L(s) = 1 | − 6·4-s − 2·5-s − 5·9-s − 6·11-s + 25·16-s + 6·19-s + 12·20-s − 6·25-s + 2·29-s + 8·31-s + 30·36-s − 52·41-s + 36·44-s + 10·45-s − 19·49-s + 12·55-s + 2·59-s − 40·61-s − 74·64-s + 36·71-s − 36·76-s + 38·79-s − 50·80-s + 31·81-s + 24·89-s − 12·95-s + 30·99-s + ⋯ |
L(s) = 1 | − 3·4-s − 0.894·5-s − 5/3·9-s − 1.80·11-s + 25/4·16-s + 1.37·19-s + 2.68·20-s − 6/5·25-s + 0.371·29-s + 1.43·31-s + 5·36-s − 8.12·41-s + 5.42·44-s + 1.49·45-s − 2.71·49-s + 1.61·55-s + 0.260·59-s − 5.12·61-s − 9.25·64-s + 4.27·71-s − 4.12·76-s + 4.27·79-s − 5.59·80-s + 31/9·81-s + 2.54·89-s − 1.23·95-s + 3.01·99-s + ⋯ |
Λ(s)=(=((516⋅1116)s/2ΓC(s)16L(s)Λ(2−s)
Λ(s)=(=((516⋅1116)s/2ΓC(s+1/2)16L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.03726316719 |
L(21) |
≈ |
0.03726316719 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+2T+2pT2+42T3+99T4+338T5+36p2T6+2008T7+5281T8+2008pT9+36p4T10+338p3T11+99p4T12+42p5T13+2p7T14+2p7T15+p8T16 |
| 11 | (1+3T−2pT2−19T3+335T4−19pT5−2p3T6+3p3T7+p4T8)2 |
good | 2 | 1+3pT2+11T4−5pT6−77T8−55pT10+69T12+129p2T14+1193T16+129p4T18+69p4T20−55p7T22−77p8T24−5p11T26+11p12T28+3p15T30+p16T32 |
| 3 | 1+5T2−2pT4−140T6−10p3T8+1165T10+5506T12−3770T14−53741T16−3770p2T18+5506p4T20+1165p6T22−10p11T24−140p10T26−2p13T28+5p14T30+p16T32 |
| 7 | 1+19T2+229T4+2109T6+2213pT8+92002T10+438866T12+1927012T14+12254167T16+1927012p2T18+438866p4T20+92002p6T22+2213p9T24+2109p10T26+229p12T28+19p14T30+p16T32 |
| 13 | 1+42T2+635T4−275T6−168035T8−2770249T10−11553003T12+300462090T14+6477797525T16+300462090p2T18−11553003p4T20−2770249p6T22−168035p8T24−275p10T26+635p12T28+42p14T30+p16T32 |
| 17 | 1−5T2−186T4−10315T6+52680T8+4287860T10+38701866T12−14826280pT14−31527815401T16−14826280p3T18+38701866p4T20+4287860p6T22+52680p8T24−10315p10T26−186p12T28−5p14T30+p16T32 |
| 19 | (1−3T−35T2+180T3+185T4−4194T5+14942T6+37935T7−448355T8+37935pT9+14942p2T10−4194p3T11+185p4T12+180p5T13−35p6T14−3p7T15+p8T16)2 |
| 23 | (1−85T2+3382T4−84765T6+1856153T8−84765p2T10+3382p4T12−85p6T14+p8T16)2 |
| 29 | (1−T−33T2+278T3+1127T4+610T5−18852T6+40501T7+2275055T8+40501pT9−18852p2T10+610p3T11+1127p4T12+278p5T13−33p6T14−p7T15+p8T16)2 |
| 31 | (1−4T−23T2−101T3+2551T4−4925T5−57287T6−61630T7+3347567T8−61630pT9−57287p2T10−4925p3T11+2551p4T12−101p5T13−23p6T14−4p7T15+p8T16)2 |
| 37 | 1+120T2+6419T4+169710T6+1135850T8−4332930pT10−10706145719T12−404428360410T14−12797968713881T16−404428360410p2T18−10706145719p4T20−4332930p7T22+1135850p8T24+169710p10T26+6419p12T28+120p14T30+p16T32 |
| 41 | (1+26T+263T2+1156T3−1228T4−54770T5−8553pT6−226372T7+7159995T8−226372pT9−8553p3T10−54770p3T11−1228p4T12+1156p5T13+263p6T14+26p7T15+p8T16)2 |
| 43 | (1−171T2+15457T4−1005398T6+49870565T8−1005398p2T10+15457p4T12−171p6T14+p8T16)2 |
| 47 | 1+210T2+23017T4+1971945T6+143287783T8+9109735985T10+538571627359T12+29130862463950T14+1425554876818805T16+29130862463950p2T18+538571627359p4T20+9109735985p6T22+143287783p8T24+1971945p10T26+23017p12T28+210p14T30+p16T32 |
| 53 | 1−5T2−981T4−139345T6−1908885T8+84123170T10+22219415316T12−356460233840T14−33514746895621T16−356460233840p2T18+22219415316p4T20+84123170p6T22−1908885p8T24−139345p10T26−981p12T28−5p14T30+p16T32 |
| 59 | (1−T+11T2+85T3+7113T4+12500T5−215226T6+1526554T7+21070553T8+1526554pT9−215226p2T10+12500p3T11+7113p4T12+85p5T13+11p6T14−p7T15+p8T16)2 |
| 61 | (1+20T+26T2−2140T3−12685T4+139300T5+1704084T6−3518720T7−128652411T8−3518720pT9+1704084p2T10+139300p3T11−12685p4T12−2140p5T13+26p6T14+20p7T15+p8T16)2 |
| 67 | (1−387T2+71530T4−8300957T6+662638709T8−8300957p2T10+71530p4T12−387p6T14+p8T16)2 |
| 71 | (1−18T+119T2−660T3+6528T4−48510T5+528511T6−8889912T7+95792243T8−8889912pT9+528511p2T10−48510p3T11+6528p4T12−660p5T13+119p6T14−18p7T15+p8T16)2 |
| 73 | 1+91T2−1406T4−1338589T6−44180104T8+6397599698T10+733001427326T12−18973235763482T14−4254917733021293T16−18973235763482p2T18+733001427326p4T20+6397599698p6T22−44180104p8T24−1338589p10T26−1406p12T28+91p14T30+p16T32 |
| 79 | (1−19T+52T2+772T3+1222T4−44105T5−607892T6+7482254T7−37383265T8+7482254pT9−607892p2T10−44105p3T11+1222p4T12+772p5T13+52p6T14−19p7T15+p8T16)2 |
| 83 | 1+299T2+47629T4+5098189T6+383737301T8+24754599712T10+1861275246176T12+181162480129562T14+17063861270507407T16+181162480129562p2T18+1861275246176p4T20+24754599712p6T22+383737301p8T24+5098189p10T26+47629p12T28+299p14T30+p16T32 |
| 89 | (1−6T+228T2−1116T3+26613T4−1116pT5+228p2T6−6p3T7+p4T8)4 |
| 97 | 1+412T2+78833T4+8589772T6+459983126T8−15760400260T10−6348990508023T12−840119161411750T14−86547769155085413T16−840119161411750p2T18−6348990508023p4T20−15760400260p6T22+459983126p8T24+8589772p10T26+78833p12T28+412p14T30+p16T32 |
show more | |
show less | |
L(s)=p∏ j=1∏32(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.93596450467944638972142799605, −4.88531348860611381456826658394, −4.87741691774673586362181483717, −4.81495265516526242350699556021, −4.67323684807931577230985221630, −4.66639998614416985705782401760, −4.53408775954562020351447476323, −4.51009635331319408948221638034, −4.24213330381491402305082889604, −3.94035739675604629275813183242, −3.72862376075761014052961240725, −3.68106913793495170059861751868, −3.52882912728503075106484871815, −3.52100667783473373758984808484, −3.45951651040529274285335401266, −3.40210840687127325413544219627, −3.20307241903005468498017109637, −3.10293891013009170619354558803, −3.00400563869808937727519263009, −2.75212068296630253530530737040, −2.38542886778364778296386622240, −2.26510552391083776004693714983, −1.94878907718246307495164978206, −1.80567855218291239778268290432, −1.36077930952709533267681588626,
1.36077930952709533267681588626, 1.80567855218291239778268290432, 1.94878907718246307495164978206, 2.26510552391083776004693714983, 2.38542886778364778296386622240, 2.75212068296630253530530737040, 3.00400563869808937727519263009, 3.10293891013009170619354558803, 3.20307241903005468498017109637, 3.40210840687127325413544219627, 3.45951651040529274285335401266, 3.52100667783473373758984808484, 3.52882912728503075106484871815, 3.68106913793495170059861751868, 3.72862376075761014052961240725, 3.94035739675604629275813183242, 4.24213330381491402305082889604, 4.51009635331319408948221638034, 4.53408775954562020351447476323, 4.66639998614416985705782401760, 4.67323684807931577230985221630, 4.81495265516526242350699556021, 4.87741691774673586362181483717, 4.88531348860611381456826658394, 4.93596450467944638972142799605
Plot not available for L-functions of degree greater than 10.