Properties

Label 32-34e32-1.1-c0e16-0-0
Degree 3232
Conductor 1.017×10491.017\times 10^{49}
Sign 11
Analytic cond. 0.0001506040.000150604
Root an. cond. 0.7595510.759551
Motivic weight 00
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 17·5-s + 9-s − 17·10-s + 2·13-s − 17-s + 18-s + 152·25-s + 2·26-s − 34-s − 17·45-s + 49-s + 152·50-s − 2·53-s − 34·65-s + 17·85-s + 2·89-s − 17·90-s + 98-s + 2·101-s − 2·106-s + 2·117-s + 121-s − 952·125-s + 127-s − 34·130-s + 131-s + ⋯
L(s)  = 1  + 2-s − 17·5-s + 9-s − 17·10-s + 2·13-s − 17-s + 18-s + 152·25-s + 2·26-s − 34-s − 17·45-s + 49-s + 152·50-s − 2·53-s − 34·65-s + 17·85-s + 2·89-s − 17·90-s + 98-s + 2·101-s − 2·106-s + 2·117-s + 121-s − 952·125-s + 127-s − 34·130-s + 131-s + ⋯

Functional equation

Λ(s)=((2321732)s/2ΓC(s)16L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 17^{32}\right)^{s/2} \, \Gamma_{\C}(s)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}
Λ(s)=((2321732)s/2ΓC(s)16L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 17^{32}\right)^{s/2} \, \Gamma_{\C}(s)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 3232
Conductor: 23217322^{32} \cdot 17^{32}
Sign: 11
Analytic conductor: 0.0001506040.000150604
Root analytic conductor: 0.7595510.759551
Motivic weight: 00
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (32, 2321732, ( :[0]16), 1)(32,\ 2^{32} \cdot 17^{32} ,\ ( \ : [0]^{16} ),\ 1 )

Particular Values

L(12)L(\frac{1}{2}) \approx 0.011617350560.01161735056
L(12)L(\frac12) \approx 0.011617350560.01161735056
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1T+T2T3+T4T5+T6T7+T8T9+T10T11+T12T13+T14T15+T16 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16}
17 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16}
good3 1T2+T4T6+T8T10+T12T14+T16T18+T20T22+T24T26+T28T30+T32 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32}
5 (1+T)16(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) ( 1 + T )^{16}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )
7 1T2+T4T6+T8T10+T12T14+T16T18+T20T22+T24T26+T28T30+T32 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32}
11 1T2+T4T6+T8T10+T12T14+T16T18+T20T22+T24T26+T28T30+T32 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32}
13 (1T+T2T3+T4T5+T6T7+T8T9+T10T11+T12T13+T14T15+T16)2 ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )^{2}
19 (1T+T2T3+T4T5+T6T7+T8T9+T10T11+T12T13+T14T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )
23 1T2+T4T6+T8T10+T12T14+T16T18+T20T22+T24T26+T28T30+T32 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32}
29 (1T+T2T3+T4T5+T6T7+T8T9+T10T11+T12T13+T14T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )
31 1T2+T4T6+T8T10+T12T14+T16T18+T20T22+T24T26+T28T30+T32 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32}
37 (1T+T2T3+T4T5+T6T7+T8T9+T10T11+T12T13+T14T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )
41 (1T+T2T3+T4T5+T6T7+T8T9+T10T11+T12T13+T14T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )
43 (1T+T2T3+T4T5+T6T7+T8T9+T10T11+T12T13+T14T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )
47 (1T+T2T3+T4T5+T6T7+T8T9+T10T11+T12T13+T14T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )
53 (1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16)2 ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )^{2}
59 (1T+T2T3+T4T5+T6T7+T8T9+T10T11+T12T13+T14T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )
61 (1T+T2T3+T4T5+T6T7+T8T9+T10T11+T12T13+T14T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )
67 (1T+T2T3+T4T5+T6T7+T8T9+T10T11+T12T13+T14T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )
71 1T2+T4T6+T8T10+T12T14+T16T18+T20T22+T24T26+T28T30+T32 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32}
73 (1T+T2T3+T4T5+T6T7+T8T9+T10T11+T12T13+T14T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )
79 1T2+T4T6+T8T10+T12T14+T16T18+T20T22+T24T26+T28T30+T32 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32}
83 (1T+T2T3+T4T5+T6T7+T8T9+T10T11+T12T13+T14T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )
89 (1T+T2T3+T4T5+T6T7+T8T9+T10T11+T12T13+T14T15+T16)2 ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )^{2}
97 (1T+T2T3+T4T5+T6T7+T8T9+T10T11+T12T13+T14T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )
show more
show less
   L(s)=p j=132(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{32} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−3.00326244258350917579313255972, −2.90576493237275265068458125636, −2.83338690964142211479623405222, −2.80234627505550527778273960914, −2.77201516152396707637811786059, −2.59473611879455641059095692865, −2.46460298854711158918327676560, −2.40379774017015247762345280619, −2.35903161048342478385520020906, −2.33714406050644589714499765520, −2.01101349520912127598580525766, −1.95925444809955159535992324438, −1.82648247560790348177308102230, −1.54470289932736364512309431062, −1.45058883492430517636768617904, −1.37454153953959900617315380185, −1.29975557571345099482002491333, −1.18408560457446018734734438584, −1.14852130125772970838857768532, −0.897721046801917854359794359452, −0.855291356762008806064445845852, −0.76848937547880494863100160967, −0.54864881468592047112449689459, −0.48680214664612358280771602990, −0.36238845056206168124369861738, 0.36238845056206168124369861738, 0.48680214664612358280771602990, 0.54864881468592047112449689459, 0.76848937547880494863100160967, 0.855291356762008806064445845852, 0.897721046801917854359794359452, 1.14852130125772970838857768532, 1.18408560457446018734734438584, 1.29975557571345099482002491333, 1.37454153953959900617315380185, 1.45058883492430517636768617904, 1.54470289932736364512309431062, 1.82648247560790348177308102230, 1.95925444809955159535992324438, 2.01101349520912127598580525766, 2.33714406050644589714499765520, 2.35903161048342478385520020906, 2.40379774017015247762345280619, 2.46460298854711158918327676560, 2.59473611879455641059095692865, 2.77201516152396707637811786059, 2.80234627505550527778273960914, 2.83338690964142211479623405222, 2.90576493237275265068458125636, 3.00326244258350917579313255972

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.