Properties

Label 880.2.cd.c.49.4
Level $880$
Weight $2$
Character 880.49
Analytic conductor $7.027$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,2,Mod(49,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.cd (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{14} + 25x^{12} - 57x^{10} + 194x^{8} - 303x^{6} + 235x^{4} - 33x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 49.4
Root \(0.972539 - 1.33858i\) of defining polynomial
Character \(\chi\) \(=\) 880.49
Dual form 880.2.cd.c.449.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.16075 - 1.59764i) q^{3} +(0.264988 - 2.22031i) q^{5} +(1.31845 + 1.81468i) q^{7} +(-0.278050 - 0.855749i) q^{9} +(3.27115 - 0.547326i) q^{11} +(3.51868 - 1.14329i) q^{13} +(-3.23967 - 3.00058i) q^{15} +(2.11573 + 0.687441i) q^{17} +(-4.27714 - 3.10753i) q^{19} +4.42960 q^{21} +3.85415i q^{23} +(-4.85956 - 1.17671i) q^{25} +(3.94448 + 1.28164i) q^{27} +(0.152450 - 0.110762i) q^{29} +(-0.212253 - 0.653249i) q^{31} +(2.92256 - 5.86142i) q^{33} +(4.37854 - 2.44649i) q^{35} +(1.52422 + 2.09791i) q^{37} +(2.25775 - 6.94864i) q^{39} +(-6.40421 - 4.65293i) q^{41} -8.41368i q^{43} +(-1.97371 + 0.390594i) q^{45} +(-7.06117 + 9.71886i) q^{47} +(0.608337 - 1.87227i) q^{49} +(3.55411 - 2.58222i) q^{51} +(-12.0371 + 3.91110i) q^{53} +(-0.348420 - 7.40801i) q^{55} +(-9.92940 + 3.22626i) q^{57} +(0.278050 - 0.202015i) q^{59} +(0.535643 - 1.64854i) q^{61} +(1.18632 - 1.63283i) q^{63} +(-1.60605 - 8.11552i) q^{65} +0.650461i q^{67} +(6.15754 + 4.47371i) q^{69} +(-1.43619 + 4.42013i) q^{71} +(5.20684 + 7.16660i) q^{73} +(-7.52070 + 6.39795i) q^{75} +(5.30606 + 5.21449i) q^{77} +(-2.23551 - 6.88019i) q^{79} +(8.80999 - 6.40083i) q^{81} +(-3.02593 - 0.983185i) q^{83} +(2.08698 - 4.51541i) q^{85} -0.372127i q^{87} -9.92195 q^{89} +(6.71389 + 4.87793i) q^{91} +(-1.29003 - 0.419156i) q^{93} +(-8.03307 + 8.67314i) q^{95} +(2.15710 - 0.700884i) q^{97} +(-1.37792 - 2.64710i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{5} + 2 q^{9} + 6 q^{11} + 16 q^{15} - 6 q^{19} + 8 q^{21} - 16 q^{25} + 2 q^{29} - 8 q^{31} - 22 q^{35} - 30 q^{39} - 52 q^{41} + 12 q^{45} - 10 q^{49} + 42 q^{51} + 8 q^{55} - 2 q^{59} - 40 q^{61}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.16075 1.59764i 0.670160 0.922396i −0.329604 0.944119i \(-0.606915\pi\)
0.999764 + 0.0217231i \(0.00691523\pi\)
\(4\) 0 0
\(5\) 0.264988 2.22031i 0.118506 0.992953i
\(6\) 0 0
\(7\) 1.31845 + 1.81468i 0.498326 + 0.685886i 0.981896 0.189419i \(-0.0606604\pi\)
−0.483571 + 0.875305i \(0.660660\pi\)
\(8\) 0 0
\(9\) −0.278050 0.855749i −0.0926832 0.285250i
\(10\) 0 0
\(11\) 3.27115 0.547326i 0.986289 0.165025i
\(12\) 0 0
\(13\) 3.51868 1.14329i 0.975906 0.317091i 0.222708 0.974885i \(-0.428510\pi\)
0.753198 + 0.657794i \(0.228510\pi\)
\(14\) 0 0
\(15\) −3.23967 3.00058i −0.836478 0.774747i
\(16\) 0 0
\(17\) 2.11573 + 0.687441i 0.513139 + 0.166729i 0.554129 0.832431i \(-0.313051\pi\)
−0.0409903 + 0.999160i \(0.513051\pi\)
\(18\) 0 0
\(19\) −4.27714 3.10753i −0.981244 0.712916i −0.0232580 0.999729i \(-0.507404\pi\)
−0.957986 + 0.286814i \(0.907404\pi\)
\(20\) 0 0
\(21\) 4.42960 0.966617
\(22\) 0 0
\(23\) 3.85415i 0.803647i 0.915717 + 0.401823i \(0.131623\pi\)
−0.915717 + 0.401823i \(0.868377\pi\)
\(24\) 0 0
\(25\) −4.85956 1.17671i −0.971913 0.235342i
\(26\) 0 0
\(27\) 3.94448 + 1.28164i 0.759116 + 0.246652i
\(28\) 0 0
\(29\) 0.152450 0.110762i 0.0283093 0.0205679i −0.573541 0.819177i \(-0.694431\pi\)
0.601850 + 0.798609i \(0.294431\pi\)
\(30\) 0 0
\(31\) −0.212253 0.653249i −0.0381218 0.117327i 0.930185 0.367092i \(-0.119647\pi\)
−0.968306 + 0.249765i \(0.919647\pi\)
\(32\) 0 0
\(33\) 2.92256 5.86142i 0.508753 1.02034i
\(34\) 0 0
\(35\) 4.37854 2.44649i 0.740108 0.413532i
\(36\) 0 0
\(37\) 1.52422 + 2.09791i 0.250580 + 0.344894i 0.915714 0.401830i \(-0.131626\pi\)
−0.665134 + 0.746724i \(0.731626\pi\)
\(38\) 0 0
\(39\) 2.25775 6.94864i 0.361529 1.11267i
\(40\) 0 0
\(41\) −6.40421 4.65293i −1.00017 0.726666i −0.0380448 0.999276i \(-0.512113\pi\)
−0.962124 + 0.272611i \(0.912113\pi\)
\(42\) 0 0
\(43\) 8.41368i 1.28307i −0.767092 0.641537i \(-0.778297\pi\)
0.767092 0.641537i \(-0.221703\pi\)
\(44\) 0 0
\(45\) −1.97371 + 0.390594i −0.294223 + 0.0582263i
\(46\) 0 0
\(47\) −7.06117 + 9.71886i −1.02998 + 1.41764i −0.125012 + 0.992155i \(0.539897\pi\)
−0.904965 + 0.425486i \(0.860103\pi\)
\(48\) 0 0
\(49\) 0.608337 1.87227i 0.0869053 0.267467i
\(50\) 0 0
\(51\) 3.55411 2.58222i 0.497676 0.361582i
\(52\) 0 0
\(53\) −12.0371 + 3.91110i −1.65343 + 0.537231i −0.979479 0.201549i \(-0.935403\pi\)
−0.673947 + 0.738779i \(0.735403\pi\)
\(54\) 0 0
\(55\) −0.348420 7.40801i −0.0469809 0.998896i
\(56\) 0 0
\(57\) −9.92940 + 3.22626i −1.31518 + 0.427328i
\(58\) 0 0
\(59\) 0.278050 0.202015i 0.0361990 0.0263001i −0.569539 0.821965i \(-0.692878\pi\)
0.605738 + 0.795664i \(0.292878\pi\)
\(60\) 0 0
\(61\) 0.535643 1.64854i 0.0685821 0.211074i −0.910892 0.412645i \(-0.864605\pi\)
0.979474 + 0.201572i \(0.0646049\pi\)
\(62\) 0 0
\(63\) 1.18632 1.63283i 0.149462 0.205717i
\(64\) 0 0
\(65\) −1.60605 8.11552i −0.199206 1.00661i
\(66\) 0 0
\(67\) 0.650461i 0.0794664i 0.999210 + 0.0397332i \(0.0126508\pi\)
−0.999210 + 0.0397332i \(0.987349\pi\)
\(68\) 0 0
\(69\) 6.15754 + 4.47371i 0.741281 + 0.538572i
\(70\) 0 0
\(71\) −1.43619 + 4.42013i −0.170444 + 0.524573i −0.999396 0.0347464i \(-0.988938\pi\)
0.828952 + 0.559320i \(0.188938\pi\)
\(72\) 0 0
\(73\) 5.20684 + 7.16660i 0.609415 + 0.838787i 0.996529 0.0832444i \(-0.0265282\pi\)
−0.387115 + 0.922032i \(0.626528\pi\)
\(74\) 0 0
\(75\) −7.52070 + 6.39795i −0.868416 + 0.738772i
\(76\) 0 0
\(77\) 5.30606 + 5.21449i 0.604682 + 0.594246i
\(78\) 0 0
\(79\) −2.23551 6.88019i −0.251514 0.774082i −0.994496 0.104770i \(-0.966589\pi\)
0.742982 0.669311i \(-0.233411\pi\)
\(80\) 0 0
\(81\) 8.80999 6.40083i 0.978888 0.711203i
\(82\) 0 0
\(83\) −3.02593 0.983185i −0.332139 0.107919i 0.138200 0.990404i \(-0.455868\pi\)
−0.470339 + 0.882486i \(0.655868\pi\)
\(84\) 0 0
\(85\) 2.08698 4.51541i 0.226364 0.489765i
\(86\) 0 0
\(87\) 0.372127i 0.0398962i
\(88\) 0 0
\(89\) −9.92195 −1.05172 −0.525862 0.850570i \(-0.676257\pi\)
−0.525862 + 0.850570i \(0.676257\pi\)
\(90\) 0 0
\(91\) 6.71389 + 4.87793i 0.703807 + 0.511346i
\(92\) 0 0
\(93\) −1.29003 0.419156i −0.133770 0.0434644i
\(94\) 0 0
\(95\) −8.03307 + 8.67314i −0.824175 + 0.889845i
\(96\) 0 0
\(97\) 2.15710 0.700884i 0.219020 0.0711640i −0.197451 0.980313i \(-0.563266\pi\)
0.416472 + 0.909149i \(0.363266\pi\)
\(98\) 0 0
\(99\) −1.37792 2.64710i −0.138486 0.266044i
\(100\) 0 0
\(101\) 3.05830 + 9.41247i 0.304312 + 0.936576i 0.979933 + 0.199327i \(0.0638756\pi\)
−0.675621 + 0.737249i \(0.736124\pi\)
\(102\) 0 0
\(103\) 6.01958 + 8.28525i 0.593127 + 0.816370i 0.995057 0.0993007i \(-0.0316606\pi\)
−0.401930 + 0.915670i \(0.631661\pi\)
\(104\) 0 0
\(105\) 1.17379 9.83508i 0.114550 0.959805i
\(106\) 0 0
\(107\) 5.90536 8.12803i 0.570893 0.785767i −0.421767 0.906704i \(-0.638590\pi\)
0.992660 + 0.120937i \(0.0385900\pi\)
\(108\) 0 0
\(109\) 8.80173 0.843053 0.421527 0.906816i \(-0.361494\pi\)
0.421527 + 0.906816i \(0.361494\pi\)
\(110\) 0 0
\(111\) 5.12094 0.486058
\(112\) 0 0
\(113\) 0.135985 0.187168i 0.0127924 0.0176073i −0.802573 0.596554i \(-0.796536\pi\)
0.815365 + 0.578947i \(0.196536\pi\)
\(114\) 0 0
\(115\) 8.55742 + 1.02130i 0.797984 + 0.0952370i
\(116\) 0 0
\(117\) −1.95673 2.69321i −0.180900 0.248988i
\(118\) 0 0
\(119\) 1.54198 + 4.74573i 0.141353 + 0.435040i
\(120\) 0 0
\(121\) 10.4009 3.58078i 0.945533 0.325525i
\(122\) 0 0
\(123\) −14.8674 + 4.83071i −1.34055 + 0.435570i
\(124\) 0 0
\(125\) −3.90039 + 10.4779i −0.348861 + 0.937174i
\(126\) 0 0
\(127\) −2.31140 0.751018i −0.205103 0.0666421i 0.204664 0.978832i \(-0.434390\pi\)
−0.409767 + 0.912190i \(0.634390\pi\)
\(128\) 0 0
\(129\) −13.4420 9.76619i −1.18350 0.859865i
\(130\) 0 0
\(131\) −1.58846 −0.138785 −0.0693924 0.997589i \(-0.522106\pi\)
−0.0693924 + 0.997589i \(0.522106\pi\)
\(132\) 0 0
\(133\) 11.8588i 1.02829i
\(134\) 0 0
\(135\) 3.89088 8.41836i 0.334874 0.724537i
\(136\) 0 0
\(137\) 17.7866 + 5.77920i 1.51961 + 0.493750i 0.945664 0.325145i \(-0.105413\pi\)
0.573943 + 0.818895i \(0.305413\pi\)
\(138\) 0 0
\(139\) −9.40675 + 6.83441i −0.797870 + 0.579687i −0.910289 0.413974i \(-0.864140\pi\)
0.112418 + 0.993661i \(0.464140\pi\)
\(140\) 0 0
\(141\) 7.33095 + 22.5624i 0.617378 + 1.90009i
\(142\) 0 0
\(143\) 10.8844 5.66573i 0.910197 0.473792i
\(144\) 0 0
\(145\) −0.205528 0.367838i −0.0170682 0.0305472i
\(146\) 0 0
\(147\) −2.28508 3.14514i −0.188470 0.259407i
\(148\) 0 0
\(149\) −1.82800 + 5.62600i −0.149755 + 0.460900i −0.997592 0.0693580i \(-0.977905\pi\)
0.847836 + 0.530258i \(0.177905\pi\)
\(150\) 0 0
\(151\) 10.3375 + 7.51064i 0.841254 + 0.611207i 0.922721 0.385469i \(-0.125960\pi\)
−0.0814664 + 0.996676i \(0.525960\pi\)
\(152\) 0 0
\(153\) 2.00167i 0.161826i
\(154\) 0 0
\(155\) −1.50666 + 0.298166i −0.121018 + 0.0239492i
\(156\) 0 0
\(157\) −8.43394 + 11.6083i −0.673102 + 0.926445i −0.999826 0.0186749i \(-0.994055\pi\)
0.326724 + 0.945120i \(0.394055\pi\)
\(158\) 0 0
\(159\) −7.72359 + 23.7708i −0.612520 + 1.88514i
\(160\) 0 0
\(161\) −6.99407 + 5.08149i −0.551210 + 0.400478i
\(162\) 0 0
\(163\) −3.44963 + 1.12085i −0.270196 + 0.0877921i −0.440982 0.897516i \(-0.645370\pi\)
0.170785 + 0.985308i \(0.445370\pi\)
\(164\) 0 0
\(165\) −12.2397 8.04221i −0.952862 0.626085i
\(166\) 0 0
\(167\) 3.63370 1.18066i 0.281184 0.0913623i −0.165030 0.986289i \(-0.552772\pi\)
0.446214 + 0.894926i \(0.352772\pi\)
\(168\) 0 0
\(169\) 0.556767 0.404515i 0.0428282 0.0311165i
\(170\) 0 0
\(171\) −1.47000 + 4.52421i −0.112414 + 0.345975i
\(172\) 0 0
\(173\) 1.23855 1.70472i 0.0941651 0.129607i −0.759335 0.650700i \(-0.774476\pi\)
0.853500 + 0.521093i \(0.174476\pi\)
\(174\) 0 0
\(175\) −4.27171 10.3700i −0.322911 0.783899i
\(176\) 0 0
\(177\) 0.678711i 0.0510151i
\(178\) 0 0
\(179\) −4.06448 2.95302i −0.303793 0.220719i 0.425435 0.904989i \(-0.360121\pi\)
−0.729229 + 0.684270i \(0.760121\pi\)
\(180\) 0 0
\(181\) −4.83538 + 14.8818i −0.359411 + 1.10615i 0.593997 + 0.804467i \(0.297549\pi\)
−0.953408 + 0.301685i \(0.902451\pi\)
\(182\) 0 0
\(183\) −2.01202 2.76931i −0.148733 0.204713i
\(184\) 0 0
\(185\) 5.06191 2.82832i 0.372159 0.207943i
\(186\) 0 0
\(187\) 7.29712 + 1.09073i 0.533618 + 0.0797622i
\(188\) 0 0
\(189\) 2.87481 + 8.84777i 0.209112 + 0.643580i
\(190\) 0 0
\(191\) 2.52078 1.83145i 0.182397 0.132519i −0.492840 0.870120i \(-0.664041\pi\)
0.675237 + 0.737601i \(0.264041\pi\)
\(192\) 0 0
\(193\) −9.16474 2.97780i −0.659692 0.214347i −0.0400095 0.999199i \(-0.512739\pi\)
−0.619683 + 0.784852i \(0.712739\pi\)
\(194\) 0 0
\(195\) −14.8299 6.85421i −1.06199 0.490841i
\(196\) 0 0
\(197\) 14.3974i 1.02577i −0.858457 0.512885i \(-0.828577\pi\)
0.858457 0.512885i \(-0.171423\pi\)
\(198\) 0 0
\(199\) 14.7978 1.04899 0.524493 0.851415i \(-0.324255\pi\)
0.524493 + 0.851415i \(0.324255\pi\)
\(200\) 0 0
\(201\) 1.03920 + 0.755023i 0.0732995 + 0.0532552i
\(202\) 0 0
\(203\) 0.401995 + 0.130616i 0.0282145 + 0.00916745i
\(204\) 0 0
\(205\) −12.0280 + 12.9864i −0.840071 + 0.907007i
\(206\) 0 0
\(207\) 3.29819 1.07165i 0.229240 0.0744845i
\(208\) 0 0
\(209\) −15.6920 7.82420i −1.08544 0.541211i
\(210\) 0 0
\(211\) 2.09250 + 6.44005i 0.144054 + 0.443352i 0.996888 0.0788298i \(-0.0251184\pi\)
−0.852834 + 0.522181i \(0.825118\pi\)
\(212\) 0 0
\(213\) 5.39471 + 7.42518i 0.369640 + 0.508765i
\(214\) 0 0
\(215\) −18.6810 2.22952i −1.27403 0.152052i
\(216\) 0 0
\(217\) 0.905596 1.24645i 0.0614759 0.0846143i
\(218\) 0 0
\(219\) 17.4935 1.18210
\(220\) 0 0
\(221\) 8.23051 0.553644
\(222\) 0 0
\(223\) −5.12388 + 7.05242i −0.343121 + 0.472265i −0.945350 0.326058i \(-0.894279\pi\)
0.602229 + 0.798323i \(0.294279\pi\)
\(224\) 0 0
\(225\) 0.344231 + 4.48575i 0.0229487 + 0.299050i
\(226\) 0 0
\(227\) 2.23795 + 3.08028i 0.148538 + 0.204445i 0.876802 0.480852i \(-0.159672\pi\)
−0.728264 + 0.685297i \(0.759672\pi\)
\(228\) 0 0
\(229\) 0.838570 + 2.58085i 0.0554142 + 0.170547i 0.974933 0.222499i \(-0.0714213\pi\)
−0.919519 + 0.393046i \(0.871421\pi\)
\(230\) 0 0
\(231\) 14.4899 2.42443i 0.953364 0.159516i
\(232\) 0 0
\(233\) −9.99634 + 3.24801i −0.654882 + 0.212784i −0.617566 0.786519i \(-0.711881\pi\)
−0.0373166 + 0.999303i \(0.511881\pi\)
\(234\) 0 0
\(235\) 19.7078 + 18.2534i 1.28559 + 1.19072i
\(236\) 0 0
\(237\) −13.5869 4.41466i −0.882565 0.286763i
\(238\) 0 0
\(239\) −16.2124 11.7790i −1.04869 0.761919i −0.0767288 0.997052i \(-0.524448\pi\)
−0.971963 + 0.235133i \(0.924448\pi\)
\(240\) 0 0
\(241\) 28.4450 1.83230 0.916152 0.400832i \(-0.131279\pi\)
0.916152 + 0.400832i \(0.131279\pi\)
\(242\) 0 0
\(243\) 9.06251i 0.581361i
\(244\) 0 0
\(245\) −3.99582 1.84683i −0.255283 0.117989i
\(246\) 0 0
\(247\) −18.6027 6.04438i −1.18366 0.384595i
\(248\) 0 0
\(249\) −5.08313 + 3.69311i −0.322130 + 0.234041i
\(250\) 0 0
\(251\) 7.36604 + 22.6703i 0.464940 + 1.43094i 0.859058 + 0.511879i \(0.171050\pi\)
−0.394117 + 0.919060i \(0.628950\pi\)
\(252\) 0 0
\(253\) 2.10948 + 12.6075i 0.132622 + 0.792628i
\(254\) 0 0
\(255\) −4.79152 8.57550i −0.300057 0.537018i
\(256\) 0 0
\(257\) −14.5044 19.9636i −0.904758 1.24529i −0.968925 0.247354i \(-0.920439\pi\)
0.0641671 0.997939i \(-0.479561\pi\)
\(258\) 0 0
\(259\) −1.79744 + 5.53196i −0.111688 + 0.343739i
\(260\) 0 0
\(261\) −0.137173 0.0996619i −0.00849079 0.00616892i
\(262\) 0 0
\(263\) 5.44098i 0.335505i 0.985829 + 0.167753i \(0.0536510\pi\)
−0.985829 + 0.167753i \(0.946349\pi\)
\(264\) 0 0
\(265\) 5.49416 + 27.7625i 0.337504 + 1.70544i
\(266\) 0 0
\(267\) −11.5169 + 15.8517i −0.704824 + 0.970107i
\(268\) 0 0
\(269\) 2.07213 6.37738i 0.126340 0.388835i −0.867803 0.496909i \(-0.834468\pi\)
0.994143 + 0.108074i \(0.0344682\pi\)
\(270\) 0 0
\(271\) −4.09349 + 2.97409i −0.248662 + 0.180663i −0.705134 0.709075i \(-0.749113\pi\)
0.456472 + 0.889738i \(0.349113\pi\)
\(272\) 0 0
\(273\) 15.5863 5.06430i 0.943327 0.306505i
\(274\) 0 0
\(275\) −16.5404 1.18943i −0.997424 0.0717254i
\(276\) 0 0
\(277\) 10.1703 3.30453i 0.611074 0.198550i 0.0129009 0.999917i \(-0.495893\pi\)
0.598173 + 0.801367i \(0.295893\pi\)
\(278\) 0 0
\(279\) −0.500000 + 0.363271i −0.0299342 + 0.0217485i
\(280\) 0 0
\(281\) −4.23963 + 13.0482i −0.252915 + 0.778392i 0.741319 + 0.671153i \(0.234201\pi\)
−0.994233 + 0.107238i \(0.965799\pi\)
\(282\) 0 0
\(283\) −12.9132 + 17.7735i −0.767611 + 1.05653i 0.228932 + 0.973442i \(0.426477\pi\)
−0.996543 + 0.0830832i \(0.973523\pi\)
\(284\) 0 0
\(285\) 4.53213 + 22.9013i 0.268460 + 1.35655i
\(286\) 0 0
\(287\) 17.7563i 1.04812i
\(288\) 0 0
\(289\) −9.74956 7.08347i −0.573504 0.416675i
\(290\) 0 0
\(291\) 1.38410 4.25981i 0.0811372 0.249715i
\(292\) 0 0
\(293\) 8.25135 + 11.3570i 0.482049 + 0.663483i 0.978897 0.204354i \(-0.0655094\pi\)
−0.496848 + 0.867837i \(0.665509\pi\)
\(294\) 0 0
\(295\) −0.374856 0.670888i −0.0218250 0.0390606i
\(296\) 0 0
\(297\) 13.6045 + 2.03352i 0.789412 + 0.117997i
\(298\) 0 0
\(299\) 4.40641 + 13.5615i 0.254829 + 0.784283i
\(300\) 0 0
\(301\) 15.2682 11.0930i 0.880043 0.639389i
\(302\) 0 0
\(303\) 18.5876 + 6.03949i 1.06783 + 0.346960i
\(304\) 0 0
\(305\) −3.51833 1.62614i −0.201459 0.0931123i
\(306\) 0 0
\(307\) 6.86951i 0.392064i 0.980598 + 0.196032i \(0.0628056\pi\)
−0.980598 + 0.196032i \(0.937194\pi\)
\(308\) 0 0
\(309\) 20.2241 1.15051
\(310\) 0 0
\(311\) −4.45087 3.23374i −0.252385 0.183369i 0.454398 0.890799i \(-0.349854\pi\)
−0.706783 + 0.707430i \(0.749854\pi\)
\(312\) 0 0
\(313\) −13.5354 4.39793i −0.765068 0.248586i −0.0996156 0.995026i \(-0.531761\pi\)
−0.665452 + 0.746440i \(0.731761\pi\)
\(314\) 0 0
\(315\) −3.31103 3.06668i −0.186555 0.172788i
\(316\) 0 0
\(317\) −17.7718 + 5.77442i −0.998166 + 0.324324i −0.762132 0.647421i \(-0.775847\pi\)
−0.236033 + 0.971745i \(0.575847\pi\)
\(318\) 0 0
\(319\) 0.438065 0.445758i 0.0245269 0.0249577i
\(320\) 0 0
\(321\) −6.13099 18.8693i −0.342199 1.05318i
\(322\) 0 0
\(323\) −6.91303 9.51497i −0.384651 0.529427i
\(324\) 0 0
\(325\) −18.4446 + 1.41541i −1.02312 + 0.0785130i
\(326\) 0 0
\(327\) 10.2166 14.0620i 0.564981 0.777629i
\(328\) 0 0
\(329\) −26.9464 −1.48560
\(330\) 0 0
\(331\) −0.468249 −0.0257373 −0.0128686 0.999917i \(-0.504096\pi\)
−0.0128686 + 0.999917i \(0.504096\pi\)
\(332\) 0 0
\(333\) 1.37148 1.88767i 0.0751564 0.103444i
\(334\) 0 0
\(335\) 1.44423 + 0.172364i 0.0789065 + 0.00941726i
\(336\) 0 0
\(337\) −20.0360 27.5771i −1.09143 1.50222i −0.846282 0.532735i \(-0.821164\pi\)
−0.245146 0.969486i \(-0.578836\pi\)
\(338\) 0 0
\(339\) −0.141181 0.434511i −0.00766790 0.0235994i
\(340\) 0 0
\(341\) −1.05185 2.02070i −0.0569611 0.109427i
\(342\) 0 0
\(343\) 19.1327 6.21658i 1.03307 0.335664i
\(344\) 0 0
\(345\) 11.5647 12.4862i 0.622623 0.672233i
\(346\) 0 0
\(347\) −3.41707 1.11027i −0.183438 0.0596026i 0.215858 0.976425i \(-0.430745\pi\)
−0.399296 + 0.916822i \(0.630745\pi\)
\(348\) 0 0
\(349\) −5.15433 3.74484i −0.275905 0.200457i 0.441224 0.897397i \(-0.354544\pi\)
−0.717129 + 0.696940i \(0.754544\pi\)
\(350\) 0 0
\(351\) 15.3446 0.819037
\(352\) 0 0
\(353\) 12.1971i 0.649186i 0.945854 + 0.324593i \(0.105227\pi\)
−0.945854 + 0.324593i \(0.894773\pi\)
\(354\) 0 0
\(355\) 9.43350 + 4.36007i 0.500678 + 0.231408i
\(356\) 0 0
\(357\) 9.37181 + 3.04509i 0.496009 + 0.161163i
\(358\) 0 0
\(359\) −19.5093 + 14.1744i −1.02966 + 0.748094i −0.968241 0.250018i \(-0.919564\pi\)
−0.0614222 + 0.998112i \(0.519564\pi\)
\(360\) 0 0
\(361\) 2.76592 + 8.51262i 0.145575 + 0.448032i
\(362\) 0 0
\(363\) 6.35204 20.7732i 0.333396 1.09031i
\(364\) 0 0
\(365\) 17.2918 9.66174i 0.905096 0.505719i
\(366\) 0 0
\(367\) −11.9849 16.4958i −0.625606 0.861073i 0.372140 0.928177i \(-0.378624\pi\)
−0.997746 + 0.0671034i \(0.978624\pi\)
\(368\) 0 0
\(369\) −2.20105 + 6.77414i −0.114582 + 0.352648i
\(370\) 0 0
\(371\) −22.9677 16.6870i −1.19242 0.866347i
\(372\) 0 0
\(373\) 7.51997i 0.389369i −0.980866 0.194685i \(-0.937632\pi\)
0.980866 0.194685i \(-0.0623684\pi\)
\(374\) 0 0
\(375\) 12.2125 + 18.3937i 0.630653 + 0.949845i
\(376\) 0 0
\(377\) 0.409791 0.564029i 0.0211053 0.0290490i
\(378\) 0 0
\(379\) 7.16649 22.0562i 0.368118 1.13295i −0.579888 0.814696i \(-0.696904\pi\)
0.948006 0.318254i \(-0.103096\pi\)
\(380\) 0 0
\(381\) −3.88281 + 2.82103i −0.198922 + 0.144526i
\(382\) 0 0
\(383\) −2.32095 + 0.754123i −0.118595 + 0.0385339i −0.367713 0.929939i \(-0.619859\pi\)
0.249118 + 0.968473i \(0.419859\pi\)
\(384\) 0 0
\(385\) 12.9838 10.3993i 0.661717 0.529999i
\(386\) 0 0
\(387\) −7.20000 + 2.33942i −0.365997 + 0.118919i
\(388\) 0 0
\(389\) 27.4849 19.9689i 1.39354 1.01246i 0.398071 0.917355i \(-0.369680\pi\)
0.995467 0.0951096i \(-0.0303201\pi\)
\(390\) 0 0
\(391\) −2.64950 + 8.15434i −0.133991 + 0.412383i
\(392\) 0 0
\(393\) −1.84381 + 2.53779i −0.0930080 + 0.128015i
\(394\) 0 0
\(395\) −15.8685 + 3.14036i −0.798433 + 0.158009i
\(396\) 0 0
\(397\) 27.4961i 1.37999i −0.723814 0.689995i \(-0.757613\pi\)
0.723814 0.689995i \(-0.242387\pi\)
\(398\) 0 0
\(399\) −18.9460 13.7651i −0.948487 0.689116i
\(400\) 0 0
\(401\) −0.583247 + 1.79505i −0.0291259 + 0.0896404i −0.964563 0.263853i \(-0.915006\pi\)
0.935437 + 0.353494i \(0.115006\pi\)
\(402\) 0 0
\(403\) −1.49370 2.05591i −0.0744067 0.102412i
\(404\) 0 0
\(405\) −11.8773 21.2571i −0.590188 1.05627i
\(406\) 0 0
\(407\) 6.13420 + 6.02834i 0.304061 + 0.298814i
\(408\) 0 0
\(409\) −4.18949 12.8939i −0.207157 0.637563i −0.999618 0.0276408i \(-0.991201\pi\)
0.792461 0.609923i \(-0.208799\pi\)
\(410\) 0 0
\(411\) 29.8788 21.7082i 1.47381 1.07079i
\(412\) 0 0
\(413\) 0.733187 + 0.238227i 0.0360778 + 0.0117224i
\(414\) 0 0
\(415\) −2.98481 + 6.45798i −0.146519 + 0.317010i
\(416\) 0 0
\(417\) 22.9616i 1.12444i
\(418\) 0 0
\(419\) −22.1368 −1.08145 −0.540727 0.841198i \(-0.681851\pi\)
−0.540727 + 0.841198i \(0.681851\pi\)
\(420\) 0 0
\(421\) −14.4835 10.5229i −0.705881 0.512853i 0.175961 0.984397i \(-0.443697\pi\)
−0.881842 + 0.471544i \(0.843697\pi\)
\(422\) 0 0
\(423\) 10.2803 + 3.34026i 0.499843 + 0.162409i
\(424\) 0 0
\(425\) −9.47259 5.83026i −0.459488 0.282809i
\(426\) 0 0
\(427\) 3.69780 1.20149i 0.178949 0.0581440i
\(428\) 0 0
\(429\) 3.58227 23.9658i 0.172954 1.15708i
\(430\) 0 0
\(431\) −10.3353 31.8087i −0.497833 1.53217i −0.812495 0.582968i \(-0.801891\pi\)
0.314662 0.949204i \(-0.398109\pi\)
\(432\) 0 0
\(433\) 18.5102 + 25.4771i 0.889543 + 1.22435i 0.973685 + 0.227897i \(0.0731848\pi\)
−0.0841428 + 0.996454i \(0.526815\pi\)
\(434\) 0 0
\(435\) −0.826238 0.0986091i −0.0396151 0.00472794i
\(436\) 0 0
\(437\) 11.9769 16.4848i 0.572932 0.788574i
\(438\) 0 0
\(439\) 35.6208 1.70009 0.850045 0.526710i \(-0.176575\pi\)
0.850045 + 0.526710i \(0.176575\pi\)
\(440\) 0 0
\(441\) −1.77134 −0.0843495
\(442\) 0 0
\(443\) 13.8056 19.0018i 0.655926 0.902805i −0.343412 0.939185i \(-0.611583\pi\)
0.999338 + 0.0363802i \(0.0115827\pi\)
\(444\) 0 0
\(445\) −2.62920 + 22.0298i −0.124636 + 1.04431i
\(446\) 0 0
\(447\) 6.86646 + 9.45086i 0.324772 + 0.447011i
\(448\) 0 0
\(449\) 9.70066 + 29.8555i 0.457802 + 1.40897i 0.867814 + 0.496890i \(0.165525\pi\)
−0.410011 + 0.912080i \(0.634475\pi\)
\(450\) 0 0
\(451\) −23.4958 11.7152i −1.10637 0.551649i
\(452\) 0 0
\(453\) 23.9985 7.79760i 1.12755 0.366363i
\(454\) 0 0
\(455\) 12.6096 13.6143i 0.591148 0.638250i
\(456\) 0 0
\(457\) 37.1964 + 12.0859i 1.73998 + 0.565352i 0.994830 0.101550i \(-0.0323803\pi\)
0.745145 + 0.666903i \(0.232380\pi\)
\(458\) 0 0
\(459\) 7.46440 + 5.42320i 0.348408 + 0.253133i
\(460\) 0 0
\(461\) −8.88399 −0.413769 −0.206884 0.978365i \(-0.566332\pi\)
−0.206884 + 0.978365i \(0.566332\pi\)
\(462\) 0 0
\(463\) 4.21081i 0.195693i 0.995202 + 0.0978464i \(0.0311954\pi\)
−0.995202 + 0.0978464i \(0.968805\pi\)
\(464\) 0 0
\(465\) −1.27250 + 2.75319i −0.0590107 + 0.127676i
\(466\) 0 0
\(467\) 6.39912 + 2.07920i 0.296116 + 0.0962139i 0.453307 0.891354i \(-0.350244\pi\)
−0.157191 + 0.987568i \(0.550244\pi\)
\(468\) 0 0
\(469\) −1.18038 + 0.857597i −0.0545049 + 0.0396002i
\(470\) 0 0
\(471\) 8.75618 + 26.9487i 0.403463 + 1.24173i
\(472\) 0 0
\(473\) −4.60503 27.5224i −0.211740 1.26548i
\(474\) 0 0
\(475\) 17.1284 + 20.1342i 0.785905 + 0.923820i
\(476\) 0 0
\(477\) 6.69383 + 9.21327i 0.306490 + 0.421847i
\(478\) 0 0
\(479\) 6.43046 19.7909i 0.293815 0.904270i −0.689802 0.723998i \(-0.742302\pi\)
0.983617 0.180272i \(-0.0576977\pi\)
\(480\) 0 0
\(481\) 7.76176 + 5.63925i 0.353906 + 0.257128i
\(482\) 0 0
\(483\) 17.0723i 0.776818i
\(484\) 0 0
\(485\) −0.984576 4.97516i −0.0447073 0.225910i
\(486\) 0 0
\(487\) 9.27489 12.7658i 0.420285 0.578473i −0.545404 0.838173i \(-0.683624\pi\)
0.965689 + 0.259700i \(0.0836237\pi\)
\(488\) 0 0
\(489\) −2.21345 + 6.81230i −0.100096 + 0.308063i
\(490\) 0 0
\(491\) 15.6386 11.3621i 0.705759 0.512764i −0.176044 0.984382i \(-0.556330\pi\)
0.881803 + 0.471618i \(0.156330\pi\)
\(492\) 0 0
\(493\) 0.398685 0.129541i 0.0179559 0.00583422i
\(494\) 0 0
\(495\) −6.24252 + 2.35795i −0.280580 + 0.105982i
\(496\) 0 0
\(497\) −9.91469 + 3.22148i −0.444734 + 0.144503i
\(498\) 0 0
\(499\) 33.5416 24.3694i 1.50153 1.09092i 0.531758 0.846896i \(-0.321532\pi\)
0.969769 0.244026i \(-0.0784684\pi\)
\(500\) 0 0
\(501\) 2.33156 7.17579i 0.104166 0.320591i
\(502\) 0 0
\(503\) −19.1978 + 26.4236i −0.855990 + 1.17817i 0.126521 + 0.991964i \(0.459619\pi\)
−0.982511 + 0.186205i \(0.940381\pi\)
\(504\) 0 0
\(505\) 21.7090 4.29618i 0.966039 0.191178i
\(506\) 0 0
\(507\) 1.35905i 0.0603576i
\(508\) 0 0
\(509\) 13.4662 + 9.78379i 0.596881 + 0.433659i 0.844770 0.535129i \(-0.179737\pi\)
−0.247890 + 0.968788i \(0.579737\pi\)
\(510\) 0 0
\(511\) −6.14019 + 18.8975i −0.271626 + 0.835978i
\(512\) 0 0
\(513\) −12.8884 17.7393i −0.569036 0.783211i
\(514\) 0 0
\(515\) 19.9909 11.1699i 0.880906 0.492203i
\(516\) 0 0
\(517\) −17.7788 + 35.6566i −0.781909 + 1.56818i
\(518\) 0 0
\(519\) −1.28587 3.95750i −0.0564434 0.173715i
\(520\) 0 0
\(521\) −11.3717 + 8.26206i −0.498205 + 0.361967i −0.808331 0.588728i \(-0.799629\pi\)
0.310126 + 0.950696i \(0.399629\pi\)
\(522\) 0 0
\(523\) −14.9009 4.84159i −0.651570 0.211708i −0.0354635 0.999371i \(-0.511291\pi\)
−0.616106 + 0.787663i \(0.711291\pi\)
\(524\) 0 0
\(525\) −21.5259 5.21235i −0.939467 0.227486i
\(526\) 0 0
\(527\) 1.52801i 0.0665611i
\(528\) 0 0
\(529\) 8.14550 0.354152
\(530\) 0 0
\(531\) −0.250186 0.181770i −0.0108571 0.00788817i
\(532\) 0 0
\(533\) −27.8540 9.05031i −1.20649 0.392012i
\(534\) 0 0
\(535\) −16.4819 15.2656i −0.712575 0.659988i
\(536\) 0 0
\(537\) −9.43570 + 3.06584i −0.407180 + 0.132301i
\(538\) 0 0
\(539\) 0.965221 6.45743i 0.0415750 0.278141i
\(540\) 0 0
\(541\) −12.2489 37.6983i −0.526623 1.62078i −0.761084 0.648653i \(-0.775333\pi\)
0.234461 0.972125i \(-0.424667\pi\)
\(542\) 0 0
\(543\) 18.1630 + 24.9992i 0.779448 + 1.07282i
\(544\) 0 0
\(545\) 2.33235 19.5426i 0.0999070 0.837113i
\(546\) 0 0
\(547\) 24.1970 33.3043i 1.03459 1.42399i 0.133145 0.991097i \(-0.457492\pi\)
0.901445 0.432895i \(-0.142508\pi\)
\(548\) 0 0
\(549\) −1.55967 −0.0665651
\(550\) 0 0
\(551\) −0.996247 −0.0424415
\(552\) 0 0
\(553\) 9.53798 13.1279i 0.405596 0.558255i
\(554\) 0 0
\(555\) 1.35699 11.3701i 0.0576009 0.482633i
\(556\) 0 0
\(557\) 17.5606 + 24.1702i 0.744069 + 1.02412i 0.998374 + 0.0569987i \(0.0181531\pi\)
−0.254306 + 0.967124i \(0.581847\pi\)
\(558\) 0 0
\(559\) −9.61926 29.6050i −0.406851 1.25216i
\(560\) 0 0
\(561\) 10.2127 10.3921i 0.431182 0.438754i
\(562\) 0 0
\(563\) 2.05218 0.666795i 0.0864892 0.0281021i −0.265453 0.964124i \(-0.585521\pi\)
0.351942 + 0.936022i \(0.385521\pi\)
\(564\) 0 0
\(565\) −0.379536 0.351527i −0.0159672 0.0147889i
\(566\) 0 0
\(567\) 23.2310 + 7.54820i 0.975610 + 0.316995i
\(568\) 0 0
\(569\) 0.580298 + 0.421611i 0.0243274 + 0.0176749i 0.599882 0.800088i \(-0.295214\pi\)
−0.575555 + 0.817763i \(0.695214\pi\)
\(570\) 0 0
\(571\) 21.6311 0.905235 0.452617 0.891705i \(-0.350490\pi\)
0.452617 + 0.891705i \(0.350490\pi\)
\(572\) 0 0
\(573\) 6.15315i 0.257051i
\(574\) 0 0
\(575\) 4.53522 18.7295i 0.189132 0.781074i
\(576\) 0 0
\(577\) −22.2810 7.23952i −0.927568 0.301385i −0.194000 0.981001i \(-0.562146\pi\)
−0.733568 + 0.679616i \(0.762146\pi\)
\(578\) 0 0
\(579\) −15.3954 + 11.1854i −0.639812 + 0.464851i
\(580\) 0 0
\(581\) −2.20536 6.78739i −0.0914936 0.281588i
\(582\) 0 0
\(583\) −37.2346 + 19.3820i −1.54210 + 0.802722i
\(584\) 0 0
\(585\) −6.49828 + 3.63089i −0.268671 + 0.150119i
\(586\) 0 0
\(587\) 1.32095 + 1.81814i 0.0545216 + 0.0750425i 0.835407 0.549632i \(-0.185232\pi\)
−0.780886 + 0.624674i \(0.785232\pi\)
\(588\) 0 0
\(589\) −1.12215 + 3.45362i −0.0462374 + 0.142304i
\(590\) 0 0
\(591\) −23.0018 16.7118i −0.946167 0.687431i
\(592\) 0 0
\(593\) 25.4034i 1.04319i 0.853193 + 0.521596i \(0.174663\pi\)
−0.853193 + 0.521596i \(0.825337\pi\)
\(594\) 0 0
\(595\) 10.9456 2.16612i 0.448726 0.0888022i
\(596\) 0 0
\(597\) 17.1765 23.6415i 0.702988 0.967580i
\(598\) 0 0
\(599\) −5.63194 + 17.3333i −0.230115 + 0.708220i 0.767617 + 0.640909i \(0.221442\pi\)
−0.997732 + 0.0673118i \(0.978558\pi\)
\(600\) 0 0
\(601\) 28.0242 20.3608i 1.14313 0.830533i 0.155579 0.987824i \(-0.450276\pi\)
0.987552 + 0.157290i \(0.0502758\pi\)
\(602\) 0 0
\(603\) 0.556631 0.180860i 0.0226678 0.00736520i
\(604\) 0 0
\(605\) −5.19433 24.0420i −0.211180 0.977447i
\(606\) 0 0
\(607\) −24.2027 + 7.86394i −0.982358 + 0.319187i −0.755794 0.654809i \(-0.772749\pi\)
−0.226564 + 0.973996i \(0.572749\pi\)
\(608\) 0 0
\(609\) 0.675293 0.490629i 0.0273643 0.0198813i
\(610\) 0 0
\(611\) −13.7345 + 42.2705i −0.555639 + 1.71008i
\(612\) 0 0
\(613\) −21.7843 + 29.9835i −0.879859 + 1.21102i 0.0966016 + 0.995323i \(0.469203\pi\)
−0.976460 + 0.215698i \(0.930797\pi\)
\(614\) 0 0
\(615\) 6.78600 + 34.2903i 0.273638 + 1.38272i
\(616\) 0 0
\(617\) 27.5937i 1.11088i 0.831557 + 0.555439i \(0.187450\pi\)
−0.831557 + 0.555439i \(0.812550\pi\)
\(618\) 0 0
\(619\) −16.5391 12.0164i −0.664764 0.482979i 0.203504 0.979074i \(-0.434767\pi\)
−0.868268 + 0.496095i \(0.834767\pi\)
\(620\) 0 0
\(621\) −4.93964 + 15.2026i −0.198221 + 0.610061i
\(622\) 0 0
\(623\) −13.0816 18.0052i −0.524101 0.721364i
\(624\) 0 0
\(625\) 22.2307 + 11.4366i 0.889228 + 0.457464i
\(626\) 0 0
\(627\) −30.7148 + 15.9882i −1.22663 + 0.638507i
\(628\) 0 0
\(629\) 1.78265 + 5.48642i 0.0710787 + 0.218758i
\(630\) 0 0
\(631\) 0.614155 0.446210i 0.0244491 0.0177633i −0.575494 0.817806i \(-0.695190\pi\)
0.599943 + 0.800043i \(0.295190\pi\)
\(632\) 0 0
\(633\) 12.7177 + 4.13224i 0.505485 + 0.164242i
\(634\) 0 0
\(635\) −2.27998 + 4.93301i −0.0904784 + 0.195760i
\(636\) 0 0
\(637\) 7.28342i 0.288579i
\(638\) 0 0
\(639\) 4.18186 0.165432
\(640\) 0 0
\(641\) 12.0584 + 8.76094i 0.476278 + 0.346037i 0.799883 0.600156i \(-0.204895\pi\)
−0.323605 + 0.946192i \(0.604895\pi\)
\(642\) 0 0
\(643\) −26.2820 8.53955i −1.03646 0.336767i −0.259120 0.965845i \(-0.583432\pi\)
−0.777342 + 0.629078i \(0.783432\pi\)
\(644\) 0 0
\(645\) −25.2460 + 27.2575i −0.994059 + 1.07326i
\(646\) 0 0
\(647\) −23.7560 + 7.71879i −0.933945 + 0.303457i −0.736175 0.676791i \(-0.763370\pi\)
−0.197770 + 0.980248i \(0.563370\pi\)
\(648\) 0 0
\(649\) 0.798974 0.813005i 0.0313625 0.0319132i
\(650\) 0 0
\(651\) −0.940197 2.89363i −0.0368492 0.113410i
\(652\) 0 0
\(653\) −16.3187 22.4607i −0.638599 0.878956i 0.359941 0.932975i \(-0.382797\pi\)
−0.998540 + 0.0540191i \(0.982797\pi\)
\(654\) 0 0
\(655\) −0.420923 + 3.52688i −0.0164468 + 0.137807i
\(656\) 0 0
\(657\) 4.68505 6.44842i 0.182781 0.251577i
\(658\) 0 0
\(659\) −21.5863 −0.840883 −0.420442 0.907320i \(-0.638125\pi\)
−0.420442 + 0.907320i \(0.638125\pi\)
\(660\) 0 0
\(661\) −16.0174 −0.623003 −0.311502 0.950246i \(-0.600832\pi\)
−0.311502 + 0.950246i \(0.600832\pi\)
\(662\) 0 0
\(663\) 9.55357 13.1494i 0.371030 0.510679i
\(664\) 0 0
\(665\) −26.3302 3.14243i −1.02104 0.121858i
\(666\) 0 0
\(667\) 0.426892 + 0.587567i 0.0165293 + 0.0227507i
\(668\) 0 0
\(669\) 5.31966 + 16.3722i 0.205670 + 0.632986i
\(670\) 0 0
\(671\) 0.849880 5.68579i 0.0328093 0.219498i
\(672\) 0 0
\(673\) −29.8127 + 9.68673i −1.14920 + 0.373396i −0.820840 0.571158i \(-0.806494\pi\)
−0.328355 + 0.944554i \(0.606494\pi\)
\(674\) 0 0
\(675\) −17.6603 10.8697i −0.679747 0.418376i
\(676\) 0 0
\(677\) 29.1654 + 9.47642i 1.12092 + 0.364209i 0.810118 0.586267i \(-0.199403\pi\)
0.310801 + 0.950475i \(0.399403\pi\)
\(678\) 0 0
\(679\) 4.11590 + 2.99038i 0.157954 + 0.114760i
\(680\) 0 0
\(681\) 7.51888 0.288124
\(682\) 0 0
\(683\) 3.27236i 0.125213i 0.998038 + 0.0626066i \(0.0199414\pi\)
−0.998038 + 0.0626066i \(0.980059\pi\)
\(684\) 0 0
\(685\) 17.5448 37.9603i 0.670354 1.45039i
\(686\) 0 0
\(687\) 5.09664 + 1.65600i 0.194449 + 0.0631802i
\(688\) 0 0
\(689\) −37.8832 + 27.5238i −1.44324 + 1.04857i
\(690\) 0 0
\(691\) 11.2774 + 34.7084i 0.429014 + 1.32037i 0.899098 + 0.437748i \(0.144224\pi\)
−0.470083 + 0.882622i \(0.655776\pi\)
\(692\) 0 0
\(693\) 2.98694 5.99054i 0.113465 0.227562i
\(694\) 0 0
\(695\) 12.6818 + 22.6970i 0.481049 + 0.860944i
\(696\) 0 0
\(697\) −10.3509 14.2468i −0.392070 0.539638i
\(698\) 0 0
\(699\) −6.41413 + 19.7407i −0.242605 + 0.746660i
\(700\) 0 0
\(701\) −37.6684 27.3677i −1.42272 1.03366i −0.991316 0.131502i \(-0.958020\pi\)
−0.431399 0.902161i \(-0.641980\pi\)
\(702\) 0 0
\(703\) 13.7096i 0.517068i
\(704\) 0 0
\(705\) 52.0381 10.2983i 1.95987 0.387855i
\(706\) 0 0
\(707\) −13.0485 + 17.9597i −0.490738 + 0.675443i
\(708\) 0 0
\(709\) 11.0000 33.8544i 0.413112 1.27143i −0.500817 0.865553i \(-0.666967\pi\)
0.913929 0.405874i \(-0.133033\pi\)
\(710\) 0 0
\(711\) −5.26613 + 3.82607i −0.197495 + 0.143489i
\(712\) 0 0
\(713\) 2.51772 0.818057i 0.0942894 0.0306365i
\(714\) 0 0
\(715\) −9.69546 25.6681i −0.362590 0.959931i
\(716\) 0 0
\(717\) −37.6371 + 12.2290i −1.40558 + 0.456702i
\(718\) 0 0
\(719\) −17.8722 + 12.9849i −0.666522 + 0.484256i −0.868859 0.495060i \(-0.835146\pi\)
0.202337 + 0.979316i \(0.435146\pi\)
\(720\) 0 0
\(721\) −7.09862 + 21.8473i −0.264366 + 0.813636i
\(722\) 0 0
\(723\) 33.0176 45.4448i 1.22794 1.69011i
\(724\) 0 0
\(725\) −0.871176 + 0.358863i −0.0323547 + 0.0133278i
\(726\) 0 0
\(727\) 45.5415i 1.68904i 0.535522 + 0.844521i \(0.320115\pi\)
−0.535522 + 0.844521i \(0.679885\pi\)
\(728\) 0 0
\(729\) 11.9514 + 8.68317i 0.442643 + 0.321599i
\(730\) 0 0
\(731\) 5.78391 17.8011i 0.213926 0.658396i
\(732\) 0 0
\(733\) −6.68835 9.20572i −0.247040 0.340021i 0.667432 0.744671i \(-0.267393\pi\)
−0.914472 + 0.404650i \(0.867393\pi\)
\(734\) 0 0
\(735\) −7.58871 + 4.24016i −0.279914 + 0.156401i
\(736\) 0 0
\(737\) 0.356014 + 2.12776i 0.0131140 + 0.0783769i
\(738\) 0 0
\(739\) −1.34045 4.12547i −0.0493091 0.151758i 0.923370 0.383911i \(-0.125423\pi\)
−0.972679 + 0.232153i \(0.925423\pi\)
\(740\) 0 0
\(741\) −31.2498 + 22.7043i −1.14799 + 0.834064i
\(742\) 0 0
\(743\) −16.4480 5.34429i −0.603420 0.196063i −0.00865478 0.999963i \(-0.502755\pi\)
−0.594765 + 0.803900i \(0.702755\pi\)
\(744\) 0 0
\(745\) 12.0071 + 5.54955i 0.439905 + 0.203320i
\(746\) 0 0
\(747\) 2.86281i 0.104745i
\(748\) 0 0
\(749\) 22.5357 0.823437
\(750\) 0 0
\(751\) −25.4946 18.5229i −0.930310 0.675910i 0.0157586 0.999876i \(-0.494984\pi\)
−0.946069 + 0.323966i \(0.894984\pi\)
\(752\) 0 0
\(753\) 44.7691 + 14.5464i 1.63148 + 0.530099i
\(754\) 0 0
\(755\) 19.4153 20.9623i 0.706594 0.762895i
\(756\) 0 0
\(757\) 8.82332 2.86687i 0.320689 0.104198i −0.144249 0.989541i \(-0.546077\pi\)
0.464938 + 0.885343i \(0.346077\pi\)
\(758\) 0 0
\(759\) 22.5908 + 11.2640i 0.819995 + 0.408858i
\(760\) 0 0
\(761\) −1.28492 3.95459i −0.0465784 0.143354i 0.925062 0.379815i \(-0.124012\pi\)
−0.971641 + 0.236461i \(0.924012\pi\)
\(762\) 0 0
\(763\) 11.6046 + 15.9724i 0.420115 + 0.578239i
\(764\) 0 0
\(765\) −4.44434 0.530419i −0.160685 0.0191773i
\(766\) 0 0
\(767\) 0.747406 1.02872i 0.0269873 0.0371448i
\(768\) 0 0
\(769\) −16.8800 −0.608709 −0.304355 0.952559i \(-0.598441\pi\)
−0.304355 + 0.952559i \(0.598441\pi\)
\(770\) 0 0
\(771\) −48.7305 −1.75499
\(772\) 0 0
\(773\) −4.98301 + 6.85852i −0.179226 + 0.246684i −0.889173 0.457572i \(-0.848719\pi\)
0.709946 + 0.704256i \(0.248719\pi\)
\(774\) 0 0
\(775\) 0.262774 + 3.42427i 0.00943912 + 0.123003i
\(776\) 0 0
\(777\) 6.75168 + 9.29289i 0.242215 + 0.333381i
\(778\) 0 0
\(779\) 12.9326 + 39.8025i 0.463359 + 1.42607i
\(780\) 0 0
\(781\) −2.27873 + 15.2450i −0.0815395 + 0.545509i
\(782\) 0 0
\(783\) 0.743294 0.241511i 0.0265632 0.00863089i
\(784\) 0 0
\(785\) 23.5392 + 21.8020i 0.840150 + 0.778148i
\(786\) 0 0
\(787\) 50.9924 + 16.5684i 1.81768 + 0.590601i 0.999886 + 0.0150924i \(0.00480424\pi\)
0.817796 + 0.575508i \(0.195196\pi\)
\(788\) 0 0
\(789\) 8.69272 + 6.31563i 0.309469 + 0.224842i
\(790\) 0 0
\(791\) 0.518940 0.0184514
\(792\) 0 0
\(793\) 6.41307i 0.227735i
\(794\) 0 0
\(795\) 50.7318 + 23.4477i 1.79927 + 0.831605i
\(796\) 0 0
\(797\) −27.1477 8.82082i −0.961621 0.312450i −0.214192 0.976792i \(-0.568712\pi\)
−0.747429 + 0.664342i \(0.768712\pi\)
\(798\) 0 0
\(799\) −21.6206 + 15.7083i −0.764883 + 0.555720i
\(800\) 0 0
\(801\) 2.75879 + 8.49070i 0.0974772 + 0.300004i
\(802\) 0 0
\(803\) 20.9548 + 20.5932i 0.739480 + 0.726718i
\(804\) 0 0
\(805\) 9.42915 + 16.8756i 0.332334 + 0.594785i
\(806\) 0 0
\(807\) −7.78350 10.7131i −0.273992 0.377118i
\(808\) 0 0
\(809\) −11.4170 + 35.1378i −0.401399 + 1.23538i 0.522466 + 0.852660i \(0.325012\pi\)
−0.923865 + 0.382718i \(0.874988\pi\)
\(810\) 0 0
\(811\) −31.0475 22.5573i −1.09022 0.792094i −0.110787 0.993844i \(-0.535337\pi\)
−0.979437 + 0.201750i \(0.935337\pi\)
\(812\) 0 0
\(813\) 9.99209i 0.350438i
\(814\) 0 0
\(815\) 1.57453 + 7.95628i 0.0551535 + 0.278696i
\(816\) 0 0
\(817\) −26.1458 + 35.9865i −0.914724 + 1.25901i
\(818\) 0 0
\(819\) 2.30749 7.10171i 0.0806301 0.248154i
\(820\) 0 0
\(821\) 8.29214 6.02459i 0.289398 0.210260i −0.433608 0.901101i \(-0.642760\pi\)
0.723006 + 0.690842i \(0.242760\pi\)
\(822\) 0 0
\(823\) 23.9948 7.79637i 0.836405 0.271764i 0.140664 0.990057i \(-0.455076\pi\)
0.695741 + 0.718293i \(0.255076\pi\)
\(824\) 0 0
\(825\) −21.0996 + 25.0449i −0.734593 + 0.871953i
\(826\) 0 0
\(827\) 17.4505 5.67001i 0.606813 0.197165i 0.0105362 0.999944i \(-0.496646\pi\)
0.596277 + 0.802779i \(0.296646\pi\)
\(828\) 0 0
\(829\) 19.7259 14.3317i 0.685110 0.497761i −0.189939 0.981796i \(-0.560829\pi\)
0.875049 + 0.484035i \(0.160829\pi\)
\(830\) 0 0
\(831\) 6.52575 20.0842i 0.226376 0.696713i
\(832\) 0 0
\(833\) 2.57415 3.54301i 0.0891890 0.122758i
\(834\) 0 0
\(835\) −1.65855 8.38081i −0.0573964 0.290030i
\(836\) 0 0
\(837\) 2.84876i 0.0984676i
\(838\) 0 0
\(839\) 34.2059 + 24.8520i 1.18092 + 0.857988i 0.992275 0.124058i \(-0.0395908\pi\)
0.188644 + 0.982046i \(0.439591\pi\)
\(840\) 0 0
\(841\) −8.95052 + 27.5469i −0.308639 + 0.949892i
\(842\) 0 0
\(843\) 15.9252 + 21.9191i 0.548492 + 0.754935i
\(844\) 0 0
\(845\) −0.750612 1.34339i −0.0258218 0.0462139i
\(846\) 0 0
\(847\) 20.2110 + 14.1532i 0.694457 + 0.486311i
\(848\) 0 0
\(849\) 13.4066 + 41.2613i 0.460113 + 1.41608i
\(850\) 0 0
\(851\) −8.08567 + 5.87458i −0.277173 + 0.201378i
\(852\) 0 0
\(853\) 14.6353 + 4.75529i 0.501103 + 0.162818i 0.548652 0.836051i \(-0.315141\pi\)
−0.0475493 + 0.998869i \(0.515141\pi\)
\(854\) 0 0
\(855\) 9.65562 + 4.46273i 0.330215 + 0.152622i
\(856\) 0 0
\(857\) 36.1038i 1.23328i −0.787245 0.616641i \(-0.788493\pi\)
0.787245 0.616641i \(-0.211507\pi\)
\(858\) 0 0
\(859\) 48.3509 1.64971 0.824855 0.565344i \(-0.191257\pi\)
0.824855 + 0.565344i \(0.191257\pi\)
\(860\) 0 0
\(861\) −28.3680 20.6106i −0.966781 0.702407i
\(862\) 0 0
\(863\) −35.3685 11.4919i −1.20396 0.391190i −0.362743 0.931889i \(-0.618160\pi\)
−0.841216 + 0.540699i \(0.818160\pi\)
\(864\) 0 0
\(865\) −3.45680 3.20169i −0.117535 0.108861i
\(866\) 0 0
\(867\) −22.6336 + 7.35411i −0.768679 + 0.249759i
\(868\) 0 0
\(869\) −11.0784 21.2826i −0.375809 0.721962i
\(870\) 0 0
\(871\) 0.743664 + 2.28876i 0.0251981 + 0.0775517i
\(872\) 0 0
\(873\) −1.19956 1.65105i −0.0405990 0.0558797i
\(874\) 0 0
\(875\) −24.1566 + 6.73660i −0.816642 + 0.227739i
\(876\) 0 0
\(877\) 15.1609 20.8672i 0.511947 0.704634i −0.472299 0.881438i \(-0.656576\pi\)
0.984246 + 0.176804i \(0.0565758\pi\)
\(878\) 0 0
\(879\) 27.7221 0.935044
\(880\) 0 0
\(881\) −45.6820 −1.53906 −0.769532 0.638608i \(-0.779511\pi\)
−0.769532 + 0.638608i \(0.779511\pi\)
\(882\) 0 0
\(883\) 2.91912 4.01783i 0.0982364 0.135211i −0.757069 0.653335i \(-0.773369\pi\)
0.855306 + 0.518124i \(0.173369\pi\)
\(884\) 0 0
\(885\) −1.50695 0.179850i −0.0506556 0.00604560i
\(886\) 0 0
\(887\) −17.0006 23.3994i −0.570826 0.785674i 0.421827 0.906677i \(-0.361389\pi\)
−0.992652 + 0.121002i \(0.961389\pi\)
\(888\) 0 0
\(889\) −1.68459 5.18463i −0.0564993 0.173887i
\(890\) 0 0
\(891\) 25.3155 25.7600i 0.848100 0.862994i
\(892\) 0 0
\(893\) 60.4033 19.6262i 2.02132 0.656766i
\(894\) 0 0
\(895\) −7.63365 + 8.24189i −0.255165 + 0.275496i
\(896\) 0 0
\(897\) 26.7811 + 8.70172i 0.894196 + 0.290542i
\(898\) 0 0
\(899\) −0.104713 0.0760785i −0.00349237 0.00253736i
\(900\) 0 0
\(901\) −28.1559 −0.938010
\(902\) 0 0
\(903\) 37.2692i 1.24024i
\(904\) 0 0
\(905\) 31.7608 + 14.6795i 1.05577 + 0.487964i
\(906\) 0 0
\(907\) −12.6041 4.09531i −0.418511 0.135983i 0.0921887 0.995742i \(-0.470614\pi\)
−0.510700 + 0.859759i \(0.670614\pi\)
\(908\) 0 0
\(909\) 7.20435 5.23427i 0.238953 0.173610i
\(910\) 0 0
\(911\) −4.24361 13.0605i −0.140597 0.432713i 0.855822 0.517271i \(-0.173052\pi\)
−0.996419 + 0.0845580i \(0.973052\pi\)
\(912\) 0 0
\(913\) −10.4364 1.55997i −0.345395 0.0516276i
\(914\) 0 0
\(915\) −6.68188 + 3.73348i −0.220896 + 0.123425i
\(916\) 0 0
\(917\) −2.09430 2.88256i −0.0691600 0.0951906i
\(918\) 0 0
\(919\) 18.3494 56.4737i 0.605292 1.86290i 0.110517 0.993874i \(-0.464749\pi\)
0.494774 0.869022i \(-0.335251\pi\)
\(920\) 0 0
\(921\) 10.9750 + 7.97379i 0.361638 + 0.262745i
\(922\) 0 0
\(923\) 17.1950i 0.565981i
\(924\) 0 0
\(925\) −4.93842 11.9885i −0.162374 0.394179i
\(926\) 0 0
\(927\) 5.41635 7.45496i 0.177896 0.244853i
\(928\) 0 0
\(929\) −6.05305 + 18.6294i −0.198594 + 0.611210i 0.801322 + 0.598234i \(0.204131\pi\)
−0.999916 + 0.0129763i \(0.995869\pi\)
\(930\) 0 0
\(931\) −8.42007 + 6.11754i −0.275957 + 0.200494i
\(932\) 0 0
\(933\) −10.3327 + 3.35730i −0.338277 + 0.109913i
\(934\) 0 0
\(935\) 4.35541 15.9128i 0.142437 0.520406i
\(936\) 0 0
\(937\) 38.5608 12.5292i 1.25973 0.409310i 0.398329 0.917242i \(-0.369590\pi\)
0.861397 + 0.507933i \(0.169590\pi\)
\(938\) 0 0
\(939\) −22.7376 + 16.5198i −0.742012 + 0.539104i
\(940\) 0 0
\(941\) −0.126602 + 0.389640i −0.00412709 + 0.0127019i −0.953099 0.302659i \(-0.902126\pi\)
0.948972 + 0.315361i \(0.102126\pi\)
\(942\) 0 0
\(943\) 17.9331 24.6828i 0.583982 0.803783i
\(944\) 0 0
\(945\) 20.4066 4.03843i 0.663826 0.131370i
\(946\) 0 0
\(947\) 2.45729i 0.0798511i 0.999203 + 0.0399256i \(0.0127121\pi\)
−0.999203 + 0.0399256i \(0.987288\pi\)
\(948\) 0 0
\(949\) 26.5147 + 19.2640i 0.860703 + 0.625337i
\(950\) 0 0
\(951\) −11.4033 + 35.0956i −0.369776 + 1.13805i
\(952\) 0 0
\(953\) −35.8704 49.3714i −1.16196 1.59930i −0.703742 0.710456i \(-0.748489\pi\)
−0.458215 0.888841i \(-0.651511\pi\)
\(954\) 0 0
\(955\) −3.39842 6.08222i −0.109970 0.196816i
\(956\) 0 0
\(957\) −0.203675 1.21728i −0.00658387 0.0393492i
\(958\) 0 0
\(959\) 12.9632 + 39.8965i 0.418603 + 1.28833i
\(960\) 0 0
\(961\) 24.6978 17.9440i 0.796705 0.578840i
\(962\) 0 0
\(963\) −8.59754 2.79351i −0.277052 0.0900196i
\(964\) 0 0
\(965\) −9.04020 + 19.5595i −0.291014 + 0.629642i
\(966\) 0 0
\(967\) 17.1997i 0.553106i 0.960999 + 0.276553i \(0.0891921\pi\)
−0.960999 + 0.276553i \(0.910808\pi\)
\(968\) 0 0
\(969\) −23.2258 −0.746119
\(970\) 0 0
\(971\) 22.0125 + 15.9930i 0.706415 + 0.513241i 0.882015 0.471221i \(-0.156187\pi\)
−0.175600 + 0.984462i \(0.556187\pi\)
\(972\) 0 0
\(973\) −24.8046 8.05950i −0.795198 0.258376i
\(974\) 0 0
\(975\) −19.1482 + 31.1106i −0.613234 + 0.996338i
\(976\) 0 0
\(977\) −18.2339 + 5.92454i −0.583353 + 0.189543i −0.585802 0.810454i \(-0.699220\pi\)
0.00244904 + 0.999997i \(0.499220\pi\)
\(978\) 0 0
\(979\) −32.4562 + 5.43055i −1.03730 + 0.173561i
\(980\) 0 0
\(981\) −2.44732 7.53207i −0.0781369 0.240481i
\(982\) 0 0
\(983\) −14.1835 19.5219i −0.452384 0.622653i 0.520524 0.853847i \(-0.325737\pi\)
−0.972908 + 0.231194i \(0.925737\pi\)
\(984\) 0 0
\(985\) −31.9667 3.81513i −1.01854 0.121560i
\(986\) 0 0
\(987\) −31.2781 + 43.0506i −0.995593 + 1.37032i
\(988\) 0 0
\(989\) 32.4276 1.03114
\(990\) 0 0
\(991\) −27.7081 −0.880177 −0.440089 0.897954i \(-0.645053\pi\)
−0.440089 + 0.897954i \(0.645053\pi\)
\(992\) 0 0
\(993\) −0.543521 + 0.748092i −0.0172481 + 0.0237400i
\(994\) 0 0
\(995\) 3.92123 32.8556i 0.124311 1.04159i
\(996\) 0 0
\(997\) 19.6856 + 27.0950i 0.623451 + 0.858106i 0.997598 0.0692628i \(-0.0220647\pi\)
−0.374148 + 0.927369i \(0.622065\pi\)
\(998\) 0 0
\(999\) 3.32350 + 10.2287i 0.105151 + 0.323621i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.cd.c.49.4 16
4.3 odd 2 55.2.j.a.49.4 yes 16
5.4 even 2 inner 880.2.cd.c.49.1 16
11.9 even 5 inner 880.2.cd.c.449.1 16
12.11 even 2 495.2.ba.a.379.1 16
20.3 even 4 275.2.h.d.126.1 16
20.7 even 4 275.2.h.d.126.4 16
20.19 odd 2 55.2.j.a.49.1 yes 16
44.3 odd 10 605.2.b.g.364.2 8
44.7 even 10 605.2.j.g.124.1 16
44.15 odd 10 605.2.j.h.124.4 16
44.19 even 10 605.2.b.f.364.7 8
44.27 odd 10 605.2.j.h.444.1 16
44.31 odd 10 55.2.j.a.9.1 16
44.35 even 10 605.2.j.d.9.4 16
44.39 even 10 605.2.j.g.444.4 16
44.43 even 2 605.2.j.d.269.1 16
55.9 even 10 inner 880.2.cd.c.449.4 16
60.59 even 2 495.2.ba.a.379.4 16
132.119 even 10 495.2.ba.a.64.4 16
220.3 even 20 3025.2.a.bl.1.2 8
220.19 even 10 605.2.b.f.364.2 8
220.39 even 10 605.2.j.g.444.1 16
220.47 even 20 3025.2.a.bl.1.7 8
220.59 odd 10 605.2.j.h.124.1 16
220.63 odd 20 3025.2.a.bk.1.7 8
220.79 even 10 605.2.j.d.9.1 16
220.107 odd 20 3025.2.a.bk.1.2 8
220.119 odd 10 55.2.j.a.9.4 yes 16
220.139 even 10 605.2.j.g.124.4 16
220.159 odd 10 605.2.j.h.444.4 16
220.163 even 20 275.2.h.d.251.1 16
220.179 odd 10 605.2.b.g.364.7 8
220.207 even 20 275.2.h.d.251.4 16
220.219 even 2 605.2.j.d.269.4 16
660.119 even 10 495.2.ba.a.64.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.j.a.9.1 16 44.31 odd 10
55.2.j.a.9.4 yes 16 220.119 odd 10
55.2.j.a.49.1 yes 16 20.19 odd 2
55.2.j.a.49.4 yes 16 4.3 odd 2
275.2.h.d.126.1 16 20.3 even 4
275.2.h.d.126.4 16 20.7 even 4
275.2.h.d.251.1 16 220.163 even 20
275.2.h.d.251.4 16 220.207 even 20
495.2.ba.a.64.1 16 660.119 even 10
495.2.ba.a.64.4 16 132.119 even 10
495.2.ba.a.379.1 16 12.11 even 2
495.2.ba.a.379.4 16 60.59 even 2
605.2.b.f.364.2 8 220.19 even 10
605.2.b.f.364.7 8 44.19 even 10
605.2.b.g.364.2 8 44.3 odd 10
605.2.b.g.364.7 8 220.179 odd 10
605.2.j.d.9.1 16 220.79 even 10
605.2.j.d.9.4 16 44.35 even 10
605.2.j.d.269.1 16 44.43 even 2
605.2.j.d.269.4 16 220.219 even 2
605.2.j.g.124.1 16 44.7 even 10
605.2.j.g.124.4 16 220.139 even 10
605.2.j.g.444.1 16 220.39 even 10
605.2.j.g.444.4 16 44.39 even 10
605.2.j.h.124.1 16 220.59 odd 10
605.2.j.h.124.4 16 44.15 odd 10
605.2.j.h.444.1 16 44.27 odd 10
605.2.j.h.444.4 16 220.159 odd 10
880.2.cd.c.49.1 16 5.4 even 2 inner
880.2.cd.c.49.4 16 1.1 even 1 trivial
880.2.cd.c.449.1 16 11.9 even 5 inner
880.2.cd.c.449.4 16 55.9 even 10 inner
3025.2.a.bk.1.2 8 220.107 odd 20
3025.2.a.bk.1.7 8 220.63 odd 20
3025.2.a.bl.1.2 8 220.3 even 20
3025.2.a.bl.1.7 8 220.47 even 20