Properties

Label 55.2.j.a.9.1
Level $55$
Weight $2$
Character 55.9
Analytic conductor $0.439$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,2,Mod(4,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 55.j (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.439177211117\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{14} + 25x^{12} - 57x^{10} + 194x^{8} - 303x^{6} + 235x^{4} - 33x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 9.1
Root \(-0.972539 - 1.33858i\) of defining polynomial
Character \(\chi\) \(=\) 55.9
Dual form 55.2.j.a.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.57360 - 0.511294i) q^{2} +(1.16075 + 1.59764i) q^{3} +(0.596764 + 0.433574i) q^{4} +(1.09069 + 1.95203i) q^{5} +(-1.00970 - 3.10753i) q^{6} +(1.31845 - 1.81468i) q^{7} +(1.22769 + 1.68978i) q^{8} +(-0.278050 + 0.855749i) q^{9} +O(q^{10})\) \(q+(-1.57360 - 0.511294i) q^{2} +(1.16075 + 1.59764i) q^{3} +(0.596764 + 0.433574i) q^{4} +(1.09069 + 1.95203i) q^{5} +(-1.00970 - 3.10753i) q^{6} +(1.31845 - 1.81468i) q^{7} +(1.22769 + 1.68978i) q^{8} +(-0.278050 + 0.855749i) q^{9} +(-0.718246 - 3.62937i) q^{10} +(-3.27115 - 0.547326i) q^{11} +1.45668i q^{12} +(-3.51868 - 1.14329i) q^{13} +(-3.00254 + 2.18148i) q^{14} +(-1.85261 + 4.00834i) q^{15} +(-1.52381 - 4.68982i) q^{16} +(-2.11573 + 0.687441i) q^{17} +(0.875078 - 1.20444i) q^{18} +(4.27714 - 3.10753i) q^{19} +(-0.195466 + 1.63779i) q^{20} +4.42960 q^{21} +(4.86764 + 2.53379i) q^{22} -3.85415i q^{23} +(-1.27460 + 3.92282i) q^{24} +(-2.62081 + 4.25810i) q^{25} +(4.95244 + 3.59816i) q^{26} +(3.94448 - 1.28164i) q^{27} +(1.57360 - 0.511294i) q^{28} +(0.152450 + 0.110762i) q^{29} +(4.96471 - 5.36029i) q^{30} +(0.212253 - 0.653249i) q^{31} +3.98166i q^{32} +(-2.92256 - 5.86142i) q^{33} +3.68079 q^{34} +(4.98032 + 0.594387i) q^{35} +(-0.536960 + 0.390125i) q^{36} +(-1.52422 + 2.09791i) q^{37} +(-8.31938 + 2.70313i) q^{38} +(-2.25775 - 6.94864i) q^{39} +(-1.95946 + 4.23950i) q^{40} +(-6.40421 + 4.65293i) q^{41} +(-6.97041 - 2.26482i) q^{42} +8.41368i q^{43} +(-1.71480 - 1.74491i) q^{44} +(-1.97371 + 0.390594i) q^{45} +(-1.97060 + 6.06490i) q^{46} +(-7.06117 - 9.71886i) q^{47} +(5.72386 - 7.87822i) q^{48} +(0.608337 + 1.87227i) q^{49} +(6.30124 - 5.36054i) q^{50} +(-3.55411 - 2.58222i) q^{51} +(-1.60412 - 2.20788i) q^{52} +(12.0371 + 3.91110i) q^{53} -6.86233 q^{54} +(-2.49941 - 6.98233i) q^{55} +4.68506 q^{56} +(9.92940 + 3.22626i) q^{57} +(-0.183264 - 0.252241i) q^{58} +(-0.278050 - 0.202015i) q^{59} +(-2.84348 + 1.58878i) q^{60} +(0.535643 + 1.64854i) q^{61} +(-0.668004 + 0.919429i) q^{62} +(1.18632 + 1.63283i) q^{63} +(-1.01183 + 3.11409i) q^{64} +(-1.60605 - 8.11552i) q^{65} +(1.60204 + 10.7178i) q^{66} -0.650461i q^{67} +(-1.56065 - 0.507084i) q^{68} +(6.15754 - 4.47371i) q^{69} +(-7.53313 - 3.48174i) q^{70} +(1.43619 + 4.42013i) q^{71} +(-1.78738 + 0.580756i) q^{72} +(-5.20684 + 7.16660i) q^{73} +(3.47116 - 2.52195i) q^{74} +(-9.84499 + 0.755493i) q^{75} +3.89979 q^{76} +(-5.30606 + 5.21449i) q^{77} +12.0888i q^{78} +(2.23551 - 6.88019i) q^{79} +(7.49264 - 8.08965i) q^{80} +(8.80999 + 6.40083i) q^{81} +(12.4567 - 4.04742i) q^{82} +(-3.02593 + 0.983185i) q^{83} +(2.64342 + 1.92056i) q^{84} +(-3.64950 - 3.38017i) q^{85} +(4.30186 - 13.2398i) q^{86} +0.372127i q^{87} +(-3.09111 - 6.19946i) q^{88} -9.92195 q^{89} +(3.30554 + 0.394506i) q^{90} +(-6.71389 + 4.87793i) q^{91} +(1.67106 - 2.30002i) q^{92} +(1.29003 - 0.419156i) q^{93} +(6.14226 + 18.9039i) q^{94} +(10.7310 + 4.95976i) q^{95} +(-6.36125 + 4.62172i) q^{96} +(-2.15710 - 0.700884i) q^{97} -3.25724i q^{98} +(1.37792 - 2.64710i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{4} - 2 q^{5} - 18 q^{6} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 4 q^{4} - 2 q^{5} - 18 q^{6} + 2 q^{9} - 6 q^{11} - 12 q^{14} - 16 q^{15} + 16 q^{16} + 6 q^{19} - 8 q^{20} + 8 q^{21} + 6 q^{24} - 16 q^{25} + 40 q^{26} + 2 q^{29} + 26 q^{30} + 8 q^{31} - 16 q^{34} + 22 q^{35} + 10 q^{36} + 30 q^{39} + 12 q^{40} - 52 q^{41} + 4 q^{44} + 12 q^{45} - 62 q^{46} - 10 q^{49} + 28 q^{50} - 42 q^{51} - 40 q^{54} - 8 q^{55} - 20 q^{56} + 2 q^{59} - 32 q^{60} - 40 q^{61} - 8 q^{64} - 40 q^{65} + 58 q^{66} + 26 q^{69} - 34 q^{70} + 36 q^{71} + 48 q^{74} - 20 q^{75} + 56 q^{76} + 38 q^{79} + 34 q^{80} + 68 q^{81} + 12 q^{84} + 58 q^{85} + 22 q^{86} + 24 q^{89} + 78 q^{90} - 20 q^{91} + 14 q^{94} + 48 q^{95} - 86 q^{96} - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.57360 0.511294i −1.11270 0.361539i −0.305725 0.952120i \(-0.598899\pi\)
−0.806979 + 0.590581i \(0.798899\pi\)
\(3\) 1.16075 + 1.59764i 0.670160 + 0.922396i 0.999764 0.0217231i \(-0.00691523\pi\)
−0.329604 + 0.944119i \(0.606915\pi\)
\(4\) 0.596764 + 0.433574i 0.298382 + 0.216787i
\(5\) 1.09069 + 1.95203i 0.487770 + 0.872972i
\(6\) −1.00970 3.10753i −0.412207 1.26864i
\(7\) 1.31845 1.81468i 0.498326 0.685886i −0.483571 0.875305i \(-0.660660\pi\)
0.981896 + 0.189419i \(0.0606604\pi\)
\(8\) 1.22769 + 1.68978i 0.434055 + 0.597426i
\(9\) −0.278050 + 0.855749i −0.0926832 + 0.285250i
\(10\) −0.718246 3.62937i −0.227129 1.14771i
\(11\) −3.27115 0.547326i −0.986289 0.165025i
\(12\) 1.45668i 0.420508i
\(13\) −3.51868 1.14329i −0.975906 0.317091i −0.222708 0.974885i \(-0.571490\pi\)
−0.753198 + 0.657794i \(0.771490\pi\)
\(14\) −3.00254 + 2.18148i −0.802464 + 0.583024i
\(15\) −1.85261 + 4.00834i −0.478342 + 1.03495i
\(16\) −1.52381 4.68982i −0.380954 1.17245i
\(17\) −2.11573 + 0.687441i −0.513139 + 0.166729i −0.554129 0.832431i \(-0.686949\pi\)
0.0409903 + 0.999160i \(0.486949\pi\)
\(18\) 0.875078 1.20444i 0.206258 0.283890i
\(19\) 4.27714 3.10753i 0.981244 0.712916i 0.0232580 0.999729i \(-0.492596\pi\)
0.957986 + 0.286814i \(0.0925961\pi\)
\(20\) −0.195466 + 1.63779i −0.0437074 + 0.366221i
\(21\) 4.42960 0.966617
\(22\) 4.86764 + 2.53379i 1.03778 + 0.540206i
\(23\) 3.85415i 0.803647i −0.915717 0.401823i \(-0.868377\pi\)
0.915717 0.401823i \(-0.131623\pi\)
\(24\) −1.27460 + 3.92282i −0.260177 + 0.800742i
\(25\) −2.62081 + 4.25810i −0.524161 + 0.851619i
\(26\) 4.95244 + 3.59816i 0.971253 + 0.705657i
\(27\) 3.94448 1.28164i 0.759116 0.246652i
\(28\) 1.57360 0.511294i 0.297383 0.0966255i
\(29\) 0.152450 + 0.110762i 0.0283093 + 0.0205679i 0.601850 0.798609i \(-0.294431\pi\)
−0.573541 + 0.819177i \(0.694431\pi\)
\(30\) 4.96471 5.36029i 0.906428 0.978651i
\(31\) 0.212253 0.653249i 0.0381218 0.117327i −0.930185 0.367092i \(-0.880353\pi\)
0.968306 + 0.249765i \(0.0803534\pi\)
\(32\) 3.98166i 0.703866i
\(33\) −2.92256 5.86142i −0.508753 1.02034i
\(34\) 3.68079 0.631251
\(35\) 4.98032 + 0.594387i 0.841828 + 0.100470i
\(36\) −0.536960 + 0.390125i −0.0894934 + 0.0650208i
\(37\) −1.52422 + 2.09791i −0.250580 + 0.344894i −0.915714 0.401830i \(-0.868374\pi\)
0.665134 + 0.746724i \(0.268374\pi\)
\(38\) −8.31938 + 2.70313i −1.34958 + 0.438506i
\(39\) −2.25775 6.94864i −0.361529 1.11267i
\(40\) −1.95946 + 4.23950i −0.309817 + 0.670324i
\(41\) −6.40421 + 4.65293i −1.00017 + 0.726666i −0.962124 0.272611i \(-0.912113\pi\)
−0.0380448 + 0.999276i \(0.512113\pi\)
\(42\) −6.97041 2.26482i −1.07556 0.349470i
\(43\) 8.41368i 1.28307i 0.767092 + 0.641537i \(0.221703\pi\)
−0.767092 + 0.641537i \(0.778297\pi\)
\(44\) −1.71480 1.74491i −0.258515 0.263055i
\(45\) −1.97371 + 0.390594i −0.294223 + 0.0582263i
\(46\) −1.97060 + 6.06490i −0.290550 + 0.894220i
\(47\) −7.06117 9.71886i −1.02998 1.41764i −0.904965 0.425486i \(-0.860103\pi\)
−0.125012 0.992155i \(-0.539897\pi\)
\(48\) 5.72386 7.87822i 0.826168 1.13712i
\(49\) 0.608337 + 1.87227i 0.0869053 + 0.267467i
\(50\) 6.30124 5.36054i 0.891130 0.758095i
\(51\) −3.55411 2.58222i −0.497676 0.361582i
\(52\) −1.60412 2.20788i −0.222451 0.306178i
\(53\) 12.0371 + 3.91110i 1.65343 + 0.537231i 0.979479 0.201549i \(-0.0645974\pi\)
0.673947 + 0.738779i \(0.264597\pi\)
\(54\) −6.86233 −0.933845
\(55\) −2.49941 6.98233i −0.337020 0.941498i
\(56\) 4.68506 0.626067
\(57\) 9.92940 + 3.22626i 1.31518 + 0.427328i
\(58\) −0.183264 0.252241i −0.0240638 0.0331209i
\(59\) −0.278050 0.202015i −0.0361990 0.0263001i 0.569539 0.821965i \(-0.307122\pi\)
−0.605738 + 0.795664i \(0.707122\pi\)
\(60\) −2.84348 + 1.58878i −0.367092 + 0.205111i
\(61\) 0.535643 + 1.64854i 0.0685821 + 0.211074i 0.979474 0.201572i \(-0.0646049\pi\)
−0.910892 + 0.412645i \(0.864605\pi\)
\(62\) −0.668004 + 0.919429i −0.0848366 + 0.116768i
\(63\) 1.18632 + 1.63283i 0.149462 + 0.205717i
\(64\) −1.01183 + 3.11409i −0.126479 + 0.389261i
\(65\) −1.60605 8.11552i −0.199206 1.00661i
\(66\) 1.60204 + 10.7178i 0.197197 + 1.31927i
\(67\) 0.650461i 0.0794664i −0.999210 0.0397332i \(-0.987349\pi\)
0.999210 0.0397332i \(-0.0126508\pi\)
\(68\) −1.56065 0.507084i −0.189256 0.0614930i
\(69\) 6.15754 4.47371i 0.741281 0.538572i
\(70\) −7.53313 3.48174i −0.900381 0.416147i
\(71\) 1.43619 + 4.42013i 0.170444 + 0.524573i 0.999396 0.0347464i \(-0.0110624\pi\)
−0.828952 + 0.559320i \(0.811062\pi\)
\(72\) −1.78738 + 0.580756i −0.210645 + 0.0684427i
\(73\) −5.20684 + 7.16660i −0.609415 + 0.838787i −0.996529 0.0832444i \(-0.973472\pi\)
0.387115 + 0.922032i \(0.373472\pi\)
\(74\) 3.47116 2.52195i 0.403515 0.293171i
\(75\) −9.84499 + 0.755493i −1.13680 + 0.0872368i
\(76\) 3.89979 0.447336
\(77\) −5.30606 + 5.21449i −0.604682 + 0.594246i
\(78\) 12.0888i 1.36878i
\(79\) 2.23551 6.88019i 0.251514 0.774082i −0.742982 0.669311i \(-0.766589\pi\)
0.994496 0.104770i \(-0.0334108\pi\)
\(80\) 7.49264 8.08965i 0.837703 0.904450i
\(81\) 8.80999 + 6.40083i 0.978888 + 0.711203i
\(82\) 12.4567 4.04742i 1.37561 0.446963i
\(83\) −3.02593 + 0.983185i −0.332139 + 0.107919i −0.470339 0.882486i \(-0.655868\pi\)
0.138200 + 0.990404i \(0.455868\pi\)
\(84\) 2.64342 + 1.92056i 0.288421 + 0.209550i
\(85\) −3.64950 3.38017i −0.395844 0.366631i
\(86\) 4.30186 13.2398i 0.463882 1.42768i
\(87\) 0.372127i 0.0398962i
\(88\) −3.09111 6.19946i −0.329514 0.660865i
\(89\) −9.92195 −1.05172 −0.525862 0.850570i \(-0.676257\pi\)
−0.525862 + 0.850570i \(0.676257\pi\)
\(90\) 3.30554 + 0.394506i 0.348434 + 0.0415846i
\(91\) −6.71389 + 4.87793i −0.703807 + 0.511346i
\(92\) 1.67106 2.30002i 0.174220 0.239793i
\(93\) 1.29003 0.419156i 0.133770 0.0434644i
\(94\) 6.14226 + 18.9039i 0.633526 + 1.94979i
\(95\) 10.7310 + 4.95976i 1.10098 + 0.508860i
\(96\) −6.36125 + 4.62172i −0.649243 + 0.471703i
\(97\) −2.15710 0.700884i −0.219020 0.0711640i 0.197451 0.980313i \(-0.436734\pi\)
−0.416472 + 0.909149i \(0.636734\pi\)
\(98\) 3.25724i 0.329031i
\(99\) 1.37792 2.64710i 0.138486 0.266044i
\(100\) −3.41020 + 1.40476i −0.341020 + 0.140476i
\(101\) 3.05830 9.41247i 0.304312 0.936576i −0.675621 0.737249i \(-0.736124\pi\)
0.979933 0.199327i \(-0.0638756\pi\)
\(102\) 4.27249 + 5.88057i 0.423039 + 0.582263i
\(103\) 6.01958 8.28525i 0.593127 0.816370i −0.401930 0.915670i \(-0.631661\pi\)
0.995057 + 0.0993007i \(0.0316606\pi\)
\(104\) −2.38796 7.34938i −0.234159 0.720666i
\(105\) 4.83130 + 8.64668i 0.471487 + 0.843830i
\(106\) −16.9419 12.3090i −1.64554 1.19556i
\(107\) 5.90536 + 8.12803i 0.570893 + 0.785767i 0.992660 0.120937i \(-0.0385900\pi\)
−0.421767 + 0.906704i \(0.638590\pi\)
\(108\) 2.90961 + 0.945389i 0.279977 + 0.0909701i
\(109\) 8.80173 0.843053 0.421527 0.906816i \(-0.361494\pi\)
0.421527 + 0.906816i \(0.361494\pi\)
\(110\) 0.363043 + 12.2653i 0.0346148 + 1.16945i
\(111\) −5.12094 −0.486058
\(112\) −10.5196 3.41803i −0.994010 0.322973i
\(113\) −0.135985 0.187168i −0.0127924 0.0176073i 0.802573 0.596554i \(-0.203464\pi\)
−0.815365 + 0.578947i \(0.803464\pi\)
\(114\) −13.9753 10.1537i −1.30891 0.950980i
\(115\) 7.52341 4.20367i 0.701561 0.391995i
\(116\) 0.0429534 + 0.132197i 0.00398812 + 0.0122742i
\(117\) 1.95673 2.69321i 0.180900 0.248988i
\(118\) 0.334250 + 0.460056i 0.0307702 + 0.0423516i
\(119\) −1.54198 + 4.74573i −0.141353 + 0.435040i
\(120\) −9.04763 + 1.79051i −0.825932 + 0.163451i
\(121\) 10.4009 + 3.58078i 0.945533 + 0.325525i
\(122\) 2.86801i 0.259658i
\(123\) −14.8674 4.83071i −1.34055 0.435570i
\(124\) 0.409897 0.297808i 0.0368098 0.0267439i
\(125\) −11.1704 0.471632i −0.999110 0.0421840i
\(126\) −1.03194 3.17598i −0.0919324 0.282939i
\(127\) −2.31140 + 0.751018i −0.205103 + 0.0666421i −0.409767 0.912190i \(-0.634390\pi\)
0.204664 + 0.978832i \(0.434390\pi\)
\(128\) 7.86516 10.8255i 0.695188 0.956844i
\(129\) −13.4420 + 9.76619i −1.18350 + 0.859865i
\(130\) −1.62214 + 13.5917i −0.142271 + 1.19207i
\(131\) 1.58846 0.138785 0.0693924 0.997589i \(-0.477894\pi\)
0.0693924 + 0.997589i \(0.477894\pi\)
\(132\) 0.797281 4.76503i 0.0693944 0.414743i
\(133\) 11.8588i 1.02829i
\(134\) −0.332577 + 1.02357i −0.0287302 + 0.0884226i
\(135\) 6.80399 + 6.30186i 0.585594 + 0.542378i
\(136\) −3.75909 2.73114i −0.322339 0.234193i
\(137\) −17.7866 + 5.77920i −1.51961 + 0.493750i −0.945664 0.325145i \(-0.894587\pi\)
−0.573943 + 0.818895i \(0.694587\pi\)
\(138\) −11.9769 + 3.89153i −1.01954 + 0.331269i
\(139\) 9.40675 + 6.83441i 0.797870 + 0.579687i 0.910289 0.413974i \(-0.135860\pi\)
−0.112418 + 0.993661i \(0.535860\pi\)
\(140\) 2.71436 + 2.51405i 0.229406 + 0.212476i
\(141\) 7.33095 22.5624i 0.617378 1.90009i
\(142\) 7.68984i 0.645317i
\(143\) 10.8844 + 5.66573i 0.910197 + 0.473792i
\(144\) 4.43700 0.369750
\(145\) −0.0499340 + 0.418393i −0.00414679 + 0.0347457i
\(146\) 11.8577 8.61514i 0.981352 0.712994i
\(147\) −2.28508 + 3.14514i −0.188470 + 0.259407i
\(148\) −1.81920 + 0.591094i −0.149537 + 0.0485876i
\(149\) −1.82800 5.62600i −0.149755 0.460900i 0.847836 0.530258i \(-0.177905\pi\)
−0.997592 + 0.0693580i \(0.977905\pi\)
\(150\) 15.8784 + 3.84484i 1.29646 + 0.313930i
\(151\) −10.3375 + 7.51064i −0.841254 + 0.611207i −0.922721 0.385469i \(-0.874040\pi\)
0.0814664 + 0.996676i \(0.474040\pi\)
\(152\) 10.5020 + 3.41232i 0.851828 + 0.276776i
\(153\) 2.00167i 0.161826i
\(154\) 11.0158 5.49257i 0.887675 0.442604i
\(155\) 1.50666 0.298166i 0.121018 0.0239492i
\(156\) 1.66541 5.12560i 0.133339 0.410376i
\(157\) 8.43394 + 11.6083i 0.673102 + 0.926445i 0.999826 0.0186749i \(-0.00594475\pi\)
−0.326724 + 0.945120i \(0.605945\pi\)
\(158\) −7.03560 + 9.68367i −0.559722 + 0.770391i
\(159\) 7.72359 + 23.7708i 0.612520 + 1.88514i
\(160\) −7.77231 + 4.34275i −0.614455 + 0.343324i
\(161\) −6.99407 5.08149i −0.551210 0.400478i
\(162\) −10.5907 14.5768i −0.832084 1.14527i
\(163\) −3.44963 1.12085i −0.270196 0.0877921i 0.170785 0.985308i \(-0.445370\pi\)
−0.440982 + 0.897516i \(0.645370\pi\)
\(164\) −5.83919 −0.455964
\(165\) 8.25404 12.0979i 0.642576 0.941820i
\(166\) 5.26430 0.408589
\(167\) 3.63370 + 1.18066i 0.281184 + 0.0913623i 0.446214 0.894926i \(-0.352772\pi\)
−0.165030 + 0.986289i \(0.552772\pi\)
\(168\) 5.43819 + 7.48502i 0.419565 + 0.577482i
\(169\) 0.556767 + 0.404515i 0.0428282 + 0.0311165i
\(170\) 4.01459 + 7.18500i 0.307905 + 0.551065i
\(171\) 1.47000 + 4.52421i 0.112414 + 0.345975i
\(172\) −3.64795 + 5.02098i −0.278154 + 0.382846i
\(173\) −1.23855 1.70472i −0.0941651 0.129607i 0.759335 0.650700i \(-0.225524\pi\)
−0.853500 + 0.521093i \(0.825524\pi\)
\(174\) 0.190266 0.585579i 0.0144240 0.0443926i
\(175\) 4.27171 + 10.3700i 0.322911 + 0.783899i
\(176\) 2.41777 + 16.1751i 0.182246 + 1.21925i
\(177\) 0.678711i 0.0510151i
\(178\) 15.6132 + 5.07303i 1.17026 + 0.380240i
\(179\) 4.06448 2.95302i 0.303793 0.220719i −0.425435 0.904989i \(-0.639879\pi\)
0.729229 + 0.684270i \(0.239879\pi\)
\(180\) −1.34719 0.622657i −0.100413 0.0464101i
\(181\) −4.83538 14.8818i −0.359411 1.10615i −0.953408 0.301685i \(-0.902451\pi\)
0.593997 0.804467i \(-0.297549\pi\)
\(182\) 13.0590 4.24314i 0.968000 0.314522i
\(183\) −2.01202 + 2.76931i −0.148733 + 0.204713i
\(184\) 6.51265 4.73172i 0.480119 0.348827i
\(185\) −5.75762 0.687156i −0.423309 0.0505207i
\(186\) −2.24430 −0.164560
\(187\) 7.29712 1.09073i 0.533618 0.0797622i
\(188\) 8.86140i 0.646284i
\(189\) 2.87481 8.84777i 0.209112 0.643580i
\(190\) −14.3504 13.2914i −1.04109 0.964257i
\(191\) −2.52078 1.83145i −0.182397 0.132519i 0.492840 0.870120i \(-0.335959\pi\)
−0.675237 + 0.737601i \(0.735959\pi\)
\(192\) −6.14966 + 1.99815i −0.443814 + 0.144204i
\(193\) 9.16474 2.97780i 0.659692 0.214347i 0.0400095 0.999199i \(-0.487261\pi\)
0.619683 + 0.784852i \(0.287261\pi\)
\(194\) 3.03606 + 2.20582i 0.217976 + 0.158369i
\(195\) 11.1014 11.9860i 0.794990 0.858334i
\(196\) −0.448734 + 1.38106i −0.0320524 + 0.0986472i
\(197\) 14.3974i 1.02577i −0.858457 0.512885i \(-0.828577\pi\)
0.858457 0.512885i \(-0.171423\pi\)
\(198\) −3.52174 + 3.46096i −0.250279 + 0.245960i
\(199\) −14.7978 −1.04899 −0.524493 0.851415i \(-0.675745\pi\)
−0.524493 + 0.851415i \(0.675745\pi\)
\(200\) −10.4128 + 0.799064i −0.736294 + 0.0565023i
\(201\) 1.03920 0.755023i 0.0732995 0.0532552i
\(202\) −9.62508 + 13.2478i −0.677218 + 0.932111i
\(203\) 0.401995 0.130616i 0.0282145 0.00916745i
\(204\) −1.00138 3.08194i −0.0701109 0.215779i
\(205\) −16.0676 7.42629i −1.12221 0.518675i
\(206\) −13.7086 + 9.95989i −0.955125 + 0.693939i
\(207\) 3.29819 + 1.07165i 0.229240 + 0.0744845i
\(208\) 18.2441i 1.26500i
\(209\) −15.6920 + 7.82420i −1.08544 + 0.541211i
\(210\) −3.18154 16.0766i −0.219547 1.10939i
\(211\) −2.09250 + 6.44005i −0.144054 + 0.443352i −0.996888 0.0788298i \(-0.974882\pi\)
0.852834 + 0.522181i \(0.174882\pi\)
\(212\) 5.48756 + 7.55299i 0.376888 + 0.518741i
\(213\) −5.39471 + 7.42518i −0.369640 + 0.508765i
\(214\) −5.13687 15.8097i −0.351149 1.08073i
\(215\) −16.4237 + 9.17669i −1.12009 + 0.625845i
\(216\) 7.00830 + 5.09183i 0.476854 + 0.346455i
\(217\) −0.905596 1.24645i −0.0614759 0.0846143i
\(218\) −13.8504 4.50027i −0.938069 0.304797i
\(219\) −17.4935 −1.18210
\(220\) 1.53580 5.25048i 0.103544 0.353987i
\(221\) 8.23051 0.553644
\(222\) 8.05832 + 2.61831i 0.540839 + 0.175729i
\(223\) −5.12388 7.05242i −0.343121 0.472265i 0.602229 0.798323i \(-0.294279\pi\)
−0.945350 + 0.326058i \(0.894279\pi\)
\(224\) 7.22547 + 5.24961i 0.482772 + 0.350754i
\(225\) −2.91515 3.42671i −0.194343 0.228448i
\(226\) 0.118289 + 0.364056i 0.00786846 + 0.0242166i
\(227\) 2.23795 3.08028i 0.148538 0.204445i −0.728264 0.685297i \(-0.759672\pi\)
0.876802 + 0.480852i \(0.159672\pi\)
\(228\) 4.52668 + 6.23044i 0.299787 + 0.412621i
\(229\) 0.838570 2.58085i 0.0554142 0.170547i −0.919519 0.393046i \(-0.871421\pi\)
0.974933 + 0.222499i \(0.0714213\pi\)
\(230\) −13.9881 + 2.76823i −0.922351 + 0.182532i
\(231\) −14.4899 2.42443i −0.953364 0.159516i
\(232\) 0.393588i 0.0258403i
\(233\) 9.99634 + 3.24801i 0.654882 + 0.212784i 0.617566 0.786519i \(-0.288119\pi\)
0.0373166 + 0.999303i \(0.488119\pi\)
\(234\) −4.45614 + 3.23758i −0.291307 + 0.211647i
\(235\) 11.2699 24.3838i 0.735170 1.59062i
\(236\) −0.0783415 0.241110i −0.00509959 0.0156949i
\(237\) 13.5869 4.41466i 0.882565 0.286763i
\(238\) 4.85293 6.67948i 0.314569 0.432966i
\(239\) 16.2124 11.7790i 1.04869 0.761919i 0.0767288 0.997052i \(-0.475552\pi\)
0.971963 + 0.235133i \(0.0755524\pi\)
\(240\) 21.6214 + 2.58045i 1.39566 + 0.166568i
\(241\) 28.4450 1.83230 0.916152 0.400832i \(-0.131279\pi\)
0.916152 + 0.400832i \(0.131279\pi\)
\(242\) −14.5360 10.9526i −0.934408 0.704060i
\(243\) 9.06251i 0.581361i
\(244\) −0.395112 + 1.21603i −0.0252944 + 0.0778483i
\(245\) −2.99121 + 3.22955i −0.191101 + 0.206328i
\(246\) 20.9254 + 15.2032i 1.33416 + 0.969321i
\(247\) −18.6027 + 6.04438i −1.18366 + 0.384595i
\(248\) 1.36443 0.443329i 0.0866411 0.0281514i
\(249\) −5.08313 3.69311i −0.322130 0.234041i
\(250\) 17.3366 + 6.45351i 1.09646 + 0.408156i
\(251\) −7.36604 + 22.6703i −0.464940 + 1.43094i 0.394117 + 0.919060i \(0.371050\pi\)
−0.859058 + 0.511879i \(0.828950\pi\)
\(252\) 1.48877i 0.0937838i
\(253\) −2.10948 + 12.6075i −0.132622 + 0.792628i
\(254\) 4.02120 0.252313
\(255\) 1.16412 9.75411i 0.0729003 0.610826i
\(256\) −12.6136 + 9.16432i −0.788350 + 0.572770i
\(257\) 14.5044 19.9636i 0.904758 1.24529i −0.0641671 0.997939i \(-0.520439\pi\)
0.968925 0.247354i \(-0.0795609\pi\)
\(258\) 26.1458 8.49527i 1.62776 0.528892i
\(259\) 1.79744 + 5.53196i 0.111688 + 0.343739i
\(260\) 2.56025 5.53939i 0.158780 0.343538i
\(261\) −0.137173 + 0.0996619i −0.00849079 + 0.00616892i
\(262\) −2.49961 0.812172i −0.154426 0.0501761i
\(263\) 5.44098i 0.335505i −0.985829 0.167753i \(-0.946349\pi\)
0.985829 0.167753i \(-0.0536510\pi\)
\(264\) 6.31647 12.1345i 0.388752 0.746827i
\(265\) 5.49416 + 27.7625i 0.337504 + 1.70544i
\(266\) −6.06332 + 18.6610i −0.371766 + 1.14418i
\(267\) −11.5169 15.8517i −0.704824 0.970107i
\(268\) 0.282023 0.388171i 0.0172273 0.0237113i
\(269\) 2.07213 + 6.37738i 0.126340 + 0.388835i 0.994143 0.108074i \(-0.0344682\pi\)
−0.867803 + 0.496909i \(0.834468\pi\)
\(270\) −7.48466 13.3955i −0.455502 0.815221i
\(271\) 4.09349 + 2.97409i 0.248662 + 0.180663i 0.705134 0.709075i \(-0.250887\pi\)
−0.456472 + 0.889738i \(0.650887\pi\)
\(272\) 6.44795 + 8.87484i 0.390964 + 0.538116i
\(273\) −15.5863 5.06430i −0.943327 0.306505i
\(274\) 30.9438 1.86938
\(275\) 10.9036 12.4944i 0.657513 0.753443i
\(276\) 5.61428 0.337940
\(277\) −10.1703 3.30453i −0.611074 0.198550i −0.0129009 0.999917i \(-0.504107\pi\)
−0.598173 + 0.801367i \(0.704107\pi\)
\(278\) −11.3081 15.5642i −0.678214 0.933481i
\(279\) 0.500000 + 0.363271i 0.0299342 + 0.0217485i
\(280\) 5.10993 + 9.14535i 0.305377 + 0.546539i
\(281\) −4.23963 13.0482i −0.252915 0.778392i −0.994233 0.107238i \(-0.965799\pi\)
0.741319 0.671153i \(-0.234201\pi\)
\(282\) −23.0720 + 31.7559i −1.37392 + 1.89103i
\(283\) −12.9132 17.7735i −0.767611 1.05653i −0.996543 0.0830832i \(-0.973523\pi\)
0.228932 0.973442i \(-0.426477\pi\)
\(284\) −1.05939 + 3.26047i −0.0628633 + 0.193473i
\(285\) 4.53213 + 22.9013i 0.268460 + 1.35655i
\(286\) −14.2308 14.4807i −0.841485 0.856263i
\(287\) 17.7563i 1.04812i
\(288\) −3.40730 1.10710i −0.200777 0.0652365i
\(289\) −9.74956 + 7.08347i −0.573504 + 0.416675i
\(290\) 0.292498 0.632853i 0.0171761 0.0371624i
\(291\) −1.38410 4.25981i −0.0811372 0.249715i
\(292\) −6.21450 + 2.01922i −0.363676 + 0.118166i
\(293\) −8.25135 + 11.3570i −0.482049 + 0.663483i −0.978897 0.204354i \(-0.934491\pi\)
0.496848 + 0.867837i \(0.334491\pi\)
\(294\) 5.20389 3.78085i 0.303497 0.220504i
\(295\) 0.0910732 0.763095i 0.00530249 0.0444291i
\(296\) −5.41627 −0.314815
\(297\) −13.6045 + 2.03352i −0.789412 + 0.117997i
\(298\) 9.78772i 0.566988i
\(299\) −4.40641 + 13.5615i −0.254829 + 0.784283i
\(300\) −6.20270 3.81768i −0.358113 0.220414i
\(301\) 15.2682 + 11.0930i 0.880043 + 0.639389i
\(302\) 20.1073 6.53324i 1.15704 0.375946i
\(303\) 18.5876 6.03949i 1.06783 0.346960i
\(304\) −21.0913 15.3237i −1.20967 0.878877i
\(305\) −2.63377 + 2.84363i −0.150809 + 0.162826i
\(306\) −1.02344 + 3.14983i −0.0585064 + 0.180064i
\(307\) 6.86951i 0.392064i −0.980598 0.196032i \(-0.937194\pi\)
0.980598 0.196032i \(-0.0628056\pi\)
\(308\) −5.42733 + 0.811246i −0.309251 + 0.0462251i
\(309\) 20.2241 1.15051
\(310\) −2.52333 0.301152i −0.143316 0.0171043i
\(311\) 4.45087 3.23374i 0.252385 0.183369i −0.454398 0.890799i \(-0.650146\pi\)
0.706783 + 0.707430i \(0.250146\pi\)
\(312\) 8.96982 12.3459i 0.507816 0.698949i
\(313\) 13.5354 4.39793i 0.765068 0.248586i 0.0996156 0.995026i \(-0.468239\pi\)
0.665452 + 0.746440i \(0.268239\pi\)
\(314\) −7.33639 22.5791i −0.414016 1.27421i
\(315\) −1.89342 + 4.09664i −0.106682 + 0.230819i
\(316\) 4.31714 3.13659i 0.242858 0.176447i
\(317\) 17.7718 + 5.77442i 0.998166 + 0.324324i 0.762132 0.647421i \(-0.224153\pi\)
0.236033 + 0.971745i \(0.424153\pi\)
\(318\) 41.3547i 2.31906i
\(319\) −0.438065 0.445758i −0.0245269 0.0249577i
\(320\) −7.18237 + 1.42138i −0.401506 + 0.0794575i
\(321\) −6.13099 + 18.8693i −0.342199 + 1.05318i
\(322\) 8.40774 + 11.5723i 0.468545 + 0.644897i
\(323\) −6.91303 + 9.51497i −0.384651 + 0.529427i
\(324\) 2.48225 + 7.63957i 0.137903 + 0.424420i
\(325\) 14.0900 11.9865i 0.781573 0.664893i
\(326\) 4.85526 + 3.52755i 0.268908 + 0.195373i
\(327\) 10.2166 + 14.0620i 0.564981 + 0.777629i
\(328\) −15.7248 5.10930i −0.868257 0.282114i
\(329\) −26.9464 −1.48560
\(330\) −19.1741 + 14.8170i −1.05550 + 0.815650i
\(331\) 0.468249 0.0257373 0.0128686 0.999917i \(-0.495904\pi\)
0.0128686 + 0.999917i \(0.495904\pi\)
\(332\) −2.23205 0.725237i −0.122500 0.0398025i
\(333\) −1.37148 1.88767i −0.0751564 0.103444i
\(334\) −5.11433 3.71578i −0.279844 0.203318i
\(335\) 1.26972 0.709449i 0.0693720 0.0387613i
\(336\) −6.74988 20.7740i −0.368236 1.13331i
\(337\) 20.0360 27.5771i 1.09143 1.50222i 0.245146 0.969486i \(-0.421164\pi\)
0.846282 0.532735i \(-0.178836\pi\)
\(338\) −0.669303 0.921216i −0.0364053 0.0501075i
\(339\) 0.141181 0.434511i 0.00766790 0.0235994i
\(340\) −0.712333 3.59949i −0.0386317 0.195210i
\(341\) −1.05185 + 2.02070i −0.0569611 + 0.109427i
\(342\) 7.87090i 0.425610i
\(343\) 19.1327 + 6.21658i 1.03307 + 0.335664i
\(344\) −14.2172 + 10.3294i −0.766542 + 0.556925i
\(345\) 15.4487 + 7.14025i 0.831733 + 0.384418i
\(346\) 1.07737 + 3.31580i 0.0579198 + 0.178259i
\(347\) −3.41707 + 1.11027i −0.183438 + 0.0596026i −0.399296 0.916822i \(-0.630745\pi\)
0.215858 + 0.976425i \(0.430745\pi\)
\(348\) −0.161345 + 0.222072i −0.00864898 + 0.0119043i
\(349\) −5.15433 + 3.74484i −0.275905 + 0.200457i −0.717129 0.696940i \(-0.754544\pi\)
0.441224 + 0.897397i \(0.354544\pi\)
\(350\) −1.41985 18.5023i −0.0758941 0.988992i
\(351\) −15.3446 −0.819037
\(352\) 2.17927 13.0246i 0.116156 0.694215i
\(353\) 12.1971i 0.649186i 0.945854 + 0.324593i \(0.105227\pi\)
−0.945854 + 0.324593i \(0.894773\pi\)
\(354\) −0.347021 + 1.06802i −0.0184440 + 0.0567647i
\(355\) −7.06178 + 7.62446i −0.374800 + 0.404664i
\(356\) −5.92106 4.30190i −0.313815 0.228000i
\(357\) −9.37181 + 3.04509i −0.496009 + 0.161163i
\(358\) −7.90573 + 2.56873i −0.417831 + 0.135761i
\(359\) 19.5093 + 14.1744i 1.02966 + 0.748094i 0.968241 0.250018i \(-0.0804364\pi\)
0.0614222 + 0.998112i \(0.480436\pi\)
\(360\) −3.08312 2.85559i −0.162495 0.150503i
\(361\) 2.76592 8.51262i 0.145575 0.448032i
\(362\) 25.8902i 1.36076i
\(363\) 6.35204 + 20.7732i 0.333396 + 1.09031i
\(364\) −6.12155 −0.320856
\(365\) −19.6684 2.34737i −1.02949 0.122867i
\(366\) 4.58205 3.32905i 0.239507 0.174012i
\(367\) −11.9849 + 16.4958i −0.625606 + 0.861073i −0.997746 0.0671034i \(-0.978624\pi\)
0.372140 + 0.928177i \(0.378624\pi\)
\(368\) −18.0753 + 5.87302i −0.942239 + 0.306152i
\(369\) −2.20105 6.77414i −0.114582 0.352648i
\(370\) 8.70886 + 4.02515i 0.452752 + 0.209257i
\(371\) 22.9677 16.6870i 1.19242 0.866347i
\(372\) 0.951577 + 0.309186i 0.0493370 + 0.0160305i
\(373\) 7.51997i 0.389369i −0.980866 0.194685i \(-0.937632\pi\)
0.980866 0.194685i \(-0.0623684\pi\)
\(374\) −12.0404 2.01460i −0.622596 0.104172i
\(375\) −12.2125 18.3937i −0.630653 0.949845i
\(376\) 7.75374 23.8636i 0.399869 1.23067i
\(377\) −0.409791 0.564029i −0.0211053 0.0290490i
\(378\) −9.04762 + 12.4530i −0.465359 + 0.640512i
\(379\) −7.16649 22.0562i −0.368118 1.13295i −0.948006 0.318254i \(-0.896904\pi\)
0.579888 0.814696i \(-0.303096\pi\)
\(380\) 4.25345 + 7.61248i 0.218197 + 0.390512i
\(381\) −3.88281 2.82103i −0.198922 0.144526i
\(382\) 3.03029 + 4.17083i 0.155043 + 0.213398i
\(383\) −2.32095 0.754123i −0.118595 0.0385339i 0.249118 0.968473i \(-0.419859\pi\)
−0.367713 + 0.929939i \(0.619859\pi\)
\(384\) 26.4246 1.34848
\(385\) −15.9661 4.67019i −0.813706 0.238015i
\(386\) −15.9442 −0.811537
\(387\) −7.20000 2.33942i −0.365997 0.118919i
\(388\) −0.983393 1.35352i −0.0499242 0.0687148i
\(389\) 27.4849 + 19.9689i 1.39354 + 1.01246i 0.995467 + 0.0951096i \(0.0303201\pi\)
0.398071 + 0.917355i \(0.369680\pi\)
\(390\) −23.5976 + 13.1851i −1.19491 + 0.667651i
\(391\) 2.64950 + 8.15434i 0.133991 + 0.412383i
\(392\) −2.41686 + 3.32653i −0.122070 + 0.168015i
\(393\) 1.84381 + 2.53779i 0.0930080 + 0.128015i
\(394\) −7.36129 + 22.6557i −0.370856 + 1.14138i
\(395\) 15.8685 3.14036i 0.798433 0.158009i
\(396\) 1.97000 0.982264i 0.0989964 0.0493606i
\(397\) 27.4961i 1.37999i −0.723814 0.689995i \(-0.757613\pi\)
0.723814 0.689995i \(-0.242387\pi\)
\(398\) 23.2858 + 7.56601i 1.16721 + 0.379250i
\(399\) 18.9460 13.7651i 0.948487 0.689116i
\(400\) 23.9633 + 5.80256i 1.19817 + 0.290128i
\(401\) −0.583247 1.79505i −0.0291259 0.0896404i 0.935437 0.353494i \(-0.115006\pi\)
−0.964563 + 0.263853i \(0.915006\pi\)
\(402\) −2.02132 + 0.656768i −0.100815 + 0.0327566i
\(403\) −1.49370 + 2.05591i −0.0744067 + 0.102412i
\(404\) 5.90608 4.29102i 0.293839 0.213486i
\(405\) −2.88565 + 24.1786i −0.143389 + 1.20145i
\(406\) −0.699363 −0.0347088
\(407\) 6.13420 6.02834i 0.304061 0.298814i
\(408\) 9.17582i 0.454271i
\(409\) −4.18949 + 12.8939i −0.207157 + 0.637563i 0.792461 + 0.609923i \(0.208799\pi\)
−0.999618 + 0.0276408i \(0.991201\pi\)
\(410\) 21.4870 + 19.9013i 1.06117 + 0.982855i
\(411\) −29.8788 21.7082i −1.47381 1.07079i
\(412\) 7.18454 2.33440i 0.353957 0.115008i
\(413\) −0.733187 + 0.238227i −0.0360778 + 0.0117224i
\(414\) −4.64210 3.37269i −0.228147 0.165758i
\(415\) −5.21954 4.83435i −0.256217 0.237309i
\(416\) 4.55219 14.0102i 0.223189 0.686906i
\(417\) 22.9616i 1.12444i
\(418\) 28.6934 4.28893i 1.40344 0.209779i
\(419\) 22.1368 1.08145 0.540727 0.841198i \(-0.318149\pi\)
0.540727 + 0.841198i \(0.318149\pi\)
\(420\) −0.865834 + 7.25475i −0.0422484 + 0.353996i
\(421\) −14.4835 + 10.5229i −0.705881 + 0.512853i −0.881842 0.471544i \(-0.843697\pi\)
0.175961 + 0.984397i \(0.443697\pi\)
\(422\) 6.58552 9.06419i 0.320578 0.441238i
\(423\) 10.2803 3.34026i 0.499843 0.162409i
\(424\) 8.16902 + 25.1417i 0.396723 + 1.22099i
\(425\) 2.61772 10.8106i 0.126978 0.524392i
\(426\) 12.2856 8.92599i 0.595238 0.432466i
\(427\) 3.69780 + 1.20149i 0.178949 + 0.0581440i
\(428\) 7.41093i 0.358221i
\(429\) 3.58227 + 23.9658i 0.172954 + 1.15708i
\(430\) 30.5364 6.04310i 1.47259 0.291424i
\(431\) 10.3353 31.8087i 0.497833 1.53217i −0.314662 0.949204i \(-0.601891\pi\)
0.812495 0.582968i \(-0.198109\pi\)
\(432\) −12.0213 16.5459i −0.578376 0.796066i
\(433\) −18.5102 + 25.4771i −0.889543 + 1.22435i 0.0841428 + 0.996454i \(0.473185\pi\)
−0.973685 + 0.227897i \(0.926815\pi\)
\(434\) 0.787747 + 2.42443i 0.0378130 + 0.116377i
\(435\) −0.726401 + 0.405874i −0.0348283 + 0.0194602i
\(436\) 5.25255 + 3.81620i 0.251552 + 0.182763i
\(437\) −11.9769 16.4848i −0.572932 0.788574i
\(438\) 27.5277 + 8.94431i 1.31533 + 0.427375i
\(439\) −35.6208 −1.70009 −0.850045 0.526710i \(-0.823425\pi\)
−0.850045 + 0.526710i \(0.823425\pi\)
\(440\) 8.73007 12.7956i 0.416190 0.610006i
\(441\) −1.77134 −0.0843495
\(442\) −12.9515 4.20821i −0.616041 0.200164i
\(443\) 13.8056 + 19.0018i 0.655926 + 0.902805i 0.999338 0.0363802i \(-0.0115827\pi\)
−0.343412 + 0.939185i \(0.611583\pi\)
\(444\) −3.05599 2.22031i −0.145031 0.105371i
\(445\) −10.8217 19.3679i −0.513000 0.918126i
\(446\) 4.45709 + 13.7175i 0.211049 + 0.649543i
\(447\) 6.86646 9.45086i 0.324772 0.447011i
\(448\) 4.31705 + 5.94191i 0.203961 + 0.280729i
\(449\) 9.70066 29.8555i 0.457802 1.40897i −0.410011 0.912080i \(-0.634475\pi\)
0.867814 0.496890i \(-0.165525\pi\)
\(450\) 2.83522 + 6.88277i 0.133653 + 0.324457i
\(451\) 23.4958 11.7152i 1.10637 0.551649i
\(452\) 0.170655i 0.00802692i
\(453\) −23.9985 7.79760i −1.12755 0.366363i
\(454\) −5.09658 + 3.70288i −0.239194 + 0.173785i
\(455\) −16.8446 7.78540i −0.789687 0.364985i
\(456\) 6.73861 + 20.7393i 0.315564 + 0.971207i
\(457\) −37.1964 + 12.0859i −1.73998 + 0.565352i −0.994830 0.101550i \(-0.967620\pi\)
−0.745145 + 0.666903i \(0.767620\pi\)
\(458\) −2.63915 + 3.63247i −0.123319 + 0.169734i
\(459\) −7.46440 + 5.42320i −0.348408 + 0.253133i
\(460\) 6.31230 + 0.753355i 0.294312 + 0.0351253i
\(461\) −8.88399 −0.413769 −0.206884 0.978365i \(-0.566332\pi\)
−0.206884 + 0.978365i \(0.566332\pi\)
\(462\) 21.5617 + 11.2237i 1.00314 + 0.522173i
\(463\) 4.21081i 0.195693i −0.995202 0.0978464i \(-0.968805\pi\)
0.995202 0.0978464i \(-0.0311954\pi\)
\(464\) 0.287146 0.883744i 0.0133304 0.0410268i
\(465\) 2.22522 + 2.06100i 0.103192 + 0.0955766i
\(466\) −14.0696 10.2221i −0.651760 0.473531i
\(467\) 6.39912 2.07920i 0.296116 0.0962139i −0.157191 0.987568i \(-0.550244\pi\)
0.453307 + 0.891354i \(0.350244\pi\)
\(468\) 2.33542 0.758822i 0.107955 0.0350766i
\(469\) −1.18038 0.857597i −0.0545049 0.0396002i
\(470\) −30.2017 + 32.6081i −1.39310 + 1.50410i
\(471\) −8.75618 + 26.9487i −0.403463 + 1.24173i
\(472\) 0.717854i 0.0330419i
\(473\) 4.60503 27.5224i 0.211740 1.26548i
\(474\) −23.6376 −1.08571
\(475\) 2.02258 + 26.3567i 0.0928025 + 1.20933i
\(476\) −2.97782 + 2.16352i −0.136488 + 0.0991646i
\(477\) −6.69383 + 9.21327i −0.306490 + 0.421847i
\(478\) −31.5343 + 10.2461i −1.44235 + 0.468647i
\(479\) −6.43046 19.7909i −0.293815 0.904270i −0.983617 0.180272i \(-0.942302\pi\)
0.689802 0.723998i \(-0.257698\pi\)
\(480\) −15.9599 7.37648i −0.728464 0.336689i
\(481\) 7.76176 5.63925i 0.353906 0.257128i
\(482\) −44.7611 14.5437i −2.03881 0.662450i
\(483\) 17.0723i 0.776818i
\(484\) 4.65433 + 6.64642i 0.211560 + 0.302110i
\(485\) −0.984576 4.97516i −0.0447073 0.225910i
\(486\) 4.63361 14.2608i 0.210185 0.646882i
\(487\) 9.27489 + 12.7658i 0.420285 + 0.578473i 0.965689 0.259700i \(-0.0836237\pi\)
−0.545404 + 0.838173i \(0.683624\pi\)
\(488\) −2.12806 + 2.92902i −0.0963326 + 0.132590i
\(489\) −2.21345 6.81230i −0.100096 0.308063i
\(490\) 6.35822 3.55263i 0.287235 0.160491i
\(491\) −15.6386 11.3621i −0.705759 0.512764i 0.176044 0.984382i \(-0.443670\pi\)
−0.881803 + 0.471618i \(0.843670\pi\)
\(492\) −6.77784 9.32890i −0.305569 0.420579i
\(493\) −0.398685 0.129541i −0.0179559 0.00583422i
\(494\) 32.3637 1.45611
\(495\) 6.67008 0.197429i 0.299798 0.00887376i
\(496\) −3.38705 −0.152083
\(497\) 9.91469 + 3.22148i 0.444734 + 0.144503i
\(498\) 6.11055 + 8.41045i 0.273820 + 0.376881i
\(499\) −33.5416 24.3694i −1.50153 1.09092i −0.969769 0.244026i \(-0.921532\pi\)
−0.531758 0.846896i \(-0.678468\pi\)
\(500\) −6.46159 5.12464i −0.288971 0.229181i
\(501\) 2.33156 + 7.17579i 0.104166 + 0.320591i
\(502\) 23.1824 31.9078i 1.03468 1.42412i
\(503\) −19.1978 26.4236i −0.855990 1.17817i −0.982511 0.186205i \(-0.940381\pi\)
0.126521 0.991964i \(-0.459619\pi\)
\(504\) −1.30268 + 4.00923i −0.0580259 + 0.178585i
\(505\) 21.7090 4.29618i 0.966039 0.191178i
\(506\) 9.76563 18.7606i 0.434135 0.834012i
\(507\) 1.35905i 0.0603576i
\(508\) −1.70498 0.553981i −0.0756462 0.0245789i
\(509\) 13.4662 9.78379i 0.596881 0.433659i −0.247890 0.968788i \(-0.579737\pi\)
0.844770 + 0.535129i \(0.179737\pi\)
\(510\) −6.81908 + 14.7539i −0.301954 + 0.653312i
\(511\) 6.14019 + 18.8975i 0.271626 + 0.835978i
\(512\) −0.917749 + 0.298195i −0.0405592 + 0.0131785i
\(513\) 12.8884 17.7393i 0.569036 0.783211i
\(514\) −33.0313 + 23.9987i −1.45695 + 1.05854i
\(515\) 22.7385 + 2.71377i 1.00198 + 0.119583i
\(516\) −12.2561 −0.539543
\(517\) 17.7788 + 35.6566i 0.781909 + 1.56818i
\(518\) 9.62412i 0.422860i
\(519\) 1.28587 3.95750i 0.0564434 0.173715i
\(520\) 11.7417 12.6772i 0.514906 0.555933i
\(521\) −11.3717 8.26206i −0.498205 0.361967i 0.310126 0.950696i \(-0.399629\pi\)
−0.808331 + 0.588728i \(0.799629\pi\)
\(522\) 0.266812 0.0866924i 0.0116780 0.00379442i
\(523\) −14.9009 + 4.84159i −0.651570 + 0.211708i −0.616106 0.787663i \(-0.711291\pi\)
−0.0354635 + 0.999371i \(0.511291\pi\)
\(524\) 0.947937 + 0.688717i 0.0414108 + 0.0300867i
\(525\) −11.6091 + 18.8616i −0.506663 + 0.823189i
\(526\) −2.78194 + 8.56194i −0.121298 + 0.373318i
\(527\) 1.52801i 0.0665611i
\(528\) −23.0356 + 22.6380i −1.00249 + 0.985193i
\(529\) 8.14550 0.354152
\(530\) 5.54920 46.4963i 0.241042 2.01967i
\(531\) 0.250186 0.181770i 0.0108571 0.00788817i
\(532\) 5.14166 7.07689i 0.222919 0.306822i
\(533\) 27.8540 9.05031i 1.20649 0.392012i
\(534\) 10.0182 + 30.8327i 0.433528 + 1.33426i
\(535\) −9.42523 + 20.3926i −0.407488 + 0.881647i
\(536\) 1.09913 0.798567i 0.0474753 0.0344928i
\(537\) 9.43570 + 3.06584i 0.407180 + 0.132301i
\(538\) 11.0949i 0.478336i
\(539\) −0.965221 6.45743i −0.0415750 0.278141i
\(540\) 1.32805 + 6.71075i 0.0571501 + 0.288785i
\(541\) −12.2489 + 37.6983i −0.526623 + 1.62078i 0.234461 + 0.972125i \(0.424667\pi\)
−0.761084 + 0.648653i \(0.775333\pi\)
\(542\) −4.92088 6.77301i −0.211370 0.290926i
\(543\) 18.1630 24.9992i 0.779448 1.07282i
\(544\) −2.73716 8.42412i −0.117355 0.361181i
\(545\) 9.59993 + 17.1812i 0.411216 + 0.735962i
\(546\) 21.9373 + 15.9384i 0.938830 + 0.682100i
\(547\) 24.1970 + 33.3043i 1.03459 + 1.42399i 0.901445 + 0.432895i \(0.142508\pi\)
0.133145 + 0.991097i \(0.457492\pi\)
\(548\) −13.1201 4.26297i −0.560462 0.182105i
\(549\) −1.55967 −0.0665651
\(550\) −23.5463 + 14.0863i −1.00402 + 0.600642i
\(551\) 0.996247 0.0424415
\(552\) 15.1191 + 4.91251i 0.643513 + 0.209090i
\(553\) −9.53798 13.1279i −0.405596 0.558255i
\(554\) 14.3144 + 10.4000i 0.608161 + 0.441855i
\(555\) −5.58534 9.99621i −0.237085 0.424315i
\(556\) 2.65039 + 8.15705i 0.112401 + 0.345936i
\(557\) −17.5606 + 24.1702i −0.744069 + 1.02412i 0.254306 + 0.967124i \(0.418153\pi\)
−0.998374 + 0.0569987i \(0.981847\pi\)
\(558\) −0.601062 0.827291i −0.0254450 0.0350220i
\(559\) 9.61926 29.6050i 0.406851 1.25216i
\(560\) −4.80152 24.2625i −0.202901 1.02528i
\(561\) 10.2127 + 10.3921i 0.431182 + 0.438754i
\(562\) 22.7004i 0.957558i
\(563\) 2.05218 + 0.666795i 0.0864892 + 0.0281021i 0.351942 0.936022i \(-0.385521\pi\)
−0.265453 + 0.964124i \(0.585521\pi\)
\(564\) 14.1573 10.2859i 0.596130 0.433114i
\(565\) 0.217039 0.469588i 0.00913090 0.0197557i
\(566\) 11.2328 + 34.5709i 0.472148 + 1.45312i
\(567\) 23.2310 7.54820i 0.975610 0.316995i
\(568\) −5.70583 + 7.85341i −0.239411 + 0.329522i
\(569\) 0.580298 0.421611i 0.0243274 0.0176749i −0.575555 0.817763i \(-0.695214\pi\)
0.599882 + 0.800088i \(0.295214\pi\)
\(570\) 4.57753 38.3547i 0.191731 1.60650i
\(571\) −21.6311 −0.905235 −0.452617 0.891705i \(-0.649510\pi\)
−0.452617 + 0.891705i \(0.649510\pi\)
\(572\) 4.03888 + 8.10029i 0.168874 + 0.338690i
\(573\) 6.15315i 0.257051i
\(574\) 9.07866 27.9413i 0.378936 1.16625i
\(575\) 16.4114 + 10.1010i 0.684401 + 0.421240i
\(576\) −2.38354 1.73174i −0.0993141 0.0721559i
\(577\) 22.2810 7.23952i 0.927568 0.301385i 0.194000 0.981001i \(-0.437854\pi\)
0.733568 + 0.679616i \(0.237854\pi\)
\(578\) 18.9637 6.16167i 0.788784 0.256291i
\(579\) 15.3954 + 11.1854i 0.639812 + 0.464851i
\(580\) −0.211203 + 0.228032i −0.00876973 + 0.00946850i
\(581\) −2.20536 + 6.78739i −0.0914936 + 0.281588i
\(582\) 7.41093i 0.307193i
\(583\) −37.2346 19.3820i −1.54210 0.802722i
\(584\) −18.5023 −0.765633
\(585\) 7.39140 + 0.882143i 0.305597 + 0.0364721i
\(586\) 18.7911 13.6525i 0.776253 0.563981i
\(587\) 1.32095 1.81814i 0.0545216 0.0750425i −0.780886 0.624674i \(-0.785232\pi\)
0.835407 + 0.549632i \(0.185232\pi\)
\(588\) −2.72730 + 0.886154i −0.112472 + 0.0365444i
\(589\) −1.12215 3.45362i −0.0462374 0.142304i
\(590\) −0.533479 + 1.15424i −0.0219630 + 0.0475194i
\(591\) 23.0018 16.7118i 0.946167 0.687431i
\(592\) 12.1615 + 3.95149i 0.499833 + 0.162405i
\(593\) 25.4034i 1.04319i 0.853193 + 0.521596i \(0.174663\pi\)
−0.853193 + 0.521596i \(0.825337\pi\)
\(594\) 22.4477 + 3.75594i 0.921042 + 0.154108i
\(595\) −10.9456 + 2.16612i −0.448726 + 0.0888022i
\(596\) 1.34841 4.14996i 0.0552328 0.169989i
\(597\) −17.1765 23.6415i −0.702988 0.967580i
\(598\) 13.8678 19.0875i 0.567098 0.780544i
\(599\) 5.63194 + 17.3333i 0.230115 + 0.708220i 0.997732 + 0.0673118i \(0.0214422\pi\)
−0.767617 + 0.640909i \(0.778558\pi\)
\(600\) −13.3633 15.7083i −0.545552 0.641289i
\(601\) 28.0242 + 20.3608i 1.14313 + 0.830533i 0.987552 0.157290i \(-0.0502758\pi\)
0.155579 + 0.987824i \(0.450276\pi\)
\(602\) −18.3542 25.2625i −0.748063 1.02962i
\(603\) 0.556631 + 0.180860i 0.0226678 + 0.00736520i
\(604\) −9.42547 −0.383517
\(605\) 4.35432 + 24.2083i 0.177028 + 0.984206i
\(606\) −32.3375 −1.31362
\(607\) −24.2027 7.86394i −0.982358 0.319187i −0.226564 0.973996i \(-0.572749\pi\)
−0.755794 + 0.654809i \(0.772749\pi\)
\(608\) 12.3731 + 17.0302i 0.501797 + 0.690664i
\(609\) 0.675293 + 0.490629i 0.0273643 + 0.0198813i
\(610\) 5.59844 3.12810i 0.226674 0.126653i
\(611\) 13.7345 + 42.2705i 0.555639 + 1.71008i
\(612\) 0.867874 1.19453i 0.0350817 0.0482858i
\(613\) 21.7843 + 29.9835i 0.879859 + 1.21102i 0.976460 + 0.215698i \(0.0692027\pi\)
−0.0966016 + 0.995323i \(0.530797\pi\)
\(614\) −3.51234 + 10.8099i −0.141746 + 0.436251i
\(615\) −6.78600 34.2903i −0.273638 1.38272i
\(616\) −15.3255 2.56426i −0.617483 0.103317i
\(617\) 27.5937i 1.11088i 0.831557 + 0.555439i \(0.187450\pi\)
−0.831557 + 0.555439i \(0.812550\pi\)
\(618\) −31.8246 10.3404i −1.28017 0.415953i
\(619\) 16.5391 12.0164i 0.664764 0.482979i −0.203504 0.979074i \(-0.565233\pi\)
0.868268 + 0.496095i \(0.165233\pi\)
\(620\) 1.02840 + 0.475315i 0.0413014 + 0.0190891i
\(621\) −4.93964 15.2026i −0.198221 0.610061i
\(622\) −8.65728 + 2.81292i −0.347125 + 0.112788i
\(623\) −13.0816 + 18.0052i −0.524101 + 0.721364i
\(624\) −29.1475 + 21.1769i −1.16683 + 0.847754i
\(625\) −11.2628 22.3193i −0.450510 0.892771i
\(626\) −23.5480 −0.941167
\(627\) −30.7148 15.9882i −1.22663 0.638507i
\(628\) 10.5842i 0.422354i
\(629\) 1.78265 5.48642i 0.0710787 0.218758i
\(630\) 5.07408 5.47837i 0.202156 0.218264i
\(631\) −0.614155 0.446210i −0.0244491 0.0177633i 0.575494 0.817806i \(-0.304810\pi\)
−0.599943 + 0.800043i \(0.704810\pi\)
\(632\) 14.3705 4.66926i 0.571627 0.185733i
\(633\) −12.7177 + 4.13224i −0.505485 + 0.164242i
\(634\) −25.0133 18.1733i −0.993407 0.721752i
\(635\) −3.98701 3.69278i −0.158220 0.146543i
\(636\) −5.69723 + 17.5343i −0.225910 + 0.695279i
\(637\) 7.28342i 0.288579i
\(638\) 0.461426 + 0.925425i 0.0182680 + 0.0366379i
\(639\) −4.18186 −0.165432
\(640\) 29.7100 + 3.54580i 1.17439 + 0.140160i
\(641\) 12.0584 8.76094i 0.476278 0.346037i −0.323605 0.946192i \(-0.604895\pi\)
0.799883 + 0.600156i \(0.204895\pi\)
\(642\) 19.2955 26.5579i 0.761531 1.04816i
\(643\) −26.2820 + 8.53955i −1.03646 + 0.336767i −0.777342 0.629078i \(-0.783432\pi\)
−0.259120 + 0.965845i \(0.583432\pi\)
\(644\) −1.97060 6.06490i −0.0776527 0.238990i
\(645\) −33.7249 15.5873i −1.32792 0.613749i
\(646\) 15.7433 11.4382i 0.619411 0.450029i
\(647\) −23.7560 7.71879i −0.933945 0.303457i −0.197770 0.980248i \(-0.563370\pi\)
−0.736175 + 0.676791i \(0.763370\pi\)
\(648\) 22.7452i 0.893514i
\(649\) 0.798974 + 0.813005i 0.0313625 + 0.0319132i
\(650\) −28.3007 + 11.6579i −1.11004 + 0.457260i
\(651\) 0.940197 2.89363i 0.0368492 0.113410i
\(652\) −1.57264 2.16456i −0.0615895 0.0847706i
\(653\) 16.3187 22.4607i 0.638599 0.878956i −0.359941 0.932975i \(-0.617203\pi\)
0.998540 + 0.0540191i \(0.0172032\pi\)
\(654\) −8.88708 27.3516i −0.347513 1.06953i
\(655\) 1.73252 + 3.10072i 0.0676950 + 0.121155i
\(656\) 31.5802 + 22.9444i 1.23300 + 0.895827i
\(657\) −4.68505 6.44842i −0.182781 0.251577i
\(658\) 42.4029 + 13.7775i 1.65304 + 0.537105i
\(659\) 21.5863 0.840883 0.420442 0.907320i \(-0.361875\pi\)
0.420442 + 0.907320i \(0.361875\pi\)
\(660\) 10.1710 3.64084i 0.395907 0.141720i
\(661\) −16.0174 −0.623003 −0.311502 0.950246i \(-0.600832\pi\)
−0.311502 + 0.950246i \(0.600832\pi\)
\(662\) −0.736837 0.239413i −0.0286380 0.00930504i
\(663\) 9.55357 + 13.1494i 0.371030 + 0.510679i
\(664\) −5.37628 3.90609i −0.208640 0.151586i
\(665\) 23.1486 12.9342i 0.897665 0.501567i
\(666\) 1.19300 + 3.67167i 0.0462277 + 0.142274i
\(667\) 0.426892 0.587567i 0.0165293 0.0227507i
\(668\) 1.65656 + 2.28005i 0.0640941 + 0.0882180i
\(669\) 5.31966 16.3722i 0.205670 0.632986i
\(670\) −2.36076 + 0.467191i −0.0912042 + 0.0180492i
\(671\) −0.849880 5.68579i −0.0328093 0.219498i
\(672\) 17.6372i 0.680368i
\(673\) 29.8127 + 9.68673i 1.14920 + 0.373396i 0.820840 0.571158i \(-0.193506\pi\)
0.328355 + 0.944554i \(0.393506\pi\)
\(674\) −45.6286 + 33.1511i −1.75755 + 1.27693i
\(675\) −4.88038 + 20.1549i −0.187846 + 0.775763i
\(676\) 0.156871 + 0.482799i 0.00603350 + 0.0185692i
\(677\) −29.1654 + 9.47642i −1.12092 + 0.364209i −0.810118 0.586267i \(-0.800597\pi\)
−0.310801 + 0.950475i \(0.600597\pi\)
\(678\) −0.444325 + 0.611561i −0.0170642 + 0.0234869i
\(679\) −4.11590 + 2.99038i −0.157954 + 0.114760i
\(680\) 1.23126 10.3166i 0.0472167 0.395625i
\(681\) 7.51888 0.288124
\(682\) 2.68837 2.64198i 0.102943 0.101166i
\(683\) 3.27236i 0.125213i −0.998038 0.0626066i \(-0.980059\pi\)
0.998038 0.0626066i \(-0.0199414\pi\)
\(684\) −1.08433 + 3.33724i −0.0414606 + 0.127602i
\(685\) −30.6807 28.4165i −1.17225 1.08574i
\(686\) −26.9287 19.5648i −1.02814 0.746989i
\(687\) 5.09664 1.65600i 0.194449 0.0631802i
\(688\) 39.4586 12.8209i 1.50435 0.488792i
\(689\) −37.8832 27.5238i −1.44324 1.04857i
\(690\) −20.6594 19.1348i −0.786490 0.728448i
\(691\) −11.2774 + 34.7084i −0.429014 + 1.32037i 0.470083 + 0.882622i \(0.344224\pi\)
−0.899098 + 0.437748i \(0.855776\pi\)
\(692\) 1.55431i 0.0590862i
\(693\) −2.98694 5.99054i −0.113465 0.227562i
\(694\) 5.94478 0.225661
\(695\) −3.08111 + 25.8164i −0.116873 + 0.979272i
\(696\) −0.628811 + 0.456858i −0.0238350 + 0.0173172i
\(697\) 10.3509 14.2468i 0.392070 0.539638i
\(698\) 10.0256 3.25750i 0.379473 0.123298i
\(699\) 6.41413 + 19.7407i 0.242605 + 0.746660i
\(700\) −1.94696 + 8.04054i −0.0735883 + 0.303904i
\(701\) −37.6684 + 27.3677i −1.42272 + 1.03366i −0.431399 + 0.902161i \(0.641980\pi\)
−0.991316 + 0.131502i \(0.958020\pi\)
\(702\) 24.1463 + 7.84562i 0.911345 + 0.296114i
\(703\) 13.7096i 0.517068i
\(704\) 5.01427 9.63285i 0.188982 0.363052i
\(705\) 52.0381 10.2983i 1.95987 0.387855i
\(706\) 6.23630 19.1933i 0.234706 0.722351i
\(707\) −13.0485 17.9597i −0.490738 0.675443i
\(708\) 0.294272 0.405030i 0.0110594 0.0152220i
\(709\) 11.0000 + 33.8544i 0.413112 + 1.27143i 0.913929 + 0.405874i \(0.133033\pi\)
−0.500817 + 0.865553i \(0.666967\pi\)
\(710\) 15.0108 8.38721i 0.563344 0.314766i
\(711\) 5.26613 + 3.82607i 0.197495 + 0.143489i
\(712\) −12.1811 16.7659i −0.456507 0.628327i
\(713\) −2.51772 0.818057i −0.0942894 0.0306365i
\(714\) 16.3044 0.610178
\(715\) 0.811789 + 27.4261i 0.0303592 + 1.02568i
\(716\) 3.70588 0.138495
\(717\) 37.6371 + 12.2290i 1.40558 + 0.456702i
\(718\) −23.4526 32.2798i −0.875245 1.20467i
\(719\) 17.8722 + 12.9849i 0.666522 + 0.484256i 0.868859 0.495060i \(-0.164854\pi\)
−0.202337 + 0.979316i \(0.564854\pi\)
\(720\) 4.83938 + 8.66114i 0.180353 + 0.322782i
\(721\) −7.09862 21.8473i −0.264366 0.813636i
\(722\) −8.70490 + 11.9813i −0.323963 + 0.445896i
\(723\) 33.0176 + 45.4448i 1.22794 + 1.69011i
\(724\) 3.56677 10.9774i 0.132558 0.407971i
\(725\) −0.871176 + 0.358863i −0.0323547 + 0.0133278i
\(726\) 0.625636 35.9365i 0.0232195 1.33373i
\(727\) 45.5415i 1.68904i −0.535522 0.844521i \(-0.679885\pi\)
0.535522 0.844521i \(-0.320115\pi\)
\(728\) −16.4852 5.35637i −0.610982 0.198520i
\(729\) 11.9514 8.68317i 0.442643 0.321599i
\(730\) 29.7500 + 13.7502i 1.10110 + 0.508916i
\(731\) −5.78391 17.8011i −0.213926 0.658396i
\(732\) −2.40140 + 0.780262i −0.0887583 + 0.0288393i
\(733\) 6.68835 9.20572i 0.247040 0.340021i −0.667432 0.744671i \(-0.732607\pi\)
0.914472 + 0.404650i \(0.132607\pi\)
\(734\) 27.2936 19.8300i 1.00743 0.731938i
\(735\) −8.63170 1.03017i −0.318385 0.0379983i
\(736\) 15.3459 0.565659
\(737\) −0.356014 + 2.12776i −0.0131140 + 0.0783769i
\(738\) 11.7852i 0.433818i
\(739\) 1.34045 4.12547i 0.0493091 0.151758i −0.923370 0.383911i \(-0.874577\pi\)
0.972679 + 0.232153i \(0.0745770\pi\)
\(740\) −3.13801 2.90643i −0.115355 0.106842i
\(741\) −31.2498 22.7043i −1.14799 0.834064i
\(742\) −44.6740 + 14.5154i −1.64003 + 0.532879i
\(743\) −16.4480 + 5.34429i −0.603420 + 0.196063i −0.594765 0.803900i \(-0.702755\pi\)
−0.00865478 + 0.999963i \(0.502755\pi\)
\(744\) 2.29204 + 1.66526i 0.0840302 + 0.0610515i
\(745\) 8.98832 9.70450i 0.329307 0.355545i
\(746\) −3.84491 + 11.8334i −0.140772 + 0.433253i
\(747\) 2.86281i 0.104745i
\(748\) 4.82757 + 2.51293i 0.176513 + 0.0918819i
\(749\) 22.5357 0.823437
\(750\) 9.81310 + 35.1885i 0.358324 + 1.28490i
\(751\) 25.4946 18.5229i 0.930310 0.675910i −0.0157586 0.999876i \(-0.505016\pi\)
0.946069 + 0.323966i \(0.105016\pi\)
\(752\) −34.8198 + 47.9253i −1.26975 + 1.74766i
\(753\) −44.7691 + 14.5464i −1.63148 + 0.530099i
\(754\) 0.356463 + 1.09708i 0.0129816 + 0.0399533i
\(755\) −25.9359 11.9873i −0.943905 0.436263i
\(756\) 5.55175 4.03358i 0.201915 0.146700i
\(757\) −8.82332 2.86687i −0.320689 0.104198i 0.144249 0.989541i \(-0.453923\pi\)
−0.464938 + 0.885343i \(0.653923\pi\)
\(758\) 38.3718i 1.39373i
\(759\) −22.5908 + 11.2640i −0.819995 + 0.408858i
\(760\) 4.79350 + 24.2220i 0.173879 + 0.878626i
\(761\) −1.28492 + 3.95459i −0.0465784 + 0.143354i −0.971641 0.236461i \(-0.924012\pi\)
0.925062 + 0.379815i \(0.124012\pi\)
\(762\) 4.66762 + 6.42442i 0.169090 + 0.232732i
\(763\) 11.6046 15.9724i 0.420115 0.578239i
\(764\) −0.710238 2.18589i −0.0256955 0.0790827i
\(765\) 3.90732 2.18320i 0.141269 0.0789337i
\(766\) 3.26667 + 2.37338i 0.118030 + 0.0857536i
\(767\) 0.747406 + 1.02872i 0.0269873 + 0.0371448i
\(768\) −29.2825 9.51446i −1.05664 0.343324i
\(769\) −16.8800 −0.608709 −0.304355 0.952559i \(-0.598441\pi\)
−0.304355 + 0.952559i \(0.598441\pi\)
\(770\) 22.7364 + 15.5124i 0.819362 + 0.559027i
\(771\) 48.7305 1.75499
\(772\) 6.76028 + 2.19655i 0.243308 + 0.0790555i
\(773\) 4.98301 + 6.85852i 0.179226 + 0.246684i 0.889173 0.457572i \(-0.151281\pi\)
−0.709946 + 0.704256i \(0.751281\pi\)
\(774\) 10.1338 + 7.36263i 0.364252 + 0.264644i
\(775\) 2.22532 + 2.61583i 0.0799359 + 0.0939635i
\(776\) −1.46392 4.50548i −0.0525517 0.161737i
\(777\) −6.75168 + 9.29289i −0.242215 + 0.333381i
\(778\) −33.0402 45.4759i −1.18455 1.63039i
\(779\) −12.9326 + 39.8025i −0.463359 + 1.42607i
\(780\) 11.8217 2.33950i 0.423286 0.0837676i
\(781\) −2.27873 15.2450i −0.0815395 0.545509i
\(782\) 14.1863i 0.507303i
\(783\) 0.743294 + 0.241511i 0.0265632 + 0.00863089i
\(784\) 7.85361 5.70598i 0.280486 0.203785i
\(785\) −13.4610 + 29.1243i −0.480442 + 1.03949i
\(786\) −1.60387 4.93620i −0.0572080 0.176068i
\(787\) 50.9924 16.5684i 1.81768 0.590601i 0.817796 0.575508i \(-0.195196\pi\)
0.999886 0.0150924i \(-0.00480424\pi\)
\(788\) 6.24233 8.59183i 0.222374 0.306071i
\(789\) 8.69272 6.31563i 0.309469 0.224842i
\(790\) −26.5764 3.17182i −0.945546 0.112848i
\(791\) −0.518940 −0.0184514
\(792\) 6.16466 0.921459i 0.219052 0.0327426i
\(793\) 6.41307i 0.227735i
\(794\) −14.0586 + 43.2679i −0.498921 + 1.53552i
\(795\) −37.9771 + 41.0031i −1.34691 + 1.45423i
\(796\) −8.83077 6.41593i −0.312998 0.227407i
\(797\) 27.1477 8.82082i 0.961621 0.312450i 0.214192 0.976792i \(-0.431288\pi\)
0.747429 + 0.664342i \(0.231288\pi\)
\(798\) −36.8515 + 11.9738i −1.30453 + 0.423867i
\(799\) 21.6206 + 15.7083i 0.764883 + 0.555720i
\(800\) −16.9543 10.4352i −0.599425 0.368939i
\(801\) 2.75879 8.49070i 0.0974772 0.300004i
\(802\) 3.12290i 0.110273i
\(803\) 20.9548 20.5932i 0.739480 0.726718i
\(804\) 0.947515 0.0334163
\(805\) 2.29086 19.1949i 0.0807422 0.676532i
\(806\) 3.40166 2.47145i 0.119819 0.0870532i
\(807\) −7.78350 + 10.7131i −0.273992 + 0.377118i
\(808\) 19.6596 6.38780i 0.691623 0.224722i
\(809\) −11.4170 35.1378i −0.401399 1.23538i −0.923865 0.382718i \(-0.874988\pi\)
0.522466 0.852660i \(-0.325012\pi\)
\(810\) 16.9032 36.5721i 0.593919 1.28501i
\(811\) 31.0475 22.5573i 1.09022 0.792094i 0.110787 0.993844i \(-0.464663\pi\)
0.979437 + 0.201750i \(0.0646629\pi\)
\(812\) 0.296528 + 0.0963477i 0.0104061 + 0.00338114i
\(813\) 9.99209i 0.350438i
\(814\) −12.7350 + 6.34982i −0.446363 + 0.222561i
\(815\) −1.57453 7.95628i −0.0551535 0.278696i
\(816\) −6.69431 + 20.6030i −0.234348 + 0.721248i
\(817\) 26.1458 + 35.9865i 0.914724 + 1.25901i
\(818\) 13.1852 18.1478i 0.461008 0.634524i
\(819\) −2.30749 7.10171i −0.0806301 0.248154i
\(820\) −6.36872 11.3982i −0.222405 0.398044i
\(821\) 8.29214 + 6.02459i 0.289398 + 0.210260i 0.723006 0.690842i \(-0.242760\pi\)
−0.433608 + 0.901101i \(0.642760\pi\)
\(822\) 35.9181 + 49.4370i 1.25279 + 1.72431i
\(823\) 23.9948 + 7.79637i 0.836405 + 0.271764i 0.695741 0.718293i \(-0.255076\pi\)
0.140664 + 0.990057i \(0.455076\pi\)
\(824\) 21.3904 0.745170
\(825\) 32.6180 + 2.91709i 1.13561 + 0.101560i
\(826\) 1.27555 0.0443820
\(827\) 17.4505 + 5.67001i 0.606813 + 0.197165i 0.596277 0.802779i \(-0.296646\pi\)
0.0105362 + 0.999944i \(0.496646\pi\)
\(828\) 1.50360 + 2.06953i 0.0522537 + 0.0719211i
\(829\) 19.7259 + 14.3317i 0.685110 + 0.497761i 0.875049 0.484035i \(-0.160829\pi\)
−0.189939 + 0.981796i \(0.560829\pi\)
\(830\) 5.74170 + 10.2761i 0.199297 + 0.356687i
\(831\) −6.52575 20.0842i −0.226376 0.696713i
\(832\) 7.12060 9.80066i 0.246862 0.339777i
\(833\) −2.57415 3.54301i −0.0891890 0.122758i
\(834\) 11.7401 36.1324i 0.406528 1.25116i
\(835\) 1.65855 + 8.38081i 0.0573964 + 0.290030i
\(836\) −12.7568 2.13446i −0.441203 0.0738217i
\(837\) 2.84876i 0.0984676i
\(838\) −34.8345 11.3184i −1.20334 0.390988i
\(839\) −34.2059 + 24.8520i −1.18092 + 0.857988i −0.992275 0.124058i \(-0.960409\pi\)
−0.188644 + 0.982046i \(0.560409\pi\)
\(840\) −8.67959 + 18.7793i −0.299474 + 0.647947i
\(841\) −8.95052 27.5469i −0.308639 0.949892i
\(842\) 28.1715 9.15347i 0.970853 0.315449i
\(843\) 15.9252 21.9191i 0.548492 0.754935i
\(844\) −4.04097 + 2.93594i −0.139096 + 0.101059i
\(845\) −0.182365 + 1.52802i −0.00627355 + 0.0525655i
\(846\) −17.8849 −0.614895
\(847\) 20.2110 14.1532i 0.694457 0.486311i
\(848\) 62.4117i 2.14323i
\(849\) 13.4066 41.2613i 0.460113 1.41608i
\(850\) −9.64665 + 15.6732i −0.330877 + 0.537585i
\(851\) 8.08567 + 5.87458i 0.277173 + 0.201378i
\(852\) −6.43874 + 2.09207i −0.220587 + 0.0716732i
\(853\) −14.6353 + 4.75529i −0.501103 + 0.162818i −0.548652 0.836051i \(-0.684859\pi\)
0.0475493 + 0.998869i \(0.484859\pi\)
\(854\) −5.20454 3.78132i −0.178096 0.129394i
\(855\) −7.22806 + 7.80398i −0.247194 + 0.266890i
\(856\) −6.48458 + 19.9575i −0.221638 + 0.682132i
\(857\) 36.1038i 1.23328i −0.787245 0.616641i \(-0.788493\pi\)
0.787245 0.616641i \(-0.211507\pi\)
\(858\) 6.61650 39.5442i 0.225884 1.35002i
\(859\) −48.3509 −1.64971 −0.824855 0.565344i \(-0.808743\pi\)
−0.824855 + 0.565344i \(0.808743\pi\)
\(860\) −13.7799 1.64459i −0.469889 0.0560799i
\(861\) −28.3680 + 20.6106i −0.966781 + 0.702407i
\(862\) −32.5272 + 44.7699i −1.10788 + 1.52487i
\(863\) −35.3685 + 11.4919i −1.20396 + 0.391190i −0.841216 0.540699i \(-0.818160\pi\)
−0.362743 + 0.931889i \(0.618160\pi\)
\(864\) 5.10306 + 15.7056i 0.173610 + 0.534316i
\(865\) 1.97678 4.27699i 0.0672125 0.145422i
\(866\) 42.1539 30.6266i 1.43245 1.04073i
\(867\) −22.6336 7.35411i −0.768679 0.249759i
\(868\) 1.13648i 0.0385745i
\(869\) −11.0784 + 21.2826i −0.375809 + 0.721962i
\(870\) 1.35059 0.267279i 0.0457892 0.00906160i
\(871\) −0.743664 + 2.28876i −0.0251981 + 0.0775517i
\(872\) 10.8058 + 14.8730i 0.365932 + 0.503662i
\(873\) 1.19956 1.65105i 0.0405990 0.0558797i
\(874\) 10.4183 + 32.0642i 0.352403 + 1.08459i
\(875\) −15.5834 + 19.6489i −0.526816 + 0.664254i
\(876\) −10.4395 7.58472i −0.352717 0.256264i
\(877\) −15.1609 20.8672i −0.511947 0.704634i 0.472299 0.881438i \(-0.343424\pi\)
−0.984246 + 0.176804i \(0.943424\pi\)
\(878\) 56.0530 + 18.2127i 1.89170 + 0.614649i
\(879\) −27.7221 −0.935044
\(880\) −28.9372 + 22.3615i −0.975474 + 0.753807i
\(881\) −45.6820 −1.53906 −0.769532 0.638608i \(-0.779511\pi\)
−0.769532 + 0.638608i \(0.779511\pi\)
\(882\) 2.78738 + 0.905675i 0.0938560 + 0.0304957i
\(883\) 2.91912 + 4.01783i 0.0982364 + 0.135211i 0.855306 0.518124i \(-0.173369\pi\)
−0.757069 + 0.653335i \(0.773369\pi\)
\(884\) 4.91167 + 3.56853i 0.165197 + 0.120023i
\(885\) 1.32486 0.740261i 0.0445347 0.0248836i
\(886\) −12.0090 36.9600i −0.403452 1.24170i
\(887\) −17.0006 + 23.3994i −0.570826 + 0.785674i −0.992652 0.121002i \(-0.961389\pi\)
0.421827 + 0.906677i \(0.361389\pi\)
\(888\) −6.28695 8.65324i −0.210976 0.290384i
\(889\) −1.68459 + 5.18463i −0.0564993 + 0.173887i
\(890\) 7.12641 + 36.0104i 0.238878 + 1.20707i
\(891\) −25.3155 25.7600i −0.848100 0.862994i
\(892\) 6.43021i 0.215299i
\(893\) −60.4033 19.6262i −2.02132 0.656766i
\(894\) −15.6372 + 11.3611i −0.522987 + 0.379972i
\(895\) 10.1974 + 4.71315i 0.340863 + 0.157543i
\(896\) −9.27501 28.5456i −0.309856 0.953640i
\(897\) −26.7811 + 8.70172i −0.894196 + 0.290542i
\(898\) −30.5299 + 42.0208i −1.01880 + 1.40225i
\(899\) 0.104713 0.0760785i 0.00349237 0.00253736i
\(900\) −0.253919 3.30887i −0.00846396 0.110296i
\(901\) −28.1559 −0.938010
\(902\) −42.9630 + 6.42186i −1.43051 + 0.213824i
\(903\) 37.2692i 1.24024i
\(904\) 0.149323 0.459570i 0.00496642 0.0152851i
\(905\) 23.7757 25.6701i 0.790331 0.853303i
\(906\) 33.7773 + 24.5406i 1.12217 + 0.815307i
\(907\) −12.6041 + 4.09531i −0.418511 + 0.135983i −0.510700 0.859759i \(-0.670614\pi\)
0.0921887 + 0.995742i \(0.470614\pi\)
\(908\) 2.67106 0.867880i 0.0886422 0.0288016i
\(909\) 7.20435 + 5.23427i 0.238953 + 0.173610i
\(910\) 22.5260 + 20.8636i 0.746731 + 0.691623i
\(911\) 4.24361 13.0605i 0.140597 0.432713i −0.855822 0.517271i \(-0.826948\pi\)
0.996419 + 0.0845580i \(0.0269478\pi\)
\(912\) 51.4833i 1.70478i
\(913\) 10.4364 1.55997i 0.345395 0.0516276i
\(914\) 64.7117 2.14047
\(915\) −7.60024 0.907067i −0.251256 0.0299867i
\(916\) 1.61942 1.17658i 0.0535071 0.0388752i
\(917\) 2.09430 2.88256i 0.0691600 0.0951906i
\(918\) 14.5188 4.71745i 0.479193 0.155699i
\(919\) −18.3494 56.4737i −0.605292 1.86290i −0.494774 0.869022i \(-0.664749\pi\)
−0.110517 0.993874i \(-0.535251\pi\)
\(920\) 16.3397 + 7.55204i 0.538704 + 0.248983i
\(921\) 10.9750 7.97379i 0.361638 0.262745i
\(922\) 13.9798 + 4.54233i 0.460402 + 0.149594i
\(923\) 17.1950i 0.565981i
\(924\) −7.59586 7.72925i −0.249885 0.254274i
\(925\) −4.93842 11.9885i −0.162374 0.394179i
\(926\) −2.15296 + 6.62613i −0.0707507 + 0.217748i
\(927\) 5.41635 + 7.45496i 0.177896 + 0.244853i
\(928\) −0.441016 + 0.607006i −0.0144770 + 0.0199259i
\(929\) −6.05305 18.6294i −0.198594 0.611210i −0.999916 0.0129763i \(-0.995869\pi\)
0.801322 0.598234i \(-0.204131\pi\)
\(930\) −2.44783 4.38093i −0.0802675 0.143656i
\(931\) 8.42007 + 6.11754i 0.275957 + 0.200494i
\(932\) 4.55720 + 6.27245i 0.149276 + 0.205461i
\(933\) 10.3327 + 3.35730i 0.338277 + 0.109913i
\(934\) −11.1327 −0.364275
\(935\) 10.0880 + 13.0545i 0.329913 + 0.426928i
\(936\) 6.95320 0.227272
\(937\) −38.5608 12.5292i −1.25973 0.409310i −0.398329 0.917242i \(-0.630410\pi\)
−0.861397 + 0.507933i \(0.830410\pi\)
\(938\) 1.41896 + 1.95304i 0.0463308 + 0.0637689i
\(939\) 22.7376 + 16.5198i 0.742012 + 0.539104i
\(940\) 17.2977 9.66501i 0.564188 0.315238i
\(941\) −0.126602 0.389640i −0.00412709 0.0127019i 0.948972 0.315361i \(-0.102126\pi\)
−0.953099 + 0.302659i \(0.902126\pi\)
\(942\) 27.5575 37.9296i 0.897870 1.23581i
\(943\) 17.9331 + 24.6828i 0.583982 + 0.803783i
\(944\) −0.523717 + 1.61184i −0.0170455 + 0.0524608i
\(945\) 20.4066 4.03843i 0.663826 0.131370i
\(946\) −21.3185 + 40.9548i −0.693125 + 1.33156i
\(947\) 2.45729i 0.0798511i −0.999203 0.0399256i \(-0.987288\pi\)
0.999203 0.0399256i \(-0.0127121\pi\)
\(948\) 10.0223 + 3.25643i 0.325508 + 0.105764i
\(949\) 26.5147 19.2640i 0.860703 0.625337i
\(950\) 10.2933 42.5091i 0.333958 1.37918i
\(951\) 11.4033 + 35.0956i 0.369776 + 1.13805i
\(952\) −9.91230 + 3.22070i −0.321260 + 0.104384i
\(953\) 35.8704 49.3714i 1.16196 1.59930i 0.458215 0.888841i \(-0.348489\pi\)
0.703742 0.710456i \(-0.251511\pi\)
\(954\) 15.2441 11.0755i 0.493546 0.358582i
\(955\) 0.825663 6.91816i 0.0267178 0.223867i
\(956\) 14.7820 0.478085
\(957\) 0.203675 1.21728i 0.00658387 0.0393492i
\(958\) 34.4309i 1.11241i
\(959\) −12.9632 + 39.8965i −0.418603 + 1.28833i
\(960\) −10.6078 9.82495i −0.342365 0.317099i
\(961\) 24.6978 + 17.9440i 0.796705 + 0.578840i
\(962\) −15.0972 + 4.90538i −0.486754 + 0.158156i
\(963\) −8.59754 + 2.79351i −0.277052 + 0.0900196i
\(964\) 16.9749 + 12.3330i 0.546726 + 0.397220i
\(965\) 15.8086 + 14.6420i 0.508897 + 0.471341i
\(966\) −8.72898 + 26.8650i −0.280850 + 0.864369i
\(967\) 17.1997i 0.553106i −0.960999 0.276553i \(-0.910808\pi\)
0.960999 0.276553i \(-0.0891921\pi\)
\(968\) 6.71837 + 21.9712i 0.215937 + 0.706182i
\(969\) −23.2258 −0.746119
\(970\) −0.994438 + 8.33232i −0.0319295 + 0.267535i
\(971\) −22.0125 + 15.9930i −0.706415 + 0.513241i −0.882015 0.471221i \(-0.843813\pi\)
0.175600 + 0.984462i \(0.443813\pi\)
\(972\) −3.92927 + 5.40818i −0.126031 + 0.173467i
\(973\) 24.8046 8.05950i 0.795198 0.258376i
\(974\) −8.06790 24.8304i −0.258512 0.795619i
\(975\) 35.5051 + 8.59732i 1.13707 + 0.275335i
\(976\) 6.91513 5.02414i 0.221348 0.160819i
\(977\) 18.2339 + 5.92454i 0.583353 + 0.189543i 0.585802 0.810454i \(-0.300780\pi\)
−0.00244904 + 0.999997i \(0.500780\pi\)
\(978\) 11.8516i 0.378971i
\(979\) 32.4562 + 5.43055i 1.03730 + 0.173561i
\(980\) −3.18529 + 0.630365i −0.101750 + 0.0201363i
\(981\) −2.44732 + 7.53207i −0.0781369 + 0.240481i
\(982\) 18.7995 + 25.8753i 0.599916 + 0.825714i
\(983\) −14.1835 + 19.5219i −0.452384 + 0.622653i −0.972908 0.231194i \(-0.925737\pi\)
0.520524 + 0.853847i \(0.325737\pi\)
\(984\) −10.0898 31.0532i −0.321651 0.989939i
\(985\) 28.1040 15.7030i 0.895469 0.500340i
\(986\) 0.561138 + 0.407691i 0.0178703 + 0.0129835i
\(987\) −31.2781 43.0506i −0.995593 1.37032i
\(988\) −13.7221 4.45858i −0.436558 0.141846i
\(989\) 32.4276 1.03114
\(990\) −10.5970 3.09970i −0.336794 0.0985149i
\(991\) 27.7081 0.880177 0.440089 0.897954i \(-0.354947\pi\)
0.440089 + 0.897954i \(0.354947\pi\)
\(992\) 2.60102 + 0.845122i 0.0825824 + 0.0268327i
\(993\) 0.543521 + 0.748092i 0.0172481 + 0.0237400i
\(994\) −13.9546 10.1386i −0.442614 0.321578i
\(995\) −16.1397 28.8856i −0.511664 0.915735i
\(996\) −1.43219 4.40782i −0.0453806 0.139667i
\(997\) −19.6856 + 27.0950i −0.623451 + 0.858106i −0.997598 0.0692628i \(-0.977935\pi\)
0.374148 + 0.927369i \(0.377935\pi\)
\(998\) 40.3211 + 55.4972i 1.27634 + 1.75673i
\(999\) −3.32350 + 10.2287i −0.105151 + 0.323621i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 55.2.j.a.9.1 16
3.2 odd 2 495.2.ba.a.64.4 16
4.3 odd 2 880.2.cd.c.449.1 16
5.2 odd 4 275.2.h.d.251.4 16
5.3 odd 4 275.2.h.d.251.1 16
5.4 even 2 inner 55.2.j.a.9.4 yes 16
11.2 odd 10 605.2.j.g.124.1 16
11.3 even 5 605.2.j.h.444.1 16
11.4 even 5 605.2.b.g.364.2 8
11.5 even 5 inner 55.2.j.a.49.4 yes 16
11.6 odd 10 605.2.j.d.269.1 16
11.7 odd 10 605.2.b.f.364.7 8
11.8 odd 10 605.2.j.g.444.4 16
11.9 even 5 605.2.j.h.124.4 16
11.10 odd 2 605.2.j.d.9.4 16
15.14 odd 2 495.2.ba.a.64.1 16
20.19 odd 2 880.2.cd.c.449.4 16
33.5 odd 10 495.2.ba.a.379.1 16
44.27 odd 10 880.2.cd.c.49.4 16
55.4 even 10 605.2.b.g.364.7 8
55.7 even 20 3025.2.a.bk.1.2 8
55.9 even 10 605.2.j.h.124.1 16
55.14 even 10 605.2.j.h.444.4 16
55.18 even 20 3025.2.a.bk.1.7 8
55.19 odd 10 605.2.j.g.444.1 16
55.24 odd 10 605.2.j.g.124.4 16
55.27 odd 20 275.2.h.d.126.4 16
55.29 odd 10 605.2.b.f.364.2 8
55.37 odd 20 3025.2.a.bl.1.7 8
55.38 odd 20 275.2.h.d.126.1 16
55.39 odd 10 605.2.j.d.269.4 16
55.48 odd 20 3025.2.a.bl.1.2 8
55.49 even 10 inner 55.2.j.a.49.1 yes 16
55.54 odd 2 605.2.j.d.9.1 16
165.104 odd 10 495.2.ba.a.379.4 16
220.159 odd 10 880.2.cd.c.49.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.j.a.9.1 16 1.1 even 1 trivial
55.2.j.a.9.4 yes 16 5.4 even 2 inner
55.2.j.a.49.1 yes 16 55.49 even 10 inner
55.2.j.a.49.4 yes 16 11.5 even 5 inner
275.2.h.d.126.1 16 55.38 odd 20
275.2.h.d.126.4 16 55.27 odd 20
275.2.h.d.251.1 16 5.3 odd 4
275.2.h.d.251.4 16 5.2 odd 4
495.2.ba.a.64.1 16 15.14 odd 2
495.2.ba.a.64.4 16 3.2 odd 2
495.2.ba.a.379.1 16 33.5 odd 10
495.2.ba.a.379.4 16 165.104 odd 10
605.2.b.f.364.2 8 55.29 odd 10
605.2.b.f.364.7 8 11.7 odd 10
605.2.b.g.364.2 8 11.4 even 5
605.2.b.g.364.7 8 55.4 even 10
605.2.j.d.9.1 16 55.54 odd 2
605.2.j.d.9.4 16 11.10 odd 2
605.2.j.d.269.1 16 11.6 odd 10
605.2.j.d.269.4 16 55.39 odd 10
605.2.j.g.124.1 16 11.2 odd 10
605.2.j.g.124.4 16 55.24 odd 10
605.2.j.g.444.1 16 55.19 odd 10
605.2.j.g.444.4 16 11.8 odd 10
605.2.j.h.124.1 16 55.9 even 10
605.2.j.h.124.4 16 11.9 even 5
605.2.j.h.444.1 16 11.3 even 5
605.2.j.h.444.4 16 55.14 even 10
880.2.cd.c.49.1 16 220.159 odd 10
880.2.cd.c.49.4 16 44.27 odd 10
880.2.cd.c.449.1 16 4.3 odd 2
880.2.cd.c.449.4 16 20.19 odd 2
3025.2.a.bk.1.2 8 55.7 even 20
3025.2.a.bk.1.7 8 55.18 even 20
3025.2.a.bl.1.2 8 55.48 odd 20
3025.2.a.bl.1.7 8 55.37 odd 20