Properties

Label 1156.1.l.a.339.1
Level $1156$
Weight $1$
Character 1156.339
Analytic conductor $0.577$
Analytic rank $0$
Dimension $16$
Projective image $D_{34}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1156,1,Mod(67,1156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1156, base_ring=CyclotomicField(34))
 
chi = DirichletCharacter(H, H._module([17, 23]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1156.67");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1156.l (of order \(34\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.576919154604\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\Q(\zeta_{34})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{34}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{34} - \cdots)\)

Embedding invariants

Embedding label 339.1
Root \(-0.739009 + 0.673696i\) of defining polynomial
Character \(\chi\) \(=\) 1156.339
Dual form 1156.1.l.a.815.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.445738 + 0.895163i) q^{2} +(-0.602635 - 0.798017i) q^{4} +(-0.0675278 + 0.361242i) q^{5} +(0.982973 - 0.183750i) q^{8} +(-0.739009 + 0.673696i) q^{9} +O(q^{10})\) \(q+(-0.445738 + 0.895163i) q^{2} +(-0.602635 - 0.798017i) q^{4} +(-0.0675278 + 0.361242i) q^{5} +(0.982973 - 0.183750i) q^{8} +(-0.739009 + 0.673696i) q^{9} +(-0.293271 - 0.221468i) q^{10} +(1.45285 - 0.271585i) q^{13} +(-0.273663 + 0.961826i) q^{16} +(-0.273663 + 0.961826i) q^{17} +(-0.273663 - 0.961826i) q^{18} +(0.328972 - 0.163808i) q^{20} +(0.806537 + 0.312454i) q^{25} +(-0.404479 + 1.42160i) q^{26} +(-1.07524 + 0.811985i) q^{29} +(-0.739009 - 0.673696i) q^{32} +(-0.739009 - 0.673696i) q^{34} +(0.982973 + 0.183750i) q^{36} +(0.942485 + 1.52217i) q^{37} +0.367499i q^{40} +(-0.132756 - 0.342683i) q^{41} +(-0.193463 - 0.312454i) q^{45} +(-0.0922684 + 0.995734i) q^{49} +(-0.639202 + 0.582709i) q^{50} +(-1.09227 - 0.995734i) q^{52} +(0.136374 - 0.124322i) q^{53} +(-0.247582 - 1.32445i) q^{58} +(0.719401 + 0.0666624i) q^{61} +(0.932472 - 0.361242i) q^{64} +0.543170i q^{65} +(0.932472 - 0.361242i) q^{68} +(-0.602635 + 0.798017i) q^{72} +(-1.29596 - 0.368731i) q^{73} +(-1.78269 + 0.165190i) q^{74} +(-0.328972 - 0.163808i) q^{80} +(0.0922684 - 0.995734i) q^{81} +(0.365931 + 0.0339085i) q^{82} +(-0.328972 - 0.163808i) q^{85} +(0.876298 + 0.163808i) q^{89} +(0.365931 - 0.0339085i) q^{90} +(-1.07524 - 1.17948i) q^{97} +(-0.850217 - 0.526432i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{2} - q^{4} - 17 q^{5} + q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + q^{2} - q^{4} - 17 q^{5} + q^{8} + q^{9} + 2 q^{13} - q^{16} - q^{17} - q^{18} + 16 q^{25} - 2 q^{26} + q^{32} + q^{34} + q^{36} + q^{49} + q^{50} - 15 q^{52} - 2 q^{53} - q^{64} - q^{68} - q^{72} - q^{81} + 2 q^{89} - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1156\mathbb{Z}\right)^\times\).

\(n\) \(579\) \(581\)
\(\chi(n)\) \(-1\) \(e\left(\frac{13}{34}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.445738 + 0.895163i −0.445738 + 0.895163i
\(3\) 0 0 −0.361242 0.932472i \(-0.617647\pi\)
0.361242 + 0.932472i \(0.382353\pi\)
\(4\) −0.602635 0.798017i −0.602635 0.798017i
\(5\) −0.0675278 + 0.361242i −0.0675278 + 0.361242i 0.932472 + 0.361242i \(0.117647\pi\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 0 0 −0.673696 0.739009i \(-0.735294\pi\)
0.673696 + 0.739009i \(0.264706\pi\)
\(8\) 0.982973 0.183750i 0.982973 0.183750i
\(9\) −0.739009 + 0.673696i −0.739009 + 0.673696i
\(10\) −0.293271 0.221468i −0.293271 0.221468i
\(11\) 0 0 0.798017 0.602635i \(-0.205882\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(12\) 0 0
\(13\) 1.45285 0.271585i 1.45285 0.271585i 0.602635 0.798017i \(-0.294118\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.273663 + 0.961826i −0.273663 + 0.961826i
\(17\) −0.273663 + 0.961826i −0.273663 + 0.961826i
\(18\) −0.273663 0.961826i −0.273663 0.961826i
\(19\) 0 0 −0.445738 0.895163i \(-0.647059\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(20\) 0.328972 0.163808i 0.328972 0.163808i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.673696 0.739009i \(-0.735294\pi\)
0.673696 + 0.739009i \(0.264706\pi\)
\(24\) 0 0
\(25\) 0.806537 + 0.312454i 0.806537 + 0.312454i
\(26\) −0.404479 + 1.42160i −0.404479 + 1.42160i
\(27\) 0 0
\(28\) 0 0
\(29\) −1.07524 + 0.811985i −1.07524 + 0.811985i −0.982973 0.183750i \(-0.941176\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(30\) 0 0
\(31\) 0 0 −0.183750 0.982973i \(-0.558824\pi\)
0.183750 + 0.982973i \(0.441176\pi\)
\(32\) −0.739009 0.673696i −0.739009 0.673696i
\(33\) 0 0
\(34\) −0.739009 0.673696i −0.739009 0.673696i
\(35\) 0 0
\(36\) 0.982973 + 0.183750i 0.982973 + 0.183750i
\(37\) 0.942485 + 1.52217i 0.942485 + 1.52217i 0.850217 + 0.526432i \(0.176471\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.367499i 0.367499i
\(41\) −0.132756 0.342683i −0.132756 0.342683i 0.850217 0.526432i \(-0.176471\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(42\) 0 0
\(43\) 0 0 −0.273663 0.961826i \(-0.588235\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(44\) 0 0
\(45\) −0.193463 0.312454i −0.193463 0.312454i
\(46\) 0 0
\(47\) 0 0 −0.739009 0.673696i \(-0.764706\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(48\) 0 0
\(49\) −0.0922684 + 0.995734i −0.0922684 + 0.995734i
\(50\) −0.639202 + 0.582709i −0.639202 + 0.582709i
\(51\) 0 0
\(52\) −1.09227 0.995734i −1.09227 0.995734i
\(53\) 0.136374 0.124322i 0.136374 0.124322i −0.602635 0.798017i \(-0.705882\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −0.247582 1.32445i −0.247582 1.32445i
\(59\) 0 0 −0.0922684 0.995734i \(-0.529412\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(60\) 0 0
\(61\) 0.719401 + 0.0666624i 0.719401 + 0.0666624i 0.445738 0.895163i \(-0.352941\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.932472 0.361242i 0.932472 0.361242i
\(65\) 0.543170i 0.543170i
\(66\) 0 0
\(67\) 0 0 −0.445738 0.895163i \(-0.647059\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(68\) 0.932472 0.361242i 0.932472 0.361242i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.673696 0.739009i \(-0.735294\pi\)
0.673696 + 0.739009i \(0.264706\pi\)
\(72\) −0.602635 + 0.798017i −0.602635 + 0.798017i
\(73\) −1.29596 0.368731i −1.29596 0.368731i −0.445738 0.895163i \(-0.647059\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(74\) −1.78269 + 0.165190i −1.78269 + 0.165190i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.895163 0.445738i \(-0.147059\pi\)
−0.895163 + 0.445738i \(0.852941\pi\)
\(80\) −0.328972 0.163808i −0.328972 0.163808i
\(81\) 0.0922684 0.995734i 0.0922684 0.995734i
\(82\) 0.365931 + 0.0339085i 0.365931 + 0.0339085i
\(83\) 0 0 −0.932472 0.361242i \(-0.882353\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(84\) 0 0
\(85\) −0.328972 0.163808i −0.328972 0.163808i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.876298 + 0.163808i 0.876298 + 0.163808i 0.602635 0.798017i \(-0.294118\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(90\) 0.365931 0.0339085i 0.365931 0.0339085i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.07524 1.17948i −1.07524 1.17948i −0.982973 0.183750i \(-0.941176\pi\)
−0.0922684 0.995734i \(-0.529412\pi\)
\(98\) −0.850217 0.526432i −0.850217 0.526432i
\(99\) 0 0
\(100\) −0.236703 0.831926i −0.236703 0.831926i
\(101\) 0.0505009 0.544991i 0.0505009 0.544991i −0.932472 0.361242i \(-0.882353\pi\)
0.982973 0.183750i \(-0.0588235\pi\)
\(102\) 0 0
\(103\) 0 0 −0.0922684 0.995734i \(-0.529412\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(104\) 1.37821 0.533922i 1.37821 0.533922i
\(105\) 0 0
\(106\) 0.0505009 + 0.177492i 0.0505009 + 0.177492i
\(107\) 0 0 0.895163 0.445738i \(-0.147059\pi\)
−0.895163 + 0.445738i \(0.852941\pi\)
\(108\) 0 0
\(109\) 0.646741 1.66943i 0.646741 1.66943i −0.0922684 0.995734i \(-0.529412\pi\)
0.739009 0.673696i \(-0.235294\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 0.932472 0.361242i \(-0.117647\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.29596 + 0.368731i 1.29596 + 0.368731i
\(117\) −0.890705 + 1.17948i −0.890705 + 1.17948i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.273663 0.961826i 0.273663 0.961826i
\(122\) −0.380338 + 0.614268i −0.380338 + 0.614268i
\(123\) 0 0
\(124\) 0 0
\(125\) −0.360798 + 0.582709i −0.360798 + 0.582709i
\(126\) 0 0
\(127\) 0 0 −0.850217 0.526432i \(-0.823529\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(128\) −0.0922684 + 0.995734i −0.0922684 + 0.995734i
\(129\) 0 0
\(130\) −0.486226 0.242112i −0.486226 0.242112i
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −0.0922684 + 0.995734i −0.0922684 + 0.995734i
\(137\) −1.18475 1.56886i −1.18475 1.56886i −0.739009 0.673696i \(-0.764706\pi\)
−0.445738 0.895163i \(-0.647059\pi\)
\(138\) 0 0
\(139\) 0 0 −0.895163 0.445738i \(-0.852941\pi\)
0.895163 + 0.445738i \(0.147059\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.445738 0.895163i −0.445738 0.895163i
\(145\) −0.220714 0.443254i −0.220714 0.443254i
\(146\) 0.907732 0.995734i 0.907732 0.995734i
\(147\) 0 0
\(148\) 0.646741 1.66943i 0.646741 1.66943i
\(149\) 1.37821 + 0.533922i 1.37821 + 0.533922i 0.932472 0.361242i \(-0.117647\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(150\) 0 0
\(151\) 0 0 −0.602635 0.798017i \(-0.705882\pi\)
0.602635 + 0.798017i \(0.294118\pi\)
\(152\) 0 0
\(153\) −0.445738 0.895163i −0.445738 0.895163i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.181395 1.95756i −0.181395 1.95756i −0.273663 0.961826i \(-0.588235\pi\)
0.0922684 0.995734i \(-0.470588\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.293271 0.221468i 0.293271 0.221468i
\(161\) 0 0
\(162\) 0.850217 + 0.526432i 0.850217 + 0.526432i
\(163\) 0 0 0.526432 0.850217i \(-0.323529\pi\)
−0.526432 + 0.850217i \(0.676471\pi\)
\(164\) −0.193463 + 0.312454i −0.193463 + 0.312454i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.526432 0.850217i \(-0.323529\pi\)
−0.526432 + 0.850217i \(0.676471\pi\)
\(168\) 0 0
\(169\) 1.10455 0.427904i 1.10455 0.427904i
\(170\) 0.293271 0.221468i 0.293271 0.221468i
\(171\) 0 0
\(172\) 0 0
\(173\) 1.91545 + 0.544991i 1.91545 + 0.544991i 0.982973 + 0.183750i \(0.0588235\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −0.537235 + 0.711414i −0.537235 + 0.711414i
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −0.132756 + 0.342683i −0.132756 + 0.342683i
\(181\) 0.132756 + 0.710182i 0.132756 + 0.710182i 0.982973 + 0.183750i \(0.0588235\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.613514 + 0.237677i −0.613514 + 0.237677i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.850217 0.526432i \(-0.823529\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(192\) 0 0
\(193\) 0.719401 1.85699i 0.719401 1.85699i 0.273663 0.961826i \(-0.411765\pi\)
0.445738 0.895163i \(-0.352941\pi\)
\(194\) 1.53511 0.436776i 1.53511 0.436776i
\(195\) 0 0
\(196\) 0.850217 0.526432i 0.850217 0.526432i
\(197\) −0.353470 + 1.89090i −0.353470 + 1.89090i 0.0922684 + 0.995734i \(0.470588\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(198\) 0 0
\(199\) 0 0 0.995734 0.0922684i \(-0.0294118\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(200\) 0.850217 + 0.158933i 0.850217 + 0.158933i
\(201\) 0 0
\(202\) 0.465346 + 0.288130i 0.465346 + 0.288130i
\(203\) 0 0
\(204\) 0 0
\(205\) 0.132756 0.0248164i 0.132756 0.0248164i
\(206\) 0 0
\(207\) 0 0
\(208\) −0.136374 + 1.47171i −0.136374 + 1.47171i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.995734 0.0922684i \(-0.0294118\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(212\) −0.181395 0.0339085i −0.181395 0.0339085i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 1.20614 + 1.32307i 1.20614 + 1.32307i
\(219\) 0 0
\(220\) 0 0
\(221\) −0.136374 + 1.47171i −0.136374 + 1.47171i
\(222\) 0 0
\(223\) 0 0 0.850217 0.526432i \(-0.176471\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(224\) 0 0
\(225\) −0.806537 + 0.312454i −0.806537 + 0.312454i
\(226\) 0 0
\(227\) 0 0 −0.961826 0.273663i \(-0.911765\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(228\) 0 0
\(229\) 1.25664 + 1.14558i 1.25664 + 1.14558i 0.982973 + 0.183750i \(0.0588235\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −0.907732 + 0.995734i −0.907732 + 0.995734i
\(233\) −1.53511 1.15926i −1.53511 1.15926i −0.932472 0.361242i \(-0.882353\pi\)
−0.602635 0.798017i \(-0.705882\pi\)
\(234\) −0.658809 1.32307i −0.658809 1.32307i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.739009 0.673696i \(-0.235294\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(240\) 0 0
\(241\) −0.719401 + 0.0666624i −0.719401 + 0.0666624i −0.445738 0.895163i \(-0.647059\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(242\) 0.739009 + 0.673696i 0.739009 + 0.673696i
\(243\) 0 0
\(244\) −0.380338 0.614268i −0.380338 0.614268i
\(245\) −0.353470 0.100571i −0.353470 0.100571i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −0.360798 0.582709i −0.360798 0.582709i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.850217 0.526432i −0.850217 0.526432i
\(257\) −0.658809 0.600584i −0.658809 0.600584i 0.273663 0.961826i \(-0.411765\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.433459 0.327333i 0.433459 0.327333i
\(261\) 0.247582 1.32445i 0.247582 1.32445i
\(262\) 0 0
\(263\) 0 0 0.273663 0.961826i \(-0.411765\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(264\) 0 0
\(265\) 0.0357011 + 0.0576592i 0.0357011 + 0.0576592i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.72198 0.857445i 1.72198 0.857445i 0.739009 0.673696i \(-0.235294\pi\)
0.982973 0.183750i \(-0.0588235\pi\)
\(270\) 0 0
\(271\) 0 0 −0.273663 0.961826i \(-0.588235\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(272\) −0.850217 0.526432i −0.850217 0.526432i
\(273\) 0 0
\(274\) 1.93247 0.361242i 1.93247 0.361242i
\(275\) 0 0
\(276\) 0 0
\(277\) −1.04837 + 1.69318i −1.04837 + 1.69318i −0.445738 + 0.895163i \(0.647059\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.18475 0.221468i 1.18475 0.221468i 0.445738 0.895163i \(-0.352941\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(282\) 0 0
\(283\) 0 0 −0.995734 0.0922684i \(-0.970588\pi\)
0.995734 + 0.0922684i \(0.0294118\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 1.00000 1.00000
\(289\) −0.850217 0.526432i −0.850217 0.526432i
\(290\) 0.495165 0.495165
\(291\) 0 0
\(292\) 0.486734 + 1.25640i 0.486734 + 1.25640i
\(293\) −0.537235 0.711414i −0.537235 0.711414i 0.445738 0.895163i \(-0.352941\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.20614 + 1.32307i 1.20614 + 1.32307i
\(297\) 0 0
\(298\) −1.09227 + 0.995734i −1.09227 + 0.995734i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.0726608 + 0.255376i −0.0726608 + 0.255376i
\(306\) 1.00000 1.00000
\(307\) 0 0 −0.273663 0.961826i \(-0.588235\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.183750 0.982973i \(-0.558824\pi\)
0.183750 + 0.982973i \(0.441176\pi\)
\(312\) 0 0
\(313\) −1.01267 1.63552i −1.01267 1.63552i −0.739009 0.673696i \(-0.764706\pi\)
−0.273663 0.961826i \(-0.588235\pi\)
\(314\) 1.83319 + 0.710182i 1.83319 + 0.710182i
\(315\) 0 0
\(316\) 0 0
\(317\) 0.353470 1.89090i 0.353470 1.89090i −0.0922684 0.995734i \(-0.529412\pi\)
0.445738 0.895163i \(-0.352941\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.0675278 + 0.361242i 0.0675278 + 0.361242i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.850217 + 0.526432i −0.850217 + 0.526432i
\(325\) 1.25664 + 0.234906i 1.25664 + 0.234906i
\(326\) 0 0
\(327\) 0 0
\(328\) −0.193463 0.312454i −0.193463 0.312454i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.602635 0.798017i \(-0.705882\pi\)
0.602635 + 0.798017i \(0.294118\pi\)
\(332\) 0 0
\(333\) −1.72198 0.489946i −1.72198 0.489946i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.04837 + 0.0971461i −1.04837 + 0.0971461i −0.602635 0.798017i \(-0.705882\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(338\) −0.109295 + 1.17948i −0.109295 + 1.17948i
\(339\) 0 0
\(340\) 0.0675278 + 0.361242i 0.0675278 + 0.361242i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −1.34164 + 1.47171i −1.34164 + 1.47171i
\(347\) 0 0 −0.183750 0.982973i \(-0.558824\pi\)
0.183750 + 0.982973i \(0.441176\pi\)
\(348\) 0 0
\(349\) −1.25664 1.14558i −1.25664 1.14558i −0.982973 0.183750i \(-0.941176\pi\)
−0.273663 0.961826i \(-0.588235\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.510366 + 0.197717i −0.510366 + 0.197717i −0.602635 0.798017i \(-0.705882\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.397365 0.798017i −0.397365 0.798017i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.0922684 0.995734i \(-0.529412\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(360\) −0.247582 0.271585i −0.247582 0.271585i
\(361\) −0.602635 + 0.798017i −0.602635 + 0.798017i
\(362\) −0.694903 0.197717i −0.694903 0.197717i
\(363\) 0 0
\(364\) 0 0
\(365\) 0.220714 0.443254i 0.220714 0.443254i
\(366\) 0 0
\(367\) 0 0 0.995734 0.0922684i \(-0.0294118\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(368\) 0 0
\(369\) 0.328972 + 0.163808i 0.328972 + 0.163808i
\(370\) 0.0607073 0.655137i 0.0607073 0.655137i
\(371\) 0 0
\(372\) 0 0
\(373\) −1.67148 + 0.312454i −1.67148 + 0.312454i −0.932472 0.361242i \(-0.882353\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.34164 + 1.47171i −1.34164 + 1.47171i
\(378\) 0 0
\(379\) 0 0 0.995734 0.0922684i \(-0.0294118\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.932472 0.361242i \(-0.117647\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.34164 + 1.47171i 1.34164 + 1.47171i
\(387\) 0 0
\(388\) −0.293271 + 1.56886i −0.293271 + 1.56886i
\(389\) 0.0505009 + 0.177492i 0.0505009 + 0.177492i 0.982973 0.183750i \(-0.0588235\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.0922684 + 0.995734i 0.0922684 + 0.995734i
\(393\) 0 0
\(394\) −1.53511 1.15926i −1.53511 1.15926i
\(395\) 0 0
\(396\) 0 0
\(397\) 0.328972 + 1.75984i 0.328972 + 1.75984i 0.602635 + 0.798017i \(0.294118\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.521245 + 0.690241i −0.521245 + 0.690241i
\(401\) −1.78269 + 0.887674i −1.78269 + 0.887674i −0.850217 + 0.526432i \(0.823529\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −0.465346 + 0.288130i −0.465346 + 0.288130i
\(405\) 0.353470 + 0.100571i 0.353470 + 0.100571i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 1.73901 0.673696i 1.73901 0.673696i 0.739009 0.673696i \(-0.235294\pi\)
1.00000 \(0\)
\(410\) −0.0369597 + 0.129900i −0.0369597 + 0.129900i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −1.25664 0.778076i −1.25664 0.778076i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.895163 0.445738i \(-0.852941\pi\)
0.895163 + 0.445738i \(0.147059\pi\)
\(420\) 0 0
\(421\) 0.0505009 + 0.544991i 0.0505009 + 0.544991i 0.982973 + 0.183750i \(0.0588235\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0.111208 0.147263i 0.111208 0.147263i
\(425\) −0.521245 + 0.690241i −0.521245 + 0.690241i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.961826 0.273663i \(-0.0882353\pi\)
−0.961826 + 0.273663i \(0.911765\pi\)
\(432\) 0 0
\(433\) 0.876298 + 1.75984i 0.876298 + 1.75984i 0.602635 + 0.798017i \(0.294118\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.72198 + 0.489946i −1.72198 + 0.489946i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.895163 0.445738i \(-0.852941\pi\)
0.895163 + 0.445738i \(0.147059\pi\)
\(440\) 0 0
\(441\) −0.602635 0.798017i −0.602635 0.798017i
\(442\) −1.25664 0.778076i −1.25664 0.778076i
\(443\) 0 0 0.602635 0.798017i \(-0.294118\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(444\) 0 0
\(445\) −0.118349 + 0.305494i −0.118349 + 0.305494i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.58923 + 1.20013i −1.58923 + 1.20013i −0.739009 + 0.673696i \(0.764706\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(450\) 0.0798070 0.861255i 0.0798070 0.861255i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.149783 + 0.526432i −0.149783 + 0.526432i 0.850217 + 0.526432i \(0.176471\pi\)
−1.00000 \(\pi\)
\(458\) −1.58561 + 0.614268i −1.58561 + 0.614268i
\(459\) 0 0
\(460\) 0 0
\(461\) 0.726337 0.961826i 0.726337 0.961826i −0.273663 0.961826i \(-0.588235\pi\)
1.00000 \(0\)
\(462\) 0 0
\(463\) 0 0 0.850217 0.526432i \(-0.176471\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(464\) −0.486734 1.25640i −0.486734 1.25640i
\(465\) 0 0
\(466\) 1.72198 0.857445i 1.72198 0.857445i
\(467\) 0 0 0.602635 0.798017i \(-0.294118\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(468\) 1.47802 1.47802
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −0.0170269 + 0.183750i −0.0170269 + 0.183750i
\(478\) 0 0
\(479\) 0 0 0.183750 0.982973i \(-0.441176\pi\)
−0.183750 + 0.982973i \(0.558824\pi\)
\(480\) 0 0
\(481\) 1.78269 + 1.95552i 1.78269 + 1.95552i
\(482\) 0.260991 0.673696i 0.260991 0.673696i
\(483\) 0 0
\(484\) −0.932472 + 0.361242i −0.932472 + 0.361242i
\(485\) 0.498687 0.308774i 0.498687 0.308774i
\(486\) 0 0
\(487\) 0 0 −0.798017 0.602635i \(-0.794118\pi\)
0.798017 + 0.602635i \(0.205882\pi\)
\(488\) 0.719401 0.0666624i 0.719401 0.0666624i
\(489\) 0 0
\(490\) 0.247582 0.271585i 0.247582 0.271585i
\(491\) 0 0 −0.850217 0.526432i \(-0.823529\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(492\) 0 0
\(493\) −0.486734 1.25640i −0.486734 1.25640i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.895163 0.445738i \(-0.147059\pi\)
−0.895163 + 0.445738i \(0.852941\pi\)
\(500\) 0.682442 0.0632375i 0.682442 0.0632375i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0.193463 + 0.0550451i 0.193463 + 0.0550451i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.0822551 0.165190i 0.0822551 0.165190i −0.850217 0.526432i \(-0.823529\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.850217 0.526432i 0.850217 0.526432i
\(513\) 0 0
\(514\) 0.831277 0.322039i 0.831277 0.322039i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0.0998072 + 0.533922i 0.0998072 + 0.533922i
\(521\) 0 0 −0.739009 0.673696i \(-0.764706\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(522\) 1.07524 + 0.811985i 1.07524 + 0.811985i
\(523\) 0 0 −0.445738 0.895163i \(-0.647059\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.0922684 + 0.995734i −0.0922684 + 0.995734i
\(530\) −0.0675278 + 0.00625737i −0.0675278 + 0.00625737i
\(531\) 0 0
\(532\) 0 0
\(533\) −0.285942 0.461813i −0.285942 0.461813i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 1.92365i 1.92365i
\(539\) 0 0
\(540\) 0 0
\(541\) −0.380338 0.614268i −0.380338 0.614268i 0.602635 0.798017i \(-0.294118\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.850217 0.526432i 0.850217 0.526432i
\(545\) 0.559395 + 0.346363i 0.559395 + 0.346363i
\(546\) 0 0
\(547\) 0 0 −0.183750 0.982973i \(-0.558824\pi\)
0.183750 + 0.982973i \(0.441176\pi\)
\(548\) −0.538007 + 1.89090i −0.538007 + 1.89090i
\(549\) −0.576554 + 0.435393i −0.576554 + 0.435393i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −1.04837 1.69318i −1.04837 1.69318i
\(555\) 0 0
\(556\) 0 0
\(557\) −0.397365 + 0.798017i −0.397365 + 0.798017i 0.602635 + 0.798017i \(0.294118\pi\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −0.329838 + 1.15926i −0.329838 + 1.15926i
\(563\) 0 0 0.982973 0.183750i \(-0.0588235\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.47802 1.34739i 1.47802 1.34739i 0.739009 0.673696i \(-0.235294\pi\)
0.739009 0.673696i \(-0.235294\pi\)
\(570\) 0 0
\(571\) 0 0 −0.673696 0.739009i \(-0.735294\pi\)
0.673696 + 0.739009i \(0.264706\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.445738 + 0.895163i −0.445738 + 0.895163i
\(577\) 1.70043 1.70043 0.850217 0.526432i \(-0.176471\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(578\) 0.850217 0.526432i 0.850217 0.526432i
\(579\) 0 0
\(580\) −0.220714 + 0.443254i −0.220714 + 0.443254i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −1.34164 0.124322i −1.34164 0.124322i
\(585\) −0.365931 0.401408i −0.365931 0.401408i
\(586\) 0.876298 0.163808i 0.876298 0.163808i
\(587\) 0 0 0.739009 0.673696i \(-0.235294\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −1.72198 + 0.489946i −1.72198 + 0.489946i
\(593\) 1.93247 0.361242i 1.93247 0.361242i 0.932472 0.361242i \(-0.117647\pi\)
1.00000 \(0\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.404479 1.42160i −0.404479 1.42160i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.445738 0.895163i \(-0.352941\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(600\) 0 0
\(601\) −0.907732 0.995734i −0.907732 0.995734i 0.0922684 0.995734i \(-0.470588\pi\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.328972 + 0.163808i 0.328972 + 0.163808i
\(606\) 0 0
\(607\) 0 0 0.798017 0.602635i \(-0.205882\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −0.196216 0.178874i −0.196216 0.178874i
\(611\) 0 0
\(612\) −0.445738 + 0.895163i −0.445738 + 0.895163i
\(613\) 1.02474 0.634493i 1.02474 0.634493i 0.0922684 0.995734i \(-0.470588\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −0.709310 1.14558i −0.709310 1.14558i −0.982973 0.183750i \(-0.941176\pi\)
0.273663 0.961826i \(-0.411765\pi\)
\(618\) 0 0
\(619\) 0 0 −0.361242 0.932472i \(-0.617647\pi\)
0.361242 + 0.932472i \(0.382353\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.453067 + 0.413025i 0.453067 + 0.413025i
\(626\) 1.91545 0.177492i 1.91545 0.177492i
\(627\) 0 0
\(628\) −1.45285 + 1.32445i −1.45285 + 1.32445i
\(629\) −1.72198 + 0.489946i −1.72198 + 0.489946i
\(630\) 0 0
\(631\) 0 0 0.739009 0.673696i \(-0.235294\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 1.53511 + 1.15926i 1.53511 + 1.15926i
\(635\) 0 0
\(636\) 0 0
\(637\) 0.136374 + 1.47171i 0.136374 + 1.47171i
\(638\) 0 0
\(639\) 0 0
\(640\) −0.353470 0.100571i −0.353470 0.100571i
\(641\) 1.04837 + 0.0971461i 1.04837 + 0.0971461i 0.602635 0.798017i \(-0.294118\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.445738 0.895163i \(-0.352941\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(648\) −0.0922684 0.995734i −0.0922684 0.995734i
\(649\) 0 0
\(650\) −0.770410 + 1.02019i −0.770410 + 1.02019i
\(651\) 0 0
\(652\) 0 0
\(653\) 1.05286i 1.05286i 0.850217 + 0.526432i \(0.176471\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.365931 0.0339085i 0.365931 0.0339085i
\(657\) 1.20614 0.600584i 1.20614 0.600584i
\(658\) 0 0
\(659\) 0 0 0.0922684 0.995734i \(-0.470588\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(660\) 0 0
\(661\) 1.86494 + 0.722483i 1.86494 + 0.722483i 0.932472 + 0.361242i \(0.117647\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 1.20614 1.32307i 1.20614 1.32307i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.53511 + 0.436776i −1.53511 + 0.436776i −0.932472 0.361242i \(-0.882353\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(674\) 0.380338 0.981767i 0.380338 0.981767i
\(675\) 0 0
\(676\) −1.00711 0.623578i −1.00711 0.623578i
\(677\) 0.293271 1.56886i 0.293271 1.56886i −0.445738 0.895163i \(-0.647059\pi\)
0.739009 0.673696i \(-0.235294\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −0.353470 0.100571i −0.353470 0.100571i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.798017 0.602635i \(-0.794118\pi\)
0.798017 + 0.602635i \(0.205882\pi\)
\(684\) 0 0
\(685\) 0.646741 0.322039i 0.646741 0.322039i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.164368 0.217658i 0.164368 0.217658i
\(690\) 0 0
\(691\) 0 0 −0.361242 0.932472i \(-0.617647\pi\)
0.361242 + 0.932472i \(0.382353\pi\)
\(692\) −0.719401 1.85699i −0.719401 1.85699i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0.365931 0.0339085i 0.365931 0.0339085i
\(698\) 1.58561 0.614268i 1.58561 0.614268i
\(699\) 0 0
\(700\) 0 0
\(701\) 0.404479 0.368731i 0.404479 0.368731i −0.445738 0.895163i \(-0.647059\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0.0505009 0.544991i 0.0505009 0.544991i
\(707\) 0 0
\(708\) 0 0
\(709\) 1.05286i 1.05286i −0.850217 0.526432i \(-0.823529\pi\)
0.850217 0.526432i \(-0.176471\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0.891477 0.891477
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.361242 0.932472i \(-0.382353\pi\)
−0.361242 + 0.932472i \(0.617647\pi\)
\(720\) 0.353470 0.100571i 0.353470 0.100571i
\(721\) 0 0
\(722\) −0.445738 0.895163i −0.445738 0.895163i
\(723\) 0 0
\(724\) 0.486734 0.533922i 0.486734 0.533922i
\(725\) −1.12093 + 0.318932i −1.12093 + 0.318932i
\(726\) 0 0
\(727\) 0 0 −0.932472 0.361242i \(-0.882353\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(728\) 0 0
\(729\) 0.602635 + 0.798017i 0.602635 + 0.798017i
\(730\) 0.298404 + 0.395150i 0.298404 + 0.395150i
\(731\) 0 0
\(732\) 0 0
\(733\) −1.96595 −1.96595 −0.982973 0.183750i \(-0.941176\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −0.293271 + 0.221468i −0.293271 + 0.221468i
\(739\) 0 0 0.0922684 0.995734i \(-0.470588\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(740\) 0.559395 + 0.346363i 0.559395 + 0.346363i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.673696 0.739009i \(-0.264706\pi\)
−0.673696 + 0.739009i \(0.735294\pi\)
\(744\) 0 0
\(745\) −0.285942 + 0.461813i −0.285942 + 0.461813i
\(746\) 0.465346 1.63552i 0.465346 1.63552i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.961826 0.273663i \(-0.911765\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −0.719401 1.85699i −0.719401 1.85699i
\(755\) 0 0
\(756\) 0 0
\(757\) 1.20527 1.20527 0.602635 0.798017i \(-0.294118\pi\)
0.602635 + 0.798017i \(0.294118\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.538007 1.89090i −0.538007 1.89090i −0.445738 0.895163i \(-0.647059\pi\)
−0.0922684 0.995734i \(-0.529412\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.353470 0.100571i 0.353470 0.100571i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0.757949 + 0.469302i 0.757949 + 0.469302i 0.850217 0.526432i \(-0.176471\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.91545 + 0.544991i −1.91545 + 0.544991i
\(773\) 1.83319 0.710182i 1.83319 0.710182i 0.850217 0.526432i \(-0.176471\pi\)
0.982973 0.183750i \(-0.0588235\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.27366 0.961826i −1.27366 0.961826i
\(777\) 0 0
\(778\) −0.181395 0.0339085i −0.181395 0.0339085i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.932472 0.361242i −0.932472 0.361242i
\(785\) 0.719401 + 0.0666624i 0.719401 + 0.0666624i
\(786\) 0 0
\(787\) 0 0 −0.895163 0.445738i \(-0.852941\pi\)
0.895163 + 0.445738i \(0.147059\pi\)
\(788\) 1.72198 0.857445i 1.72198 0.857445i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.06329 0.0985281i 1.06329 0.0985281i
\(794\) −1.72198 0.489946i −1.72198 0.489946i
\(795\) 0 0
\(796\) 0 0
\(797\) 0.0170269 + 0.183750i 0.0170269 + 0.183750i 1.00000 \(0\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.385539 0.774267i −0.385539 0.774267i
\(801\) −0.757949 + 0.469302i −0.757949 + 0.469302i
\(802\) 1.99147i 1.99147i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −0.0505009 0.544991i −0.0505009 0.544991i
\(809\) 0.353470 + 1.89090i 0.353470 + 1.89090i 0.445738 + 0.895163i \(0.352941\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(810\) −0.247582 + 0.271585i −0.247582 + 0.271585i
\(811\) 0 0 −0.798017 0.602635i \(-0.794118\pi\)
0.798017 + 0.602635i \(0.205882\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −0.172075 + 1.85699i −0.172075 + 1.85699i
\(819\) 0 0
\(820\) −0.0998072 0.0909863i −0.0998072 0.0909863i
\(821\) −0.694903 + 0.197717i −0.694903 + 0.197717i −0.602635 0.798017i \(-0.705882\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(822\) 0 0
\(823\) 0 0 −0.961826 0.273663i \(-0.911765\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 1.47802 1.47802 0.739009 0.673696i \(-0.235294\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.25664 0.778076i 1.25664 0.778076i
\(833\) −0.932472 0.361242i −0.932472 0.361242i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.183750 0.982973i \(-0.441176\pi\)
−0.183750 + 0.982973i \(0.558824\pi\)
\(840\) 0 0
\(841\) 0.223162 0.784333i 0.223162 0.784333i
\(842\) −0.510366 0.197717i −0.510366 0.197717i
\(843\) 0 0
\(844\) 0 0
\(845\) 0.0799891 + 0.427904i 0.0799891 + 0.427904i
\(846\) 0 0
\(847\) 0 0
\(848\) 0.0822551 + 0.165190i 0.0822551 + 0.165190i
\(849\) 0 0
\(850\) −0.385539 0.774267i −0.385539 0.774267i
\(851\) 0 0
\(852\) 0 0
\(853\) 1.01267 0.288130i 1.01267 0.288130i 0.273663 0.961826i \(-0.411765\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −0.840204 0.634493i −0.840204 0.634493i 0.0922684 0.995734i \(-0.470588\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(858\) 0 0
\(859\) 0 0 0.982973 0.183750i \(-0.0588235\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.602635 0.798017i \(-0.705882\pi\)
0.602635 + 0.798017i \(0.294118\pi\)
\(864\) 0 0
\(865\) −0.326219 + 0.655137i −0.326219 + 0.655137i
\(866\) −1.96595 −1.96595
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.328972 1.75984i 0.328972 1.75984i
\(873\) 1.58923 + 0.147263i 1.58923 + 0.147263i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.07524 + 0.811985i 1.07524 + 0.811985i 0.982973 0.183750i \(-0.0588235\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.53511 + 0.436776i −1.53511 + 0.436776i −0.932472 0.361242i \(-0.882353\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(882\) 0.982973 0.183750i 0.982973 0.183750i
\(883\) 0 0 0.273663 0.961826i \(-0.411765\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(884\) 1.25664 0.778076i 1.25664 0.778076i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.895163 0.445738i \(-0.147059\pi\)
−0.895163 + 0.445738i \(0.852941\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −0.220714 0.242112i −0.220714 0.242112i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −0.365931 1.95756i −0.365931 1.95756i
\(899\) 0 0
\(900\) 0.735391 + 0.455335i 0.735391 + 0.455335i
\(901\) 0.0822551 + 0.165190i 0.0822551 + 0.165190i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.265512 −0.265512
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0.329838 + 0.436776i 0.329838 + 0.436776i
\(910\) 0 0
\(911\) 0 0 −0.961826 0.273663i \(-0.911765\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −0.404479 0.368731i −0.404479 0.368731i
\(915\) 0 0
\(916\) 0.156896 1.69318i 0.156896 1.69318i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.739009 0.673696i \(-0.764706\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0.537235 + 1.07891i 0.537235 + 1.07891i
\(923\) 0 0
\(924\) 0 0
\(925\) 0.284542 + 1.52217i 0.284542 + 1.52217i
\(926\) 0 0
\(927\) 0 0
\(928\) 1.34164 + 0.124322i 1.34164 + 0.124322i
\(929\) 1.53511 + 0.436776i 1.53511 + 0.436776i 0.932472 0.361242i \(-0.117647\pi\)
0.602635 + 0.798017i \(0.294118\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.92365i 1.92365i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −0.658809 + 1.32307i −0.658809 + 1.32307i
\(937\) −0.111208 1.20013i −0.111208 1.20013i −0.850217 0.526432i \(-0.823529\pi\)
0.739009 0.673696i \(-0.235294\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.58923 0.147263i 1.58923 0.147263i 0.739009 0.673696i \(-0.235294\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.895163 0.445738i \(-0.852941\pi\)
0.895163 + 0.445738i \(0.147059\pi\)
\(948\) 0 0
\(949\) −1.98297 0.183750i −1.98297 0.183750i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0.876298 + 0.163808i 0.876298 + 0.163808i 0.602635 0.798017i \(-0.294118\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(954\) −0.156896 0.0971461i −0.156896 0.0971461i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.932472 + 0.361242i −0.932472 + 0.361242i
\(962\) −2.54512 + 0.724149i −2.54512 + 0.724149i
\(963\) 0 0
\(964\) 0.486734 + 0.533922i 0.486734 + 0.533922i
\(965\) 0.622242 + 0.385276i 0.622242 + 0.385276i
\(966\) 0 0
\(967\) 0 0 −0.273663 0.961826i \(-0.588235\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(968\) 0.0922684 0.995734i 0.0922684 0.995734i
\(969\) 0 0
\(970\) 0.0541192 + 0.584039i 0.0541192 + 0.584039i
\(971\) 0 0 0.932472 0.361242i \(-0.117647\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −0.260991 + 0.673696i −0.260991 + 0.673696i
\(977\) −1.70043 −1.70043 −0.850217 0.526432i \(-0.823529\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.132756 + 0.342683i 0.132756 + 0.342683i
\(981\) 0.646741 + 1.66943i 0.646741 + 1.66943i
\(982\) 0 0
\(983\) 0 0 −0.961826 0.273663i \(-0.911765\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(984\) 0 0
\(985\) −0.659202 0.255376i −0.659202 0.255376i
\(986\) 1.34164 + 0.124322i 1.34164 + 0.124322i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.673696 0.739009i \(-0.264706\pi\)
−0.673696 + 0.739009i \(0.735294\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.78269 0.887674i −1.78269 0.887674i −0.932472 0.361242i \(-0.882353\pi\)
−0.850217 0.526432i \(-0.823529\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1156.1.l.a.339.1 16
4.3 odd 2 CM 1156.1.l.a.339.1 16
289.237 even 34 inner 1156.1.l.a.815.1 yes 16
1156.815 odd 34 inner 1156.1.l.a.815.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1156.1.l.a.339.1 16 1.1 even 1 trivial
1156.1.l.a.339.1 16 4.3 odd 2 CM
1156.1.l.a.815.1 yes 16 289.237 even 34 inner
1156.1.l.a.815.1 yes 16 1156.815 odd 34 inner