\) 1.29849e7i 0.776575i
\(776\) −2.87804e6 −0.171571
\(777\) 490017. 0.0291178
\(778\) 7.62386e6i 0.451571i
\(779\) −2.31786e6 −0.136849
\(780\) 0 0
\(781\) 1.25862e7 0.738356
\(782\) 5.25320e6i 0.307190i
\(783\) 8.61599e6 0.502228
\(784\) 4.20282e6 0.244203
\(785\) 1.21169e6i 0.0701804i
\(786\) 69021.0i 0.00398497i
\(787\) 9.70280e6i 0.558419i 0.960230 + 0.279210i \(0.0900724\pi\)
−0.960230 + 0.279210i \(0.909928\pi\)
\(788\) 8.40259e6i 0.482056i
\(789\) −1.68582e6 −0.0964092
\(790\) −2.59339e6 −0.147843
\(791\) 2.32684e6i 0.132229i
\(792\) −2.26497e6 −0.128307
\(793\) 0 0
\(794\) −1.55988e7 −0.878092
\(795\) − 1.01486e6i − 0.0569492i
\(796\) 1.23895e7 0.693061
\(797\) −1.69795e7 −0.946846 −0.473423 0.880835i \(-0.656982\pi\)
−0.473423 + 0.880835i \(0.656982\pi\)
\(798\) − 100238.i − 0.00557220i
\(799\) − 1.19044e7i − 0.659690i
\(800\) − 3.13610e6i − 0.173247i
\(801\) − 9.02425e6i − 0.496970i
\(802\) −1.12779e6 −0.0619146
\(803\) 1.18297e7 0.647417
\(804\) − 5.11745e6i − 0.279199i
\(805\) 326680. 0.0177678
\(806\) 0 0
\(807\) −1.10990e7 −0.599932
\(808\) 1.26054e7i 0.679249i
\(809\) −1.88752e7 −1.01396 −0.506979 0.861958i \(-0.669238\pi\)
−0.506979 + 0.861958i \(0.669238\pi\)
\(810\) 628808. 0.0336748
\(811\) 2.52570e7i 1.34843i 0.738534 + 0.674217i \(0.235519\pi\)
−0.738534 + 0.674217i \(0.764481\pi\)
\(812\) − 832963.i − 0.0443339i
\(813\) − 6.35306e6i − 0.337098i
\(814\) − 2.49099e6i − 0.131768i
\(815\) −2.03608e6 −0.107375
\(816\) −1.22620e6 −0.0644667
\(817\) − 572998.i − 0.0300330i
\(818\) −2.67191e6 −0.139617
\(819\) 0 0
\(820\) 1.76324e6 0.0915752
\(821\) 1.46338e7i 0.757702i 0.925458 + 0.378851i \(0.123681\pi\)
−0.925458 + 0.378851i \(0.876319\pi\)
\(822\) 8.45896e6 0.436654
\(823\) 3.53653e6 0.182003 0.0910013 0.995851i \(-0.470993\pi\)
0.0910013 + 0.995851i \(0.470993\pi\)
\(824\) − 230491.i − 0.0118260i
\(825\) − 4.48539e6i − 0.229438i
\(826\) − 94030.0i − 0.00479531i
\(827\) 2.34804e7i 1.19383i 0.802306 + 0.596914i \(0.203606\pi\)
−0.802306 + 0.596914i \(0.796394\pi\)
\(828\) 6.18825e6 0.313683
\(829\) 2.78441e7 1.40717 0.703586 0.710610i \(-0.251581\pi\)
0.703586 + 0.710610i \(0.251581\pi\)
\(830\) − 2.63354e6i − 0.132692i
\(831\) −5.15703e6 −0.259058
\(832\) 0 0
\(833\) −1.02922e7 −0.513918
\(834\) 6.44540e6i 0.320874i
\(835\) 2.16588e6 0.107503
\(836\) −509558. −0.0252161
\(837\) − 1.38524e7i − 0.683458i
\(838\) − 1.88602e7i − 0.927762i
\(839\) 1.37068e7i 0.672250i 0.941817 + 0.336125i \(0.109116\pi\)
−0.941817 + 0.336125i \(0.890884\pi\)
\(840\) 76253.4i 0.00372873i
\(841\) −1.35568e7 −0.660950
\(842\) 1.13125e6 0.0549892
\(843\) − 5.15606e6i − 0.249890i
\(844\) 1.94663e7 0.940647
\(845\) 0 0
\(846\) −1.40233e7 −0.673634
\(847\) − 2.45399e6i − 0.117534i
\(848\) −4.30471e6 −0.205568
\(849\) −6.15141e6 −0.292891
\(850\) 7.67991e6i 0.364593i
\(851\) 6.80575e6i 0.322145i
\(852\) − 8.02667e6i − 0.378823i
\(853\) 2.64722e7i 1.24571i 0.782337 + 0.622856i \(0.214028\pi\)
−0.782337 + 0.622856i \(0.785972\pi\)
\(854\) −1.27764e6 −0.0599465
\(855\) 242300. 0.0113355
\(856\) 7.25617e6i 0.338472i
\(857\) −8.80546e6 −0.409544 −0.204772 0.978810i \(-0.565645\pi\)
−0.204772 + 0.978810i \(0.565645\pi\)
\(858\) 0 0
\(859\) −2.99287e6 −0.138390 −0.0691951 0.997603i \(-0.522043\pi\)
−0.0691951 + 0.997603i \(0.522043\pi\)
\(860\) 435892.i 0.0200971i
\(861\) 2.10427e6 0.0967372
\(862\) 3.73402e6 0.171162
\(863\) − 1.71927e7i − 0.785811i −0.919579 0.392905i \(-0.871470\pi\)
0.919579 0.392905i \(-0.128530\pi\)
\(864\) 3.34563e6i 0.152473i
\(865\) − 1.79931e6i − 0.0817645i
\(866\) − 2.44341e7i − 1.10714i
\(867\) −7.84546e6 −0.354463
\(868\) −1.33920e6 −0.0603318
\(869\) 1.57332e7i 0.706753i
\(870\) −636631. −0.0285161
\(871\) 0 0
\(872\) 1.44799e7 0.644875
\(873\) − 8.30245e6i − 0.368698i
\(874\) 1.39219e6 0.0616481
\(875\) 964909. 0.0426055
\(876\) − 7.54423e6i − 0.332165i
\(877\) 2.94683e7i 1.29377i 0.762589 + 0.646883i \(0.223928\pi\)
−0.762589 + 0.646883i \(0.776072\pi\)
\(878\) − 2.30962e7i − 1.01112i
\(879\) 1.57685e7i 0.688365i
\(880\) 387632. 0.0168738
\(881\) 2.82805e7 1.22758 0.613788 0.789471i \(-0.289645\pi\)
0.613788 + 0.789471i \(0.289645\pi\)
\(882\) 1.21241e7i 0.524782i
\(883\) 1.96720e7 0.849076 0.424538 0.905410i \(-0.360437\pi\)
0.424538 + 0.905410i \(0.360437\pi\)
\(884\) 0 0
\(885\) −71866.9 −0.00308440
\(886\) 3.10287e7i 1.32794i
\(887\) 1.24458e7 0.531144 0.265572 0.964091i \(-0.414439\pi\)
0.265572 + 0.964091i \(0.414439\pi\)
\(888\) −1.58859e6 −0.0676053
\(889\) − 4.96927e6i − 0.210881i
\(890\) 1.54443e6i 0.0653570i
\(891\) − 3.81476e6i − 0.160980i
\(892\) 1.21591e7i 0.511669i
\(893\) −3.15487e6 −0.132389
\(894\) 5.25504e6 0.219903
\(895\) 640314.i 0.0267199i
\(896\) 323444. 0.0134595
\(897\) 0 0
\(898\) −2.33029e7 −0.964315
\(899\) − 1.11808e7i − 0.461397i
\(900\) 9.04690e6 0.372300
\(901\) 1.05417e7 0.432611
\(902\) − 1.06970e7i − 0.437769i
\(903\) 520197.i 0.0212299i
\(904\) − 7.54343e6i − 0.307006i
\(905\) − 1.68463e6i − 0.0683727i
\(906\) 1.05605e7 0.427427
\(907\) 4.12557e7 1.66520 0.832599 0.553876i \(-0.186852\pi\)
0.832599 + 0.553876i \(0.186852\pi\)
\(908\) 803976.i 0.0323615i
\(909\) −3.63636e7 −1.45968
\(910\) 0 0
\(911\) −3.01353e7 −1.20304 −0.601519 0.798859i \(-0.705438\pi\)
−0.601519 + 0.798859i \(0.705438\pi\)
\(912\) 324964.i 0.0129374i
\(913\) −1.59768e7 −0.634325
\(914\) 3.19576e7 1.26535
\(915\) 976498.i 0.0385584i
\(916\) 5.95806e6i 0.234621i
\(917\) 44584.5i 0.00175090i
\(918\) − 8.19301e6i − 0.320876i
\(919\) −1.66097e7 −0.648742 −0.324371 0.945930i \(-0.605153\pi\)
−0.324371 + 0.945930i \(0.605153\pi\)
\(920\) −1.05907e6 −0.0412529
\(921\) 5.90093e6i 0.229230i
\(922\) 2.45508e7 0.951125
\(923\) 0 0
\(924\) 462603. 0.0178250
\(925\) 9.94965e6i 0.382343i
\(926\) 1.82326e7 0.698750
\(927\) 664911. 0.0254135
\(928\) 2.70039e6i 0.102934i
\(929\) 1.90297e7i 0.723422i 0.932290 + 0.361711i \(0.117807\pi\)
−0.932290 + 0.361711i \(0.882193\pi\)
\(930\) 1.02355e6i 0.0388062i
\(931\) 2.72760e6i 0.103135i
\(932\) 1.17996e7 0.444966
\(933\) −117090. −0.00440368
\(934\) − 1.85513e7i − 0.695835i
\(935\) −949259. −0.0355104
\(936\) 0 0
\(937\) 3.19208e7 1.18775 0.593875 0.804557i \(-0.297597\pi\)
0.593875 + 0.804557i \(0.297597\pi\)
\(938\) − 3.30564e6i − 0.122673i
\(939\) 2.16916e7 0.802836
\(940\) 2.39997e6 0.0885904
\(941\) − 3.88808e7i − 1.43140i −0.698408 0.715700i \(-0.746108\pi\)
0.698408 0.715700i \(-0.253892\pi\)
\(942\) − 4.68792e6i − 0.172129i
\(943\) 2.92257e7i 1.07025i
\(944\) 304837.i 0.0111337i
\(945\) −509497. −0.0185593
\(946\) 2.64440e6 0.0960727
\(947\) 6.30671e6i 0.228522i 0.993451 + 0.114261i \(0.0364500\pi\)
−0.993451 + 0.114261i \(0.963550\pi\)
\(948\) 1.00336e7 0.362608
\(949\) 0 0
\(950\) 2.03531e6 0.0731680
\(951\) − 4.97575e6i − 0.178405i
\(952\) −792071. −0.0283251
\(953\) 3.86241e7 1.37761 0.688805 0.724946i \(-0.258135\pi\)
0.688805 + 0.724946i \(0.258135\pi\)
\(954\) − 1.24181e7i − 0.441756i
\(955\) 2.81310e6i 0.0998105i
\(956\) − 1.43603e7i − 0.508181i
\(957\) 3.86222e6i 0.136319i
\(958\) −2.75036e7 −0.968225
\(959\) 5.46412e6 0.191855
\(960\) − 247207.i − 0.00865731i
\(961\) 1.06531e7 0.372107
\(962\) 0 0
\(963\) −2.09323e7 −0.727363
\(964\) − 7.17286e6i − 0.248599i
\(965\) 2.61928e6 0.0905448
\(966\) −1.26390e6 −0.0435783
\(967\) − 1.80045e7i − 0.619176i −0.950871 0.309588i \(-0.899809\pi\)
0.950871 0.309588i \(-0.100191\pi\)
\(968\) 7.95564e6i 0.272889i
\(969\) − 795794.i − 0.0272265i
\(970\) 1.42090e6i 0.0484879i
\(971\) 5.15346e7 1.75409 0.877043 0.480411i \(-0.159513\pi\)
0.877043 + 0.480411i \(0.159513\pi\)
\(972\) −1.51358e7 −0.513852
\(973\) 4.16344e6i 0.140984i
\(974\) −2.46754e7 −0.833426
\(975\) 0 0
\(976\) 4.14200e6 0.139183
\(977\) 2.83425e7i 0.949951i 0.879999 + 0.474975i \(0.157543\pi\)
−0.879999 + 0.474975i \(0.842457\pi\)
\(978\) 7.87745e6 0.263353
\(979\) 9.36949e6 0.312435
\(980\) − 2.07494e6i − 0.0690146i
\(981\) 4.17711e7i 1.38581i
\(982\) 1.00269e6i 0.0331809i
\(983\) 3.16627e7i 1.04512i 0.852603 + 0.522558i \(0.175022\pi\)
−0.852603 + 0.522558i \(0.824978\pi\)
\(984\) −6.82186e6 −0.224603
\(985\) 4.14838e6 0.136235
\(986\) − 6.61291e6i − 0.216621i
\(987\) 2.86415e6 0.0935842
\(988\) 0 0
\(989\) −7.22490e6 −0.234877
\(990\) 1.11822e6i 0.0362611i
\(991\) 2.51605e7 0.813832 0.406916 0.913466i \(-0.366604\pi\)
0.406916 + 0.913466i \(0.366604\pi\)
\(992\) 4.34157e6 0.140077
\(993\) − 7.09906e6i − 0.228469i
\(994\) − 5.18487e6i − 0.166446i
\(995\) − 6.11673e6i − 0.195867i
\(996\) 1.01890e7i 0.325448i
\(997\) −5.62891e7 −1.79344 −0.896719 0.442600i \(-0.854056\pi\)
−0.896719 + 0.442600i \(0.854056\pi\)
\(998\) 1.29913e6 0.0412883
\(999\) − 1.06144e7i − 0.336497i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.6.b.f.337.4 12
13.5 odd 4 338.6.a.l.1.4 6
13.8 odd 4 338.6.a.n.1.4 yes 6
13.12 even 2 inner 338.6.b.f.337.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.6.a.l.1.4 6 13.5 odd 4
338.6.a.n.1.4 yes 6 13.8 odd 4
338.6.b.f.337.4 12 1.1 even 1 trivial
338.6.b.f.337.10 12 13.12 even 2 inner