L(s) = 1 | + 3·2-s + 6·4-s − 3·5-s − 6·7-s + 9·8-s − 9·10-s − 6·11-s − 6·13-s − 18·14-s + 12·16-s + 18·17-s + 24·19-s − 18·20-s − 18·22-s − 12·23-s + 15·25-s − 18·26-s − 36·28-s + 21·29-s − 15·31-s + 12·32-s + 54·34-s + 18·35-s + 6·37-s + 72·38-s − 27·40-s − 12·41-s + ⋯ |
L(s) = 1 | + 2.12·2-s + 3·4-s − 1.34·5-s − 2.26·7-s + 3.18·8-s − 2.84·10-s − 1.80·11-s − 1.66·13-s − 4.81·14-s + 3·16-s + 4.36·17-s + 5.50·19-s − 4.02·20-s − 3.83·22-s − 2.50·23-s + 3·25-s − 3.53·26-s − 6.80·28-s + 3.89·29-s − 2.69·31-s + 2.12·32-s + 9.26·34-s + 3.04·35-s + 0.986·37-s + 11.6·38-s − 4.26·40-s − 1.87·41-s + ⋯ |
Λ(s)=(=((372)s/2ΓC(s)12L(s)Λ(2−s)
Λ(s)=(=((372)s/2ΓC(s+1/2)12L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5255332515 |
L(21) |
≈ |
0.5255332515 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1−3T+3T2−3T4+3pT5−T6−27T7+27pT8−27pT9+9p2T10+9p2T11−135T12+9p3T13+9p4T14−27p4T15+27p5T16−27p5T17−p6T18+3p8T19−3p8T20+3p10T22−3p11T23+p12T24 |
| 5 | 1+3T−6T2+9T3+87T4−6p2T5−38pT6+909T7−1521T8−2808T9+891pT10−3969T11−19179T12−3969pT13+891p3T14−2808p3T15−1521p4T16+909p5T17−38p7T18−6p9T19+87p8T20+9p9T21−6p10T22+3p11T23+p12T24 |
| 7 | 1+6T+3T2−8pT3−150T4−48T5+10T6−1440T7−477T8+20932T9+52197T10−25890T11−306689T12−25890pT13+52197p2T14+20932p3T15−477p4T16−1440p5T17+10p6T18−48p7T19−150p8T20−8p10T21+3p10T22+6p11T23+p12T24 |
| 11 | 1+6T−15T2−72T3+402T4+114T5−8848T6−7092T7+73287T8+29538T9−873405T10+573048T11+15237891T12+573048pT13−873405p2T14+29538p3T15+73287p4T16−7092p5T17−8848p6T18+114p7T19+402p8T20−72p9T21−15p10T22+6p11T23+p12T24 |
| 13 | 1+6T−24T2−272T3+30T4+6234T5+10342T6−93456T7−311490T8+964312T9+5908470T10−4890696T11−86990081T12−4890696pT13+5908470p2T14+964312p3T15−311490p4T16−93456p5T17+10342p6T18+6234p7T19+30p8T20−272p9T21−24p10T22+6p11T23+p12T24 |
| 17 | (1−9T+6pT2−630T3+4227T4−19611T5+5591pT6−19611pT7+4227p2T8−630p3T9+6p5T10−9p5T11+p6T12)2 |
| 19 | (1−12T+129T2−985T3+6471T4−35073T5+166182T6−35073pT7+6471p2T8−985p3T9+129p4T10−12p5T11+p6T12)2 |
| 23 | 1+12T−15T2−450T3+2022T4+18012T5−97840T6−468468T7+3500631T8+7484670T9−108075537T10−86356332T11+2494857051T12−86356332pT13−108075537p2T14+7484670p3T15+3500631p4T16−468468p5T17−97840p6T18+18012p7T19+2022p8T20−450p9T21−15p10T22+12p11T23+p12T24 |
| 29 | 1−21T+156T2−333T3−1335T4+11436T5−99298T6+512379T7+1250271T8−18237096T9+38476611T10−247254327T11+2704348845T12−247254327pT13+38476611p2T14−18237096p3T15+1250271p4T16+512379p5T17−99298p6T18+11436p7T19−1335p8T20−333p9T21+156p10T22−21p11T23+p12T24 |
| 31 | 1+15T−6T2−731T3+3234T4+45879T5−179792T6−1417725T7+10709046T8+30200209T9−495230610T10−533330277T11+15229407838T12−533330277pT13−495230610p2T14+30200209p3T15+10709046p4T16−1417725p5T17−179792p6T18+45879p7T19+3234p8T20−731p9T21−6p10T22+15p11T23+p12T24 |
| 37 | (1−3T+93T2−94T3+4608T4+864T5+171555T6+864pT7+4608p2T8−94p3T9+93p4T10−3p5T11+p6T12)2 |
| 41 | 1+12T−42T2−990T3+15T4+44292T5+3617T6−2617299T7−8664444T8+83406402T9+621970299T10−647096049T11−21957305292T12−647096049pT13+621970299p2T14+83406402p3T15−8664444p4T16−2617299p5T17+3617p6T18+44292p7T19+15p8T20−990p9T21−42p10T22+12p11T23+p12T24 |
| 43 | 1+6T−114T2−416T3+7617T4+10428T5−340838T6−469998T7+8946594T8+23651170T9−277922874T10−369502188T11+14787611473T12−369502188pT13−277922874p2T14+23651170p3T15+8946594p4T16−469998p5T17−340838p6T18+10428p7T19+7617p8T20−416p9T21−114p10T22+6p11T23+p12T24 |
| 47 | 1+15T−15T2−1332T3−4053T4+50577T5+149399T6−2935773T7−11979270T8+128353842T9+985854933T10−1739075679T11−45888436269T12−1739075679pT13+985854933p2T14+128353842p3T15−11979270p4T16−2935773p5T17+149399p6T18+50577p7T19−4053p8T20−1332p9T21−15p10T22+15p11T23+p12T24 |
| 53 | (1−9T+237T2−1656T3+26583T4−151479T5+1786030T6−151479pT7+26583p2T8−1656p3T9+237p4T10−9p5T11+p6T12)2 |
| 59 | 1−6T−213T2+1296T3+25512T4−153816T5−1929232T6+11972142T7+97225533T8−608531454T9−3222929547T10+14424181056T11+112233818043T12+14424181056pT13−3222929547p2T14−608531454p3T15+97225533p4T16+11972142p5T17−1929232p6T18−153816p7T19+25512p8T20+1296p9T21−213p10T22−6p11T23+p12T24 |
| 61 | 1+24T+93T2−1946T3−10266T4+172446T5+1060300T6−9090504T7−44005779T8+700679680T9+78417087pT10−13840719090T11−283034464943T12−13840719090pT13+78417087p3T14+700679680p3T15−44005779p4T16−9090504p5T17+1060300p6T18+172446p7T19−10266p8T20−1946p9T21+93p10T22+24p11T23+p12T24 |
| 67 | 1+15T−123T2−2792T3+6357T4+236553T5−637361T6−187659pT7+114802740T8+538384030T9−12717543819T10−12718124403T11+988677433003T12−12718124403pT13−12717543819p2T14+538384030p3T15+114802740p4T16−187659p6T17−637361p6T18+236553p7T19+6357p8T20−2792p9T21−123p10T22+15p11T23+p12T24 |
| 71 | (1+246T2+864T3+27087T4+163296T5+2111380T6+163296pT7+27087p2T8+864p3T9+246p4T10+p6T12)2 |
| 73 | (1−12T+282T2−2326T3+34542T4−226674T5+2873211T6−226674pT7+34542p2T8−2326p3T9+282p4T10−12p5T11+p6T12)2 |
| 79 | 1+24T+75T2−1586T3+9156T4+425598T5+2207908T6−21534534T7−220820679T8+1920297382T9+32423493453T10−57642789732T11−2974107069509T12−57642789732pT13+32423493453p2T14+1920297382p3T15−220820679p4T16−21534534p5T17+2207908p6T18+425598p7T19+9156p8T20−1586p9T21+75p10T22+24p11T23+p12T24 |
| 83 | 1+6T−375T2−1512T3+81582T4+207186T5−12797956T6−19690128T7+1584961659T8+1269102870T9−164608491789T10−478472652pT11+14685582800691T12−478472652p2T13−164608491789p2T14+1269102870p3T15+1584961659p4T16−19690128p5T17−12797956p6T18+207186p7T19+81582p8T20−1512p9T21−375p10T22+6p11T23+p12T24 |
| 89 | (1−9T+309T2−3006T3+49110T4−463734T5+5132383T6−463734pT7+49110p2T8−3006p3T9+309p4T10−9p5T11+p6T12)2 |
| 97 | 1−21T−213T2+4318T3+79581T4−852789T5−15536735T6+93324870T7+2428778718T8−6590604818T9−309431633322T10+305897810664T11+31210720717540T12+305897810664pT13−309431633322p2T14−6590604818p3T15+2428778718p4T16+93324870p5T17−15536735p6T18−852789p7T19+79581p8T20+4318p9T21−213p10T22−21p11T23+p12T24 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.37238969029074383001250513887, −3.23498525246339654134147386759, −3.23095991775238003884677667742, −3.09648674052432573159586412908, −3.06024297758643636099376008926, −2.93538699010000698528484654027, −2.87362636714463341065238374735, −2.79088006352780943250900595982, −2.77988233808895844721951262178, −2.66641481971031820711569172482, −2.65419853693720718136540110051, −2.31203922840097218731575869544, −2.05655809411473315253779068792, −2.00563436551980738890601090915, −1.88325628242928916777574349095, −1.79351611327971733277131532124, −1.77773585070207320184904259370, −1.52510346913649049204251592041, −1.27366781146112692728748362775, −0.967272969664452184742312483763, −0.904576978184203258710874057489, −0.861854829186206914209836506245, −0.852842285448942225754693816618, −0.55846019360582081506188357467, −0.03729868617224404585428071870,
0.03729868617224404585428071870, 0.55846019360582081506188357467, 0.852842285448942225754693816618, 0.861854829186206914209836506245, 0.904576978184203258710874057489, 0.967272969664452184742312483763, 1.27366781146112692728748362775, 1.52510346913649049204251592041, 1.77773585070207320184904259370, 1.79351611327971733277131532124, 1.88325628242928916777574349095, 2.00563436551980738890601090915, 2.05655809411473315253779068792, 2.31203922840097218731575869544, 2.65419853693720718136540110051, 2.66641481971031820711569172482, 2.77988233808895844721951262178, 2.79088006352780943250900595982, 2.87362636714463341065238374735, 2.93538699010000698528484654027, 3.06024297758643636099376008926, 3.09648674052432573159586412908, 3.23095991775238003884677667742, 3.23498525246339654134147386759, 3.37238969029074383001250513887
Plot not available for L-functions of degree greater than 10.