Properties

Label 275.2.h.d.126.1
Level $275$
Weight $2$
Character 275.126
Analytic conductor $2.196$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,2,Mod(26,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.h (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 7x^{14} + 25x^{12} + 57x^{10} + 194x^{8} + 303x^{6} + 235x^{4} + 33x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 126.1
Root \(1.33858 + 0.972539i\) of defining polynomial
Character \(\chi\) \(=\) 275.126
Dual form 275.2.h.d.251.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.511294 - 1.57360i) q^{2} +(-1.59764 - 1.16075i) q^{3} +(-0.596764 + 0.433574i) q^{4} +(-1.00970 + 3.10753i) q^{6} +(-1.81468 + 1.31845i) q^{7} +(-1.68978 - 1.22769i) q^{8} +(0.278050 + 0.855749i) q^{9} +(-3.27115 + 0.547326i) q^{11} +1.45668 q^{12} +(1.14329 + 3.51868i) q^{13} +(3.00254 + 2.18148i) q^{14} +(-1.52381 + 4.68982i) q^{16} +(0.687441 - 2.11573i) q^{17} +(1.20444 - 0.875078i) q^{18} +(-4.27714 - 3.10753i) q^{19} +4.42960 q^{21} +(2.53379 + 4.86764i) q^{22} +3.85415 q^{23} +(1.27460 + 3.92282i) q^{24} +(4.95244 - 3.59816i) q^{26} +(-1.28164 + 3.94448i) q^{27} +(0.511294 - 1.57360i) q^{28} +(-0.152450 + 0.110762i) q^{29} +(0.212253 + 0.653249i) q^{31} +3.98166 q^{32} +(5.86142 + 2.92256i) q^{33} -3.68079 q^{34} +(-0.536960 - 0.390125i) q^{36} +(2.09791 - 1.52422i) q^{37} +(-2.70313 + 8.31938i) q^{38} +(2.25775 - 6.94864i) q^{39} +(-6.40421 - 4.65293i) q^{41} +(-2.26482 - 6.97041i) q^{42} -8.41368 q^{43} +(1.71480 - 1.74491i) q^{44} +(-1.97060 - 6.06490i) q^{46} +(-9.71886 - 7.06117i) q^{47} +(7.87822 - 5.72386i) q^{48} +(-0.608337 + 1.87227i) q^{49} +(-3.55411 + 2.58222i) q^{51} +(-2.20788 - 1.60412i) q^{52} +(-3.91110 - 12.0371i) q^{53} +6.86233 q^{54} +4.68506 q^{56} +(3.22626 + 9.92940i) q^{57} +(0.252241 + 0.183264i) q^{58} +(0.278050 - 0.202015i) q^{59} +(0.535643 - 1.64854i) q^{61} +(0.919429 - 0.668004i) q^{62} +(-1.63283 - 1.18632i) q^{63} +(1.01183 + 3.11409i) q^{64} +(1.60204 - 10.7178i) q^{66} -0.650461 q^{67} +(0.507084 + 1.56065i) q^{68} +(-6.15754 - 4.47371i) q^{69} +(1.43619 - 4.42013i) q^{71} +(0.580756 - 1.78738i) q^{72} +(-7.16660 + 5.20684i) q^{73} +(-3.47116 - 2.52195i) q^{74} +3.89979 q^{76} +(5.21449 - 5.30606i) q^{77} -12.0888 q^{78} +(-2.23551 - 6.88019i) q^{79} +(8.80999 - 6.40083i) q^{81} +(-4.04742 + 12.4567i) q^{82} +(-0.983185 + 3.02593i) q^{83} +(-2.64342 + 1.92056i) q^{84} +(4.30186 + 13.2398i) q^{86} +0.372127 q^{87} +(6.19946 + 3.09111i) q^{88} +9.92195 q^{89} +(-6.71389 - 4.87793i) q^{91} +(-2.30002 + 1.67106i) q^{92} +(0.419156 - 1.29003i) q^{93} +(-6.14226 + 18.9039i) q^{94} +(-6.36125 - 4.62172i) q^{96} +(-0.700884 - 2.15710i) q^{97} +3.25724 q^{98} +(-1.37792 - 2.64710i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 18 q^{6} - 2 q^{9} - 6 q^{11} + 12 q^{14} + 16 q^{16} - 6 q^{19} + 8 q^{21} - 6 q^{24} + 40 q^{26} - 2 q^{29} + 8 q^{31} + 16 q^{34} + 10 q^{36} - 30 q^{39} - 52 q^{41} - 4 q^{44} - 62 q^{46}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.511294 1.57360i −0.361539 1.11270i −0.952120 0.305725i \(-0.901101\pi\)
0.590581 0.806979i \(-0.298899\pi\)
\(3\) −1.59764 1.16075i −0.922396 0.670160i 0.0217231 0.999764i \(-0.493085\pi\)
−0.944119 + 0.329604i \(0.893085\pi\)
\(4\) −0.596764 + 0.433574i −0.298382 + 0.216787i
\(5\) 0 0
\(6\) −1.00970 + 3.10753i −0.412207 + 1.26864i
\(7\) −1.81468 + 1.31845i −0.685886 + 0.498326i −0.875305 0.483571i \(-0.839340\pi\)
0.189419 + 0.981896i \(0.439340\pi\)
\(8\) −1.68978 1.22769i −0.597426 0.434055i
\(9\) 0.278050 + 0.855749i 0.0926832 + 0.285250i
\(10\) 0 0
\(11\) −3.27115 + 0.547326i −0.986289 + 0.165025i
\(12\) 1.45668 0.420508
\(13\) 1.14329 + 3.51868i 0.317091 + 0.975906i 0.974885 + 0.222708i \(0.0714896\pi\)
−0.657794 + 0.753198i \(0.728510\pi\)
\(14\) 3.00254 + 2.18148i 0.802464 + 0.583024i
\(15\) 0 0
\(16\) −1.52381 + 4.68982i −0.380954 + 1.17245i
\(17\) 0.687441 2.11573i 0.166729 0.513139i −0.832431 0.554129i \(-0.813051\pi\)
0.999160 + 0.0409903i \(0.0130513\pi\)
\(18\) 1.20444 0.875078i 0.283890 0.206258i
\(19\) −4.27714 3.10753i −0.981244 0.712916i −0.0232580 0.999729i \(-0.507404\pi\)
−0.957986 + 0.286814i \(0.907404\pi\)
\(20\) 0 0
\(21\) 4.42960 0.966617
\(22\) 2.53379 + 4.86764i 0.540206 + 1.03778i
\(23\) 3.85415 0.803647 0.401823 0.915717i \(-0.368377\pi\)
0.401823 + 0.915717i \(0.368377\pi\)
\(24\) 1.27460 + 3.92282i 0.260177 + 0.800742i
\(25\) 0 0
\(26\) 4.95244 3.59816i 0.971253 0.705657i
\(27\) −1.28164 + 3.94448i −0.246652 + 0.759116i
\(28\) 0.511294 1.57360i 0.0966255 0.297383i
\(29\) −0.152450 + 0.110762i −0.0283093 + 0.0205679i −0.601850 0.798609i \(-0.705569\pi\)
0.573541 + 0.819177i \(0.305569\pi\)
\(30\) 0 0
\(31\) 0.212253 + 0.653249i 0.0381218 + 0.117327i 0.968306 0.249765i \(-0.0803534\pi\)
−0.930185 + 0.367092i \(0.880353\pi\)
\(32\) 3.98166 0.703866
\(33\) 5.86142 + 2.92256i 1.02034 + 0.508753i
\(34\) −3.68079 −0.631251
\(35\) 0 0
\(36\) −0.536960 0.390125i −0.0894934 0.0650208i
\(37\) 2.09791 1.52422i 0.344894 0.250580i −0.401830 0.915714i \(-0.631626\pi\)
0.746724 + 0.665134i \(0.231626\pi\)
\(38\) −2.70313 + 8.31938i −0.438506 + 1.34958i
\(39\) 2.25775 6.94864i 0.361529 1.11267i
\(40\) 0 0
\(41\) −6.40421 4.65293i −1.00017 0.726666i −0.0380448 0.999276i \(-0.512113\pi\)
−0.962124 + 0.272611i \(0.912113\pi\)
\(42\) −2.26482 6.97041i −0.349470 1.07556i
\(43\) −8.41368 −1.28307 −0.641537 0.767092i \(-0.721703\pi\)
−0.641537 + 0.767092i \(0.721703\pi\)
\(44\) 1.71480 1.74491i 0.258515 0.263055i
\(45\) 0 0
\(46\) −1.97060 6.06490i −0.290550 0.894220i
\(47\) −9.71886 7.06117i −1.41764 1.02998i −0.992155 0.125012i \(-0.960103\pi\)
−0.425486 0.904965i \(-0.639897\pi\)
\(48\) 7.87822 5.72386i 1.13712 0.826168i
\(49\) −0.608337 + 1.87227i −0.0869053 + 0.267467i
\(50\) 0 0
\(51\) −3.55411 + 2.58222i −0.497676 + 0.361582i
\(52\) −2.20788 1.60412i −0.306178 0.222451i
\(53\) −3.91110 12.0371i −0.537231 1.65343i −0.738779 0.673947i \(-0.764597\pi\)
0.201549 0.979479i \(-0.435403\pi\)
\(54\) 6.86233 0.933845
\(55\) 0 0
\(56\) 4.68506 0.626067
\(57\) 3.22626 + 9.92940i 0.427328 + 1.31518i
\(58\) 0.252241 + 0.183264i 0.0331209 + 0.0240638i
\(59\) 0.278050 0.202015i 0.0361990 0.0263001i −0.569539 0.821965i \(-0.692878\pi\)
0.605738 + 0.795664i \(0.292878\pi\)
\(60\) 0 0
\(61\) 0.535643 1.64854i 0.0685821 0.211074i −0.910892 0.412645i \(-0.864605\pi\)
0.979474 + 0.201572i \(0.0646049\pi\)
\(62\) 0.919429 0.668004i 0.116768 0.0848366i
\(63\) −1.63283 1.18632i −0.205717 0.149462i
\(64\) 1.01183 + 3.11409i 0.126479 + 0.389261i
\(65\) 0 0
\(66\) 1.60204 10.7178i 0.197197 1.31927i
\(67\) −0.650461 −0.0794664 −0.0397332 0.999210i \(-0.512651\pi\)
−0.0397332 + 0.999210i \(0.512651\pi\)
\(68\) 0.507084 + 1.56065i 0.0614930 + 0.189256i
\(69\) −6.15754 4.47371i −0.741281 0.538572i
\(70\) 0 0
\(71\) 1.43619 4.42013i 0.170444 0.524573i −0.828952 0.559320i \(-0.811062\pi\)
0.999396 + 0.0347464i \(0.0110624\pi\)
\(72\) 0.580756 1.78738i 0.0684427 0.210645i
\(73\) −7.16660 + 5.20684i −0.838787 + 0.609415i −0.922032 0.387115i \(-0.873472\pi\)
0.0832444 + 0.996529i \(0.473472\pi\)
\(74\) −3.47116 2.52195i −0.403515 0.293171i
\(75\) 0 0
\(76\) 3.89979 0.447336
\(77\) 5.21449 5.30606i 0.594246 0.604682i
\(78\) −12.0888 −1.36878
\(79\) −2.23551 6.88019i −0.251514 0.774082i −0.994496 0.104770i \(-0.966589\pi\)
0.742982 0.669311i \(-0.233411\pi\)
\(80\) 0 0
\(81\) 8.80999 6.40083i 0.978888 0.711203i
\(82\) −4.04742 + 12.4567i −0.446963 + 1.37561i
\(83\) −0.983185 + 3.02593i −0.107919 + 0.332139i −0.990404 0.138200i \(-0.955868\pi\)
0.882486 + 0.470339i \(0.155868\pi\)
\(84\) −2.64342 + 1.92056i −0.288421 + 0.209550i
\(85\) 0 0
\(86\) 4.30186 + 13.2398i 0.463882 + 1.42768i
\(87\) 0.372127 0.0398962
\(88\) 6.19946 + 3.09111i 0.660865 + 0.329514i
\(89\) 9.92195 1.05172 0.525862 0.850570i \(-0.323743\pi\)
0.525862 + 0.850570i \(0.323743\pi\)
\(90\) 0 0
\(91\) −6.71389 4.87793i −0.703807 0.511346i
\(92\) −2.30002 + 1.67106i −0.239793 + 0.174220i
\(93\) 0.419156 1.29003i 0.0434644 0.133770i
\(94\) −6.14226 + 18.9039i −0.633526 + 1.94979i
\(95\) 0 0
\(96\) −6.36125 4.62172i −0.649243 0.471703i
\(97\) −0.700884 2.15710i −0.0711640 0.219020i 0.909149 0.416472i \(-0.136734\pi\)
−0.980313 + 0.197451i \(0.936734\pi\)
\(98\) 3.25724 0.329031
\(99\) −1.37792 2.64710i −0.138486 0.266044i
\(100\) 0 0
\(101\) 3.05830 + 9.41247i 0.304312 + 0.936576i 0.979933 + 0.199327i \(0.0638756\pi\)
−0.675621 + 0.737249i \(0.736124\pi\)
\(102\) 5.88057 + 4.27249i 0.582263 + 0.423039i
\(103\) 8.28525 6.01958i 0.816370 0.593127i −0.0993007 0.995057i \(-0.531661\pi\)
0.915670 + 0.401930i \(0.131661\pi\)
\(104\) 2.38796 7.34938i 0.234159 0.720666i
\(105\) 0 0
\(106\) −16.9419 + 12.3090i −1.64554 + 1.19556i
\(107\) 8.12803 + 5.90536i 0.785767 + 0.570893i 0.906704 0.421767i \(-0.138590\pi\)
−0.120937 + 0.992660i \(0.538590\pi\)
\(108\) −0.945389 2.90961i −0.0909701 0.279977i
\(109\) −8.80173 −0.843053 −0.421527 0.906816i \(-0.638506\pi\)
−0.421527 + 0.906816i \(0.638506\pi\)
\(110\) 0 0
\(111\) −5.12094 −0.486058
\(112\) −3.41803 10.5196i −0.322973 0.994010i
\(113\) 0.187168 + 0.135985i 0.0176073 + 0.0127924i 0.596554 0.802573i \(-0.296536\pi\)
−0.578947 + 0.815365i \(0.696536\pi\)
\(114\) 13.9753 10.1537i 1.30891 0.950980i
\(115\) 0 0
\(116\) 0.0429534 0.132197i 0.00398812 0.0122742i
\(117\) −2.69321 + 1.95673i −0.248988 + 0.180900i
\(118\) −0.460056 0.334250i −0.0423516 0.0307702i
\(119\) 1.54198 + 4.74573i 0.141353 + 0.435040i
\(120\) 0 0
\(121\) 10.4009 3.58078i 0.945533 0.325525i
\(122\) −2.86801 −0.259658
\(123\) 4.83071 + 14.8674i 0.435570 + 1.34055i
\(124\) −0.409897 0.297808i −0.0368098 0.0267439i
\(125\) 0 0
\(126\) −1.03194 + 3.17598i −0.0919324 + 0.282939i
\(127\) 0.751018 2.31140i 0.0666421 0.205103i −0.912190 0.409767i \(-0.865610\pi\)
0.978832 + 0.204664i \(0.0656101\pi\)
\(128\) 10.8255 7.86516i 0.956844 0.695188i
\(129\) 13.4420 + 9.76619i 1.18350 + 0.859865i
\(130\) 0 0
\(131\) 1.58846 0.138785 0.0693924 0.997589i \(-0.477894\pi\)
0.0693924 + 0.997589i \(0.477894\pi\)
\(132\) −4.76503 + 0.797281i −0.414743 + 0.0693944i
\(133\) 11.8588 1.02829
\(134\) 0.332577 + 1.02357i 0.0287302 + 0.0884226i
\(135\) 0 0
\(136\) −3.75909 + 2.73114i −0.322339 + 0.234193i
\(137\) 5.77920 17.7866i 0.493750 1.51961i −0.325145 0.945664i \(-0.605413\pi\)
0.818895 0.573943i \(-0.194587\pi\)
\(138\) −3.89153 + 11.9769i −0.331269 + 1.01954i
\(139\) −9.40675 + 6.83441i −0.797870 + 0.579687i −0.910289 0.413974i \(-0.864140\pi\)
0.112418 + 0.993661i \(0.464140\pi\)
\(140\) 0 0
\(141\) 7.33095 + 22.5624i 0.617378 + 1.90009i
\(142\) −7.68984 −0.645317
\(143\) −5.66573 10.8844i −0.473792 0.910197i
\(144\) −4.43700 −0.369750
\(145\) 0 0
\(146\) 11.8577 + 8.61514i 0.981352 + 0.712994i
\(147\) 3.14514 2.28508i 0.259407 0.188470i
\(148\) −0.591094 + 1.81920i −0.0485876 + 0.149537i
\(149\) 1.82800 5.62600i 0.149755 0.460900i −0.847836 0.530258i \(-0.822095\pi\)
0.997592 + 0.0693580i \(0.0220951\pi\)
\(150\) 0 0
\(151\) −10.3375 7.51064i −0.841254 0.611207i 0.0814664 0.996676i \(-0.474040\pi\)
−0.922721 + 0.385469i \(0.874040\pi\)
\(152\) 3.41232 + 10.5020i 0.276776 + 0.851828i
\(153\) 2.00167 0.161826
\(154\) −11.0158 5.49257i −0.887675 0.442604i
\(155\) 0 0
\(156\) 1.66541 + 5.12560i 0.133339 + 0.410376i
\(157\) 11.6083 + 8.43394i 0.926445 + 0.673102i 0.945120 0.326724i \(-0.105945\pi\)
−0.0186749 + 0.999826i \(0.505945\pi\)
\(158\) −9.68367 + 7.03560i −0.770391 + 0.559722i
\(159\) −7.72359 + 23.7708i −0.612520 + 1.88514i
\(160\) 0 0
\(161\) −6.99407 + 5.08149i −0.551210 + 0.400478i
\(162\) −14.5768 10.5907i −1.14527 0.832084i
\(163\) 1.12085 + 3.44963i 0.0877921 + 0.270196i 0.985308 0.170785i \(-0.0546304\pi\)
−0.897516 + 0.440982i \(0.854630\pi\)
\(164\) 5.83919 0.455964
\(165\) 0 0
\(166\) 5.26430 0.408589
\(167\) 1.18066 + 3.63370i 0.0913623 + 0.281184i 0.986289 0.165030i \(-0.0527720\pi\)
−0.894926 + 0.446214i \(0.852772\pi\)
\(168\) −7.48502 5.43819i −0.577482 0.419565i
\(169\) −0.556767 + 0.404515i −0.0428282 + 0.0311165i
\(170\) 0 0
\(171\) 1.47000 4.52421i 0.112414 0.345975i
\(172\) 5.02098 3.64795i 0.382846 0.278154i
\(173\) 1.70472 + 1.23855i 0.129607 + 0.0941651i 0.650700 0.759335i \(-0.274476\pi\)
−0.521093 + 0.853500i \(0.674476\pi\)
\(174\) −0.190266 0.585579i −0.0144240 0.0443926i
\(175\) 0 0
\(176\) 2.41777 16.1751i 0.182246 1.21925i
\(177\) −0.678711 −0.0510151
\(178\) −5.07303 15.6132i −0.380240 1.17026i
\(179\) −4.06448 2.95302i −0.303793 0.220719i 0.425435 0.904989i \(-0.360121\pi\)
−0.729229 + 0.684270i \(0.760121\pi\)
\(180\) 0 0
\(181\) −4.83538 + 14.8818i −0.359411 + 1.10615i 0.593997 + 0.804467i \(0.297549\pi\)
−0.953408 + 0.301685i \(0.902451\pi\)
\(182\) −4.24314 + 13.0590i −0.314522 + 0.968000i
\(183\) −2.76931 + 2.01202i −0.204713 + 0.148733i
\(184\) −6.51265 4.73172i −0.480119 0.348827i
\(185\) 0 0
\(186\) −2.24430 −0.164560
\(187\) −1.09073 + 7.29712i −0.0797622 + 0.533618i
\(188\) 8.86140 0.646284
\(189\) −2.87481 8.84777i −0.209112 0.643580i
\(190\) 0 0
\(191\) −2.52078 + 1.83145i −0.182397 + 0.132519i −0.675237 0.737601i \(-0.735959\pi\)
0.492840 + 0.870120i \(0.335959\pi\)
\(192\) 1.99815 6.14966i 0.144204 0.443814i
\(193\) 2.97780 9.16474i 0.214347 0.659692i −0.784852 0.619683i \(-0.787261\pi\)
0.999199 0.0400095i \(-0.0127388\pi\)
\(194\) −3.03606 + 2.20582i −0.217976 + 0.158369i
\(195\) 0 0
\(196\) −0.448734 1.38106i −0.0320524 0.0986472i
\(197\) −14.3974 −1.02577 −0.512885 0.858457i \(-0.671423\pi\)
−0.512885 + 0.858457i \(0.671423\pi\)
\(198\) −3.46096 + 3.52174i −0.245960 + 0.250279i
\(199\) 14.7978 1.04899 0.524493 0.851415i \(-0.324255\pi\)
0.524493 + 0.851415i \(0.324255\pi\)
\(200\) 0 0
\(201\) 1.03920 + 0.755023i 0.0732995 + 0.0532552i
\(202\) 13.2478 9.62508i 0.932111 0.677218i
\(203\) 0.130616 0.401995i 0.00916745 0.0282145i
\(204\) 1.00138 3.08194i 0.0701109 0.215779i
\(205\) 0 0
\(206\) −13.7086 9.95989i −0.955125 0.693939i
\(207\) 1.07165 + 3.29819i 0.0744845 + 0.229240i
\(208\) −18.2441 −1.26500
\(209\) 15.6920 + 7.82420i 1.08544 + 0.541211i
\(210\) 0 0
\(211\) −2.09250 6.44005i −0.144054 0.443352i 0.852834 0.522181i \(-0.174882\pi\)
−0.996888 + 0.0788298i \(0.974882\pi\)
\(212\) 7.55299 + 5.48756i 0.518741 + 0.376888i
\(213\) −7.42518 + 5.39471i −0.508765 + 0.369640i
\(214\) 5.13687 15.8097i 0.351149 1.08073i
\(215\) 0 0
\(216\) 7.00830 5.09183i 0.476854 0.346455i
\(217\) −1.24645 0.905596i −0.0846143 0.0614759i
\(218\) 4.50027 + 13.8504i 0.304797 + 0.938069i
\(219\) 17.4935 1.18210
\(220\) 0 0
\(221\) 8.23051 0.553644
\(222\) 2.61831 + 8.05832i 0.175729 + 0.540839i
\(223\) 7.05242 + 5.12388i 0.472265 + 0.343121i 0.798323 0.602229i \(-0.205721\pi\)
−0.326058 + 0.945350i \(0.605721\pi\)
\(224\) −7.22547 + 5.24961i −0.482772 + 0.350754i
\(225\) 0 0
\(226\) 0.118289 0.364056i 0.00786846 0.0242166i
\(227\) −3.08028 + 2.23795i −0.204445 + 0.148538i −0.685297 0.728264i \(-0.740328\pi\)
0.480852 + 0.876802i \(0.340328\pi\)
\(228\) −6.23044 4.52668i −0.412621 0.299787i
\(229\) −0.838570 2.58085i −0.0554142 0.170547i 0.919519 0.393046i \(-0.128579\pi\)
−0.974933 + 0.222499i \(0.928579\pi\)
\(230\) 0 0
\(231\) −14.4899 + 2.42443i −0.953364 + 0.159516i
\(232\) 0.393588 0.0258403
\(233\) −3.24801 9.99634i −0.212784 0.654882i −0.999303 0.0373166i \(-0.988119\pi\)
0.786519 0.617566i \(-0.211881\pi\)
\(234\) 4.45614 + 3.23758i 0.291307 + 0.211647i
\(235\) 0 0
\(236\) −0.0783415 + 0.241110i −0.00509959 + 0.0156949i
\(237\) −4.41466 + 13.5869i −0.286763 + 0.882565i
\(238\) 6.67948 4.85293i 0.432966 0.314569i
\(239\) −16.2124 11.7790i −1.04869 0.761919i −0.0767288 0.997052i \(-0.524448\pi\)
−0.971963 + 0.235133i \(0.924448\pi\)
\(240\) 0 0
\(241\) 28.4450 1.83230 0.916152 0.400832i \(-0.131279\pi\)
0.916152 + 0.400832i \(0.131279\pi\)
\(242\) −10.9526 14.5360i −0.704060 0.934408i
\(243\) −9.06251 −0.581361
\(244\) 0.395112 + 1.21603i 0.0252944 + 0.0778483i
\(245\) 0 0
\(246\) 20.9254 15.2032i 1.33416 0.969321i
\(247\) 6.04438 18.6027i 0.384595 1.18366i
\(248\) 0.443329 1.36443i 0.0281514 0.0866411i
\(249\) 5.08313 3.69311i 0.322130 0.234041i
\(250\) 0 0
\(251\) −7.36604 22.6703i −0.464940 1.43094i −0.859058 0.511879i \(-0.828950\pi\)
0.394117 0.919060i \(-0.371050\pi\)
\(252\) 1.48877 0.0937838
\(253\) −12.6075 + 2.10948i −0.792628 + 0.132622i
\(254\) −4.02120 −0.252313
\(255\) 0 0
\(256\) −12.6136 9.16432i −0.788350 0.572770i
\(257\) −19.9636 + 14.5044i −1.24529 + 0.904758i −0.997939 0.0641671i \(-0.979561\pi\)
−0.247354 + 0.968925i \(0.579561\pi\)
\(258\) 8.49527 26.1458i 0.528892 1.62776i
\(259\) −1.79744 + 5.53196i −0.111688 + 0.343739i
\(260\) 0 0
\(261\) −0.137173 0.0996619i −0.00849079 0.00616892i
\(262\) −0.812172 2.49961i −0.0501761 0.154426i
\(263\) 5.44098 0.335505 0.167753 0.985829i \(-0.446349\pi\)
0.167753 + 0.985829i \(0.446349\pi\)
\(264\) −6.31647 12.1345i −0.388752 0.746827i
\(265\) 0 0
\(266\) −6.06332 18.6610i −0.371766 1.14418i
\(267\) −15.8517 11.5169i −0.970107 0.704824i
\(268\) 0.388171 0.282023i 0.0237113 0.0172273i
\(269\) −2.07213 + 6.37738i −0.126340 + 0.388835i −0.994143 0.108074i \(-0.965532\pi\)
0.867803 + 0.496909i \(0.165532\pi\)
\(270\) 0 0
\(271\) 4.09349 2.97409i 0.248662 0.180663i −0.456472 0.889738i \(-0.650887\pi\)
0.705134 + 0.709075i \(0.250887\pi\)
\(272\) 8.87484 + 6.44795i 0.538116 + 0.390964i
\(273\) 5.06430 + 15.5863i 0.306505 + 0.943327i
\(274\) −30.9438 −1.86938
\(275\) 0 0
\(276\) 5.61428 0.337940
\(277\) −3.30453 10.1703i −0.198550 0.611074i −0.999917 0.0129009i \(-0.995893\pi\)
0.801367 0.598173i \(-0.204107\pi\)
\(278\) 15.5642 + 11.3081i 0.933481 + 0.678214i
\(279\) −0.500000 + 0.363271i −0.0299342 + 0.0217485i
\(280\) 0 0
\(281\) −4.23963 + 13.0482i −0.252915 + 0.778392i 0.741319 + 0.671153i \(0.234201\pi\)
−0.994233 + 0.107238i \(0.965799\pi\)
\(282\) 31.7559 23.0720i 1.89103 1.37392i
\(283\) 17.7735 + 12.9132i 1.05653 + 0.767611i 0.973442 0.228932i \(-0.0735233\pi\)
0.0830832 + 0.996543i \(0.473523\pi\)
\(284\) 1.05939 + 3.26047i 0.0628633 + 0.193473i
\(285\) 0 0
\(286\) −14.2308 + 14.4807i −0.841485 + 0.856263i
\(287\) 17.7563 1.04812
\(288\) 1.10710 + 3.40730i 0.0652365 + 0.200777i
\(289\) 9.74956 + 7.08347i 0.573504 + 0.416675i
\(290\) 0 0
\(291\) −1.38410 + 4.25981i −0.0811372 + 0.249715i
\(292\) 2.01922 6.21450i 0.118166 0.363676i
\(293\) −11.3570 + 8.25135i −0.663483 + 0.482049i −0.867837 0.496848i \(-0.834491\pi\)
0.204354 + 0.978897i \(0.434491\pi\)
\(294\) −5.20389 3.78085i −0.303497 0.220504i
\(295\) 0 0
\(296\) −5.41627 −0.314815
\(297\) 2.03352 13.6045i 0.117997 0.789412i
\(298\) −9.78772 −0.566988
\(299\) 4.40641 + 13.5615i 0.254829 + 0.784283i
\(300\) 0 0
\(301\) 15.2682 11.0930i 0.880043 0.639389i
\(302\) −6.53324 + 20.1073i −0.375946 + 1.15704i
\(303\) 6.03949 18.5876i 0.346960 1.06783i
\(304\) 21.0913 15.3237i 1.20967 0.878877i
\(305\) 0 0
\(306\) −1.02344 3.14983i −0.0585064 0.180064i
\(307\) −6.86951 −0.392064 −0.196032 0.980598i \(-0.562806\pi\)
−0.196032 + 0.980598i \(0.562806\pi\)
\(308\) −0.811246 + 5.42733i −0.0462251 + 0.309251i
\(309\) −20.2241 −1.15051
\(310\) 0 0
\(311\) 4.45087 + 3.23374i 0.252385 + 0.183369i 0.706783 0.707430i \(-0.250146\pi\)
−0.454398 + 0.890799i \(0.650146\pi\)
\(312\) −12.3459 + 8.96982i −0.698949 + 0.507816i
\(313\) 4.39793 13.5354i 0.248586 0.765068i −0.746440 0.665452i \(-0.768239\pi\)
0.995026 0.0996156i \(-0.0317613\pi\)
\(314\) 7.33639 22.5791i 0.414016 1.27421i
\(315\) 0 0
\(316\) 4.31714 + 3.13659i 0.242858 + 0.176447i
\(317\) 5.77442 + 17.7718i 0.324324 + 0.998166i 0.971745 + 0.236033i \(0.0758475\pi\)
−0.647421 + 0.762132i \(0.724153\pi\)
\(318\) 41.3547 2.31906
\(319\) 0.438065 0.445758i 0.0245269 0.0249577i
\(320\) 0 0
\(321\) −6.13099 18.8693i −0.342199 1.05318i
\(322\) 11.5723 + 8.40774i 0.644897 + 0.468545i
\(323\) −9.51497 + 6.91303i −0.529427 + 0.384651i
\(324\) −2.48225 + 7.63957i −0.137903 + 0.424420i
\(325\) 0 0
\(326\) 4.85526 3.52755i 0.268908 0.195373i
\(327\) 14.0620 + 10.2166i 0.777629 + 0.564981i
\(328\) 5.10930 + 15.7248i 0.282114 + 0.868257i
\(329\) 26.9464 1.48560
\(330\) 0 0
\(331\) 0.468249 0.0257373 0.0128686 0.999917i \(-0.495904\pi\)
0.0128686 + 0.999917i \(0.495904\pi\)
\(332\) −0.725237 2.23205i −0.0398025 0.122500i
\(333\) 1.88767 + 1.37148i 0.103444 + 0.0751564i
\(334\) 5.11433 3.71578i 0.279844 0.203318i
\(335\) 0 0
\(336\) −6.74988 + 20.7740i −0.368236 + 1.13331i
\(337\) −27.5771 + 20.0360i −1.50222 + 1.09143i −0.532735 + 0.846282i \(0.678836\pi\)
−0.969486 + 0.245146i \(0.921164\pi\)
\(338\) 0.921216 + 0.669303i 0.0501075 + 0.0364053i
\(339\) −0.141181 0.434511i −0.00766790 0.0235994i
\(340\) 0 0
\(341\) −1.05185 2.02070i −0.0569611 0.109427i
\(342\) −7.87090 −0.425610
\(343\) −6.21658 19.1327i −0.335664 1.03307i
\(344\) 14.2172 + 10.3294i 0.766542 + 0.556925i
\(345\) 0 0
\(346\) 1.07737 3.31580i 0.0579198 0.178259i
\(347\) 1.11027 3.41707i 0.0596026 0.183438i −0.916822 0.399296i \(-0.869255\pi\)
0.976425 + 0.215858i \(0.0692547\pi\)
\(348\) −0.222072 + 0.161345i −0.0119043 + 0.00864898i
\(349\) 5.15433 + 3.74484i 0.275905 + 0.200457i 0.717129 0.696940i \(-0.245456\pi\)
−0.441224 + 0.897397i \(0.645456\pi\)
\(350\) 0 0
\(351\) −15.3446 −0.819037
\(352\) −13.0246 + 2.17927i −0.694215 + 0.116156i
\(353\) −12.1971 −0.649186 −0.324593 0.945854i \(-0.605227\pi\)
−0.324593 + 0.945854i \(0.605227\pi\)
\(354\) 0.347021 + 1.06802i 0.0184440 + 0.0567647i
\(355\) 0 0
\(356\) −5.92106 + 4.30190i −0.313815 + 0.228000i
\(357\) 3.04509 9.37181i 0.161163 0.496009i
\(358\) −2.56873 + 7.90573i −0.135761 + 0.417831i
\(359\) −19.5093 + 14.1744i −1.02966 + 0.748094i −0.968241 0.250018i \(-0.919564\pi\)
−0.0614222 + 0.998112i \(0.519564\pi\)
\(360\) 0 0
\(361\) 2.76592 + 8.51262i 0.145575 + 0.448032i
\(362\) 25.8902 1.36076
\(363\) −20.7732 6.35204i −1.09031 0.333396i
\(364\) 6.12155 0.320856
\(365\) 0 0
\(366\) 4.58205 + 3.32905i 0.239507 + 0.174012i
\(367\) 16.4958 11.9849i 0.861073 0.625606i −0.0671034 0.997746i \(-0.521376\pi\)
0.928177 + 0.372140i \(0.121376\pi\)
\(368\) −5.87302 + 18.0753i −0.306152 + 0.942239i
\(369\) 2.20105 6.77414i 0.114582 0.352648i
\(370\) 0 0
\(371\) 22.9677 + 16.6870i 1.19242 + 0.866347i
\(372\) 0.309186 + 0.951577i 0.0160305 + 0.0493370i
\(373\) 7.51997 0.389369 0.194685 0.980866i \(-0.437632\pi\)
0.194685 + 0.980866i \(0.437632\pi\)
\(374\) 12.0404 2.01460i 0.622596 0.104172i
\(375\) 0 0
\(376\) 7.75374 + 23.8636i 0.399869 + 1.23067i
\(377\) −0.564029 0.409791i −0.0290490 0.0211053i
\(378\) −12.4530 + 9.04762i −0.640512 + 0.465359i
\(379\) 7.16649 22.0562i 0.368118 1.13295i −0.579888 0.814696i \(-0.696904\pi\)
0.948006 0.318254i \(-0.103096\pi\)
\(380\) 0 0
\(381\) −3.88281 + 2.82103i −0.198922 + 0.144526i
\(382\) 4.17083 + 3.03029i 0.213398 + 0.155043i
\(383\) 0.754123 + 2.32095i 0.0385339 + 0.118595i 0.968473 0.249118i \(-0.0801408\pi\)
−0.929939 + 0.367713i \(0.880141\pi\)
\(384\) −26.4246 −1.34848
\(385\) 0 0
\(386\) −15.9442 −0.811537
\(387\) −2.33942 7.20000i −0.118919 0.365997i
\(388\) 1.35352 + 0.983393i 0.0687148 + 0.0499242i
\(389\) −27.4849 + 19.9689i −1.39354 + 1.01246i −0.398071 + 0.917355i \(0.630320\pi\)
−0.995467 + 0.0951096i \(0.969680\pi\)
\(390\) 0 0
\(391\) 2.64950 8.15434i 0.133991 0.412383i
\(392\) 3.32653 2.41686i 0.168015 0.122070i
\(393\) −2.53779 1.84381i −0.128015 0.0930080i
\(394\) 7.36129 + 22.6557i 0.370856 + 1.14138i
\(395\) 0 0
\(396\) 1.97000 + 0.982264i 0.0989964 + 0.0493606i
\(397\) −27.4961 −1.37999 −0.689995 0.723814i \(-0.742387\pi\)
−0.689995 + 0.723814i \(0.742387\pi\)
\(398\) −7.56601 23.2858i −0.379250 1.16721i
\(399\) −18.9460 13.7651i −0.948487 0.689116i
\(400\) 0 0
\(401\) −0.583247 + 1.79505i −0.0291259 + 0.0896404i −0.964563 0.263853i \(-0.915006\pi\)
0.935437 + 0.353494i \(0.115006\pi\)
\(402\) 0.656768 2.02132i 0.0327566 0.100815i
\(403\) −2.05591 + 1.49370i −0.102412 + 0.0744067i
\(404\) −5.90608 4.29102i −0.293839 0.213486i
\(405\) 0 0
\(406\) −0.699363 −0.0347088
\(407\) −6.02834 + 6.13420i −0.298814 + 0.304061i
\(408\) 9.17582 0.454271
\(409\) 4.18949 + 12.8939i 0.207157 + 0.637563i 0.999618 + 0.0276408i \(0.00879945\pi\)
−0.792461 + 0.609923i \(0.791201\pi\)
\(410\) 0 0
\(411\) −29.8788 + 21.7082i −1.47381 + 1.07079i
\(412\) −2.33440 + 7.18454i −0.115008 + 0.353957i
\(413\) −0.238227 + 0.733187i −0.0117224 + 0.0360778i
\(414\) 4.64210 3.37269i 0.228147 0.165758i
\(415\) 0 0
\(416\) 4.55219 + 14.0102i 0.223189 + 0.686906i
\(417\) 22.9616 1.12444
\(418\) 4.28893 28.6934i 0.209779 1.40344i
\(419\) −22.1368 −1.08145 −0.540727 0.841198i \(-0.681851\pi\)
−0.540727 + 0.841198i \(0.681851\pi\)
\(420\) 0 0
\(421\) −14.4835 10.5229i −0.705881 0.512853i 0.175961 0.984397i \(-0.443697\pi\)
−0.881842 + 0.471544i \(0.843697\pi\)
\(422\) −9.06419 + 6.58552i −0.441238 + 0.320578i
\(423\) 3.34026 10.2803i 0.162409 0.499843i
\(424\) −8.16902 + 25.1417i −0.396723 + 1.22099i
\(425\) 0 0
\(426\) 12.2856 + 8.92599i 0.595238 + 0.432466i
\(427\) 1.20149 + 3.69780i 0.0581440 + 0.178949i
\(428\) −7.41093 −0.358221
\(429\) −3.58227 + 23.9658i −0.172954 + 1.15708i
\(430\) 0 0
\(431\) 10.3353 + 31.8087i 0.497833 + 1.53217i 0.812495 + 0.582968i \(0.198109\pi\)
−0.314662 + 0.949204i \(0.601891\pi\)
\(432\) −16.5459 12.0213i −0.796066 0.578376i
\(433\) −25.4771 + 18.5102i −1.22435 + 0.889543i −0.996454 0.0841428i \(-0.973185\pi\)
−0.227897 + 0.973685i \(0.573185\pi\)
\(434\) −0.787747 + 2.42443i −0.0378130 + 0.116377i
\(435\) 0 0
\(436\) 5.25255 3.81620i 0.251552 0.182763i
\(437\) −16.4848 11.9769i −0.788574 0.572932i
\(438\) −8.94431 27.5277i −0.427375 1.31533i
\(439\) 35.6208 1.70009 0.850045 0.526710i \(-0.176575\pi\)
0.850045 + 0.526710i \(0.176575\pi\)
\(440\) 0 0
\(441\) −1.77134 −0.0843495
\(442\) −4.20821 12.9515i −0.200164 0.616041i
\(443\) −19.0018 13.8056i −0.902805 0.655926i 0.0363802 0.999338i \(-0.488417\pi\)
−0.939185 + 0.343412i \(0.888417\pi\)
\(444\) 3.05599 2.22031i 0.145031 0.105371i
\(445\) 0 0
\(446\) 4.45709 13.7175i 0.211049 0.649543i
\(447\) −9.45086 + 6.86646i −0.447011 + 0.324772i
\(448\) −5.94191 4.31705i −0.280729 0.203961i
\(449\) −9.70066 29.8555i −0.457802 1.40897i −0.867814 0.496890i \(-0.834475\pi\)
0.410011 0.912080i \(-0.365525\pi\)
\(450\) 0 0
\(451\) 23.4958 + 11.7152i 1.10637 + 0.551649i
\(452\) −0.170655 −0.00802692
\(453\) 7.79760 + 23.9985i 0.366363 + 1.12755i
\(454\) 5.09658 + 3.70288i 0.239194 + 0.173785i
\(455\) 0 0
\(456\) 6.73861 20.7393i 0.315564 0.971207i
\(457\) 12.0859 37.1964i 0.565352 1.73998i −0.101550 0.994830i \(-0.532380\pi\)
0.666903 0.745145i \(-0.267620\pi\)
\(458\) −3.63247 + 2.63915i −0.169734 + 0.123319i
\(459\) 7.46440 + 5.42320i 0.348408 + 0.253133i
\(460\) 0 0
\(461\) −8.88399 −0.413769 −0.206884 0.978365i \(-0.566332\pi\)
−0.206884 + 0.978365i \(0.566332\pi\)
\(462\) 11.2237 + 21.5617i 0.522173 + 1.00314i
\(463\) 4.21081 0.195693 0.0978464 0.995202i \(-0.468805\pi\)
0.0978464 + 0.995202i \(0.468805\pi\)
\(464\) −0.287146 0.883744i −0.0133304 0.0410268i
\(465\) 0 0
\(466\) −14.0696 + 10.2221i −0.651760 + 0.473531i
\(467\) −2.07920 + 6.39912i −0.0962139 + 0.296116i −0.987568 0.157191i \(-0.949756\pi\)
0.891354 + 0.453307i \(0.149756\pi\)
\(468\) 0.758822 2.33542i 0.0350766 0.107955i
\(469\) 1.18038 0.857597i 0.0545049 0.0396002i
\(470\) 0 0
\(471\) −8.75618 26.9487i −0.403463 1.24173i
\(472\) −0.717854 −0.0330419
\(473\) 27.5224 4.60503i 1.26548 0.211740i
\(474\) 23.6376 1.08571
\(475\) 0 0
\(476\) −2.97782 2.16352i −0.136488 0.0991646i
\(477\) 9.21327 6.69383i 0.421847 0.306490i
\(478\) −10.2461 + 31.5343i −0.468647 + 1.44235i
\(479\) 6.43046 19.7909i 0.293815 0.904270i −0.689802 0.723998i \(-0.742302\pi\)
0.983617 0.180272i \(-0.0576977\pi\)
\(480\) 0 0
\(481\) 7.76176 + 5.63925i 0.353906 + 0.257128i
\(482\) −14.5437 44.7611i −0.662450 2.03881i
\(483\) 17.0723 0.776818
\(484\) −4.65433 + 6.64642i −0.211560 + 0.302110i
\(485\) 0 0
\(486\) 4.63361 + 14.2608i 0.210185 + 0.646882i
\(487\) 12.7658 + 9.27489i 0.578473 + 0.420285i 0.838173 0.545404i \(-0.183624\pi\)
−0.259700 + 0.965689i \(0.583624\pi\)
\(488\) −2.92902 + 2.12806i −0.132590 + 0.0963326i
\(489\) 2.21345 6.81230i 0.100096 0.308063i
\(490\) 0 0
\(491\) −15.6386 + 11.3621i −0.705759 + 0.512764i −0.881803 0.471618i \(-0.843670\pi\)
0.176044 + 0.984382i \(0.443670\pi\)
\(492\) −9.32890 6.77784i −0.420579 0.305569i
\(493\) 0.129541 + 0.398685i 0.00583422 + 0.0179559i
\(494\) −32.3637 −1.45611
\(495\) 0 0
\(496\) −3.38705 −0.152083
\(497\) 3.22148 + 9.91469i 0.144503 + 0.444734i
\(498\) −8.41045 6.11055i −0.376881 0.273820i
\(499\) 33.5416 24.3694i 1.50153 1.09092i 0.531758 0.846896i \(-0.321532\pi\)
0.969769 0.244026i \(-0.0784684\pi\)
\(500\) 0 0
\(501\) 2.33156 7.17579i 0.104166 0.320591i
\(502\) −31.9078 + 23.1824i −1.42412 + 1.03468i
\(503\) 26.4236 + 19.1978i 1.17817 + 0.855990i 0.991964 0.126521i \(-0.0403812\pi\)
0.186205 + 0.982511i \(0.440381\pi\)
\(504\) 1.30268 + 4.00923i 0.0580259 + 0.178585i
\(505\) 0 0
\(506\) 9.76563 + 18.7606i 0.434135 + 0.834012i
\(507\) 1.35905 0.0603576
\(508\) 0.553981 + 1.70498i 0.0245789 + 0.0756462i
\(509\) −13.4662 9.78379i −0.596881 0.433659i 0.247890 0.968788i \(-0.420263\pi\)
−0.844770 + 0.535129i \(0.820263\pi\)
\(510\) 0 0
\(511\) 6.14019 18.8975i 0.271626 0.835978i
\(512\) 0.298195 0.917749i 0.0131785 0.0405592i
\(513\) 17.7393 12.8884i 0.783211 0.569036i
\(514\) 33.0313 + 23.9987i 1.45695 + 1.05854i
\(515\) 0 0
\(516\) −12.2561 −0.539543
\(517\) 35.6566 + 17.7788i 1.56818 + 0.781909i
\(518\) 9.62412 0.422860
\(519\) −1.28587 3.95750i −0.0564434 0.173715i
\(520\) 0 0
\(521\) −11.3717 + 8.26206i −0.498205 + 0.361967i −0.808331 0.588728i \(-0.799629\pi\)
0.310126 + 0.950696i \(0.399629\pi\)
\(522\) −0.0866924 + 0.266812i −0.00379442 + 0.0116780i
\(523\) −4.84159 + 14.9009i −0.211708 + 0.651570i 0.787663 + 0.616106i \(0.211291\pi\)
−0.999371 + 0.0354635i \(0.988709\pi\)
\(524\) −0.947937 + 0.688717i −0.0414108 + 0.0300867i
\(525\) 0 0
\(526\) −2.78194 8.56194i −0.121298 0.373318i
\(527\) 1.52801 0.0665611
\(528\) −22.6380 + 23.0356i −0.985193 + 1.00249i
\(529\) −8.14550 −0.354152
\(530\) 0 0
\(531\) 0.250186 + 0.181770i 0.0108571 + 0.00788817i
\(532\) −7.07689 + 5.14166i −0.306822 + 0.222919i
\(533\) 9.05031 27.8540i 0.392012 1.20649i
\(534\) −10.0182 + 30.8327i −0.433528 + 1.33426i
\(535\) 0 0
\(536\) 1.09913 + 0.798567i 0.0474753 + 0.0344928i
\(537\) 3.06584 + 9.43570i 0.132301 + 0.407180i
\(538\) 11.0949 0.478336
\(539\) 0.965221 6.45743i 0.0415750 0.278141i
\(540\) 0 0
\(541\) −12.2489 37.6983i −0.526623 1.62078i −0.761084 0.648653i \(-0.775333\pi\)
0.234461 0.972125i \(-0.424667\pi\)
\(542\) −6.77301 4.92088i −0.290926 0.211370i
\(543\) 24.9992 18.1630i 1.07282 0.779448i
\(544\) 2.73716 8.42412i 0.117355 0.361181i
\(545\) 0 0
\(546\) 21.9373 15.9384i 0.938830 0.682100i
\(547\) 33.3043 + 24.1970i 1.42399 + 1.03459i 0.991097 + 0.133145i \(0.0425077\pi\)
0.432895 + 0.901445i \(0.357492\pi\)
\(548\) 4.26297 + 13.1201i 0.182105 + 0.560462i
\(549\) 1.55967 0.0665651
\(550\) 0 0
\(551\) 0.996247 0.0424415
\(552\) 4.91251 + 15.1191i 0.209090 + 0.643513i
\(553\) 13.1279 + 9.53798i 0.558255 + 0.405596i
\(554\) −14.3144 + 10.4000i −0.608161 + 0.441855i
\(555\) 0 0
\(556\) 2.65039 8.15705i 0.112401 0.345936i
\(557\) 24.1702 17.5606i 1.02412 0.744069i 0.0569987 0.998374i \(-0.481847\pi\)
0.967124 + 0.254306i \(0.0818469\pi\)
\(558\) 0.827291 + 0.601062i 0.0350220 + 0.0254450i
\(559\) −9.61926 29.6050i −0.406851 1.25216i
\(560\) 0 0
\(561\) 10.2127 10.3921i 0.431182 0.438754i
\(562\) 22.7004 0.957558
\(563\) −0.666795 2.05218i −0.0281021 0.0864892i 0.936022 0.351942i \(-0.114479\pi\)
−0.964124 + 0.265453i \(0.914479\pi\)
\(564\) −14.1573 10.2859i −0.596130 0.433114i
\(565\) 0 0
\(566\) 11.2328 34.5709i 0.472148 1.45312i
\(567\) −7.54820 + 23.2310i −0.316995 + 0.975610i
\(568\) −7.85341 + 5.70583i −0.329522 + 0.239411i
\(569\) −0.580298 0.421611i −0.0243274 0.0176749i 0.575555 0.817763i \(-0.304786\pi\)
−0.599882 + 0.800088i \(0.704786\pi\)
\(570\) 0 0
\(571\) −21.6311 −0.905235 −0.452617 0.891705i \(-0.649510\pi\)
−0.452617 + 0.891705i \(0.649510\pi\)
\(572\) 8.10029 + 4.03888i 0.338690 + 0.168874i
\(573\) 6.15315 0.257051
\(574\) −9.07866 27.9413i −0.378936 1.16625i
\(575\) 0 0
\(576\) −2.38354 + 1.73174i −0.0993141 + 0.0721559i
\(577\) −7.23952 + 22.2810i −0.301385 + 0.927568i 0.679616 + 0.733568i \(0.262146\pi\)
−0.981001 + 0.194000i \(0.937854\pi\)
\(578\) 6.16167 18.9637i 0.256291 0.788784i
\(579\) −15.3954 + 11.1854i −0.639812 + 0.464851i
\(580\) 0 0
\(581\) −2.20536 6.78739i −0.0914936 0.281588i
\(582\) 7.41093 0.307193
\(583\) 19.3820 + 37.2346i 0.802722 + 1.54210i
\(584\) 18.5023 0.765633
\(585\) 0 0
\(586\) 18.7911 + 13.6525i 0.776253 + 0.563981i
\(587\) −1.81814 + 1.32095i −0.0750425 + 0.0545216i −0.624674 0.780886i \(-0.714768\pi\)
0.549632 + 0.835407i \(0.314768\pi\)
\(588\) −0.886154 + 2.72730i −0.0365444 + 0.112472i
\(589\) 1.12215 3.45362i 0.0462374 0.142304i
\(590\) 0 0
\(591\) 23.0018 + 16.7118i 0.946167 + 0.687431i
\(592\) 3.95149 + 12.1615i 0.162405 + 0.499833i
\(593\) −25.4034 −1.04319 −0.521596 0.853193i \(-0.674663\pi\)
−0.521596 + 0.853193i \(0.674663\pi\)
\(594\) −22.4477 + 3.75594i −0.921042 + 0.154108i
\(595\) 0 0
\(596\) 1.34841 + 4.14996i 0.0552328 + 0.169989i
\(597\) −23.6415 17.1765i −0.967580 0.702988i
\(598\) 19.0875 13.8678i 0.780544 0.567098i
\(599\) −5.63194 + 17.3333i −0.230115 + 0.708220i 0.767617 + 0.640909i \(0.221442\pi\)
−0.997732 + 0.0673118i \(0.978558\pi\)
\(600\) 0 0
\(601\) 28.0242 20.3608i 1.14313 0.830533i 0.155579 0.987824i \(-0.450276\pi\)
0.987552 + 0.157290i \(0.0502758\pi\)
\(602\) −25.2625 18.3542i −1.02962 0.748063i
\(603\) −0.180860 0.556631i −0.00736520 0.0226678i
\(604\) 9.42547 0.383517
\(605\) 0 0
\(606\) −32.3375 −1.31362
\(607\) −7.86394 24.2027i −0.319187 0.982358i −0.973996 0.226564i \(-0.927251\pi\)
0.654809 0.755794i \(-0.272749\pi\)
\(608\) −17.0302 12.3731i −0.690664 0.501797i
\(609\) −0.675293 + 0.490629i −0.0273643 + 0.0198813i
\(610\) 0 0
\(611\) 13.7345 42.2705i 0.555639 1.71008i
\(612\) −1.19453 + 0.867874i −0.0482858 + 0.0350817i
\(613\) −29.9835 21.7843i −1.21102 0.879859i −0.215698 0.976460i \(-0.569203\pi\)
−0.995323 + 0.0966016i \(0.969203\pi\)
\(614\) 3.51234 + 10.8099i 0.141746 + 0.436251i
\(615\) 0 0
\(616\) −15.3255 + 2.56426i −0.617483 + 0.103317i
\(617\) 27.5937 1.11088 0.555439 0.831557i \(-0.312550\pi\)
0.555439 + 0.831557i \(0.312550\pi\)
\(618\) 10.3404 + 31.8246i 0.415953 + 1.28017i
\(619\) −16.5391 12.0164i −0.664764 0.482979i 0.203504 0.979074i \(-0.434767\pi\)
−0.868268 + 0.496095i \(0.834767\pi\)
\(620\) 0 0
\(621\) −4.93964 + 15.2026i −0.198221 + 0.610061i
\(622\) 2.81292 8.65728i 0.112788 0.347125i
\(623\) −18.0052 + 13.0816i −0.721364 + 0.524101i
\(624\) 29.1475 + 21.1769i 1.16683 + 0.847754i
\(625\) 0 0
\(626\) −23.5480 −0.941167
\(627\) −15.9882 30.7148i −0.638507 1.22663i
\(628\) −10.5842 −0.422354
\(629\) −1.78265 5.48642i −0.0710787 0.218758i
\(630\) 0 0
\(631\) −0.614155 + 0.446210i −0.0244491 + 0.0177633i −0.599943 0.800043i \(-0.704810\pi\)
0.575494 + 0.817806i \(0.304810\pi\)
\(632\) −4.66926 + 14.3705i −0.185733 + 0.571627i
\(633\) −4.13224 + 12.7177i −0.164242 + 0.505485i
\(634\) 25.0133 18.1733i 0.993407 0.721752i
\(635\) 0 0
\(636\) −5.69723 17.5343i −0.225910 0.695279i
\(637\) −7.28342 −0.288579
\(638\) −0.925425 0.461426i −0.0366379 0.0182680i
\(639\) 4.18186 0.165432
\(640\) 0 0
\(641\) 12.0584 + 8.76094i 0.476278 + 0.346037i 0.799883 0.600156i \(-0.204895\pi\)
−0.323605 + 0.946192i \(0.604895\pi\)
\(642\) −26.5579 + 19.2955i −1.04816 + 0.761531i
\(643\) −8.53955 + 26.2820i −0.336767 + 1.03646i 0.629078 + 0.777342i \(0.283432\pi\)
−0.965845 + 0.259120i \(0.916568\pi\)
\(644\) 1.97060 6.06490i 0.0776527 0.238990i
\(645\) 0 0
\(646\) 15.7433 + 11.4382i 0.619411 + 0.450029i
\(647\) −7.71879 23.7560i −0.303457 0.933945i −0.980248 0.197770i \(-0.936630\pi\)
0.676791 0.736175i \(-0.263370\pi\)
\(648\) −22.7452 −0.893514
\(649\) −0.798974 + 0.813005i −0.0313625 + 0.0319132i
\(650\) 0 0
\(651\) 0.940197 + 2.89363i 0.0368492 + 0.113410i
\(652\) −2.16456 1.57264i −0.0847706 0.0615895i
\(653\) 22.4607 16.3187i 0.878956 0.638599i −0.0540191 0.998540i \(-0.517203\pi\)
0.932975 + 0.359941i \(0.117203\pi\)
\(654\) 8.88708 27.3516i 0.347513 1.06953i
\(655\) 0 0
\(656\) 31.5802 22.9444i 1.23300 0.895827i
\(657\) −6.44842 4.68505i −0.251577 0.182781i
\(658\) −13.7775 42.4029i −0.537105 1.65304i
\(659\) −21.5863 −0.840883 −0.420442 0.907320i \(-0.638125\pi\)
−0.420442 + 0.907320i \(0.638125\pi\)
\(660\) 0 0
\(661\) −16.0174 −0.623003 −0.311502 0.950246i \(-0.600832\pi\)
−0.311502 + 0.950246i \(0.600832\pi\)
\(662\) −0.239413 0.736837i −0.00930504 0.0286380i
\(663\) −13.1494 9.55357i −0.510679 0.371030i
\(664\) 5.37628 3.90609i 0.208640 0.151586i
\(665\) 0 0
\(666\) 1.19300 3.67167i 0.0462277 0.142274i
\(667\) −0.587567 + 0.426892i −0.0227507 + 0.0165293i
\(668\) −2.28005 1.65656i −0.0882180 0.0640941i
\(669\) −5.31966 16.3722i −0.205670 0.632986i
\(670\) 0 0
\(671\) −0.849880 + 5.68579i −0.0328093 + 0.219498i
\(672\) 17.6372 0.680368
\(673\) −9.68673 29.8127i −0.373396 1.14920i −0.944554 0.328355i \(-0.893506\pi\)
0.571158 0.820840i \(-0.306494\pi\)
\(674\) 45.6286 + 33.1511i 1.75755 + 1.27693i
\(675\) 0 0
\(676\) 0.156871 0.482799i 0.00603350 0.0185692i
\(677\) 9.47642 29.1654i 0.364209 1.12092i −0.586267 0.810118i \(-0.699403\pi\)
0.950475 0.310801i \(-0.100597\pi\)
\(678\) −0.611561 + 0.444325i −0.0234869 + 0.0170642i
\(679\) 4.11590 + 2.99038i 0.157954 + 0.114760i
\(680\) 0 0
\(681\) 7.51888 0.288124
\(682\) −2.64198 + 2.68837i −0.101166 + 0.102943i
\(683\) 3.27236 0.125213 0.0626066 0.998038i \(-0.480059\pi\)
0.0626066 + 0.998038i \(0.480059\pi\)
\(684\) 1.08433 + 3.33724i 0.0414606 + 0.127602i
\(685\) 0 0
\(686\) −26.9287 + 19.5648i −1.02814 + 0.746989i
\(687\) −1.65600 + 5.09664i −0.0631802 + 0.194449i
\(688\) 12.8209 39.4586i 0.488792 1.50435i
\(689\) 37.8832 27.5238i 1.44324 1.04857i
\(690\) 0 0
\(691\) −11.2774 34.7084i −0.429014 1.32037i −0.899098 0.437748i \(-0.855776\pi\)
0.470083 0.882622i \(-0.344224\pi\)
\(692\) −1.55431 −0.0590862
\(693\) 5.99054 + 2.98694i 0.227562 + 0.113465i
\(694\) −5.94478 −0.225661
\(695\) 0 0
\(696\) −0.628811 0.456858i −0.0238350 0.0173172i
\(697\) −14.2468 + 10.3509i −0.539638 + 0.392070i
\(698\) 3.25750 10.0256i 0.123298 0.379473i
\(699\) −6.41413 + 19.7407i −0.242605 + 0.746660i
\(700\) 0 0
\(701\) −37.6684 27.3677i −1.42272 1.03366i −0.991316 0.131502i \(-0.958020\pi\)
−0.431399 0.902161i \(-0.641980\pi\)
\(702\) 7.84562 + 24.1463i 0.296114 + 0.911345i
\(703\) −13.7096 −0.517068
\(704\) −5.01427 9.63285i −0.188982 0.363052i
\(705\) 0 0
\(706\) 6.23630 + 19.1933i 0.234706 + 0.722351i
\(707\) −17.9597 13.0485i −0.675443 0.490738i
\(708\) 0.405030 0.294272i 0.0152220 0.0110594i
\(709\) −11.0000 + 33.8544i −0.413112 + 1.27143i 0.500817 + 0.865553i \(0.333033\pi\)
−0.913929 + 0.405874i \(0.866967\pi\)
\(710\) 0 0
\(711\) 5.26613 3.82607i 0.197495 0.143489i
\(712\) −16.7659 12.1811i −0.628327 0.456507i
\(713\) 0.818057 + 2.51772i 0.0306365 + 0.0942894i
\(714\) −16.3044 −0.610178
\(715\) 0 0
\(716\) 3.70588 0.138495
\(717\) 12.2290 + 37.6371i 0.456702 + 1.40558i
\(718\) 32.2798 + 23.4526i 1.20467 + 0.875245i
\(719\) −17.8722 + 12.9849i −0.666522 + 0.484256i −0.868859 0.495060i \(-0.835146\pi\)
0.202337 + 0.979316i \(0.435146\pi\)
\(720\) 0 0
\(721\) −7.09862 + 21.8473i −0.264366 + 0.813636i
\(722\) 11.9813 8.70490i 0.445896 0.323963i
\(723\) −45.4448 33.0176i −1.69011 1.22794i
\(724\) −3.56677 10.9774i −0.132558 0.407971i
\(725\) 0 0
\(726\) 0.625636 + 35.9365i 0.0232195 + 1.33373i
\(727\) −45.5415 −1.68904 −0.844521 0.535522i \(-0.820115\pi\)
−0.844521 + 0.535522i \(0.820115\pi\)
\(728\) 5.35637 + 16.4852i 0.198520 + 0.610982i
\(729\) −11.9514 8.68317i −0.442643 0.321599i
\(730\) 0 0
\(731\) −5.78391 + 17.8011i −0.213926 + 0.658396i
\(732\) 0.780262 2.40140i 0.0288393 0.0887583i
\(733\) 9.20572 6.68835i 0.340021 0.247040i −0.404650 0.914472i \(-0.632607\pi\)
0.744671 + 0.667432i \(0.232607\pi\)
\(734\) −27.2936 19.8300i −1.00743 0.731938i
\(735\) 0 0
\(736\) 15.3459 0.565659
\(737\) 2.12776 0.356014i 0.0783769 0.0131140i
\(738\) −11.7852 −0.433818
\(739\) −1.34045 4.12547i −0.0493091 0.151758i 0.923370 0.383911i \(-0.125423\pi\)
−0.972679 + 0.232153i \(0.925423\pi\)
\(740\) 0 0
\(741\) −31.2498 + 22.7043i −1.14799 + 0.834064i
\(742\) 14.5154 44.6740i 0.532879 1.64003i
\(743\) −5.34429 + 16.4480i −0.196063 + 0.603420i 0.803900 + 0.594765i \(0.202755\pi\)
−0.999963 + 0.00865478i \(0.997245\pi\)
\(744\) −2.29204 + 1.66526i −0.0840302 + 0.0610515i
\(745\) 0 0
\(746\) −3.84491 11.8334i −0.140772 0.433253i
\(747\) −2.86281 −0.104745
\(748\) −2.51293 4.82757i −0.0918819 0.176513i
\(749\) −22.5357 −0.823437
\(750\) 0 0
\(751\) 25.4946 + 18.5229i 0.930310 + 0.675910i 0.946069 0.323966i \(-0.105016\pi\)
−0.0157586 + 0.999876i \(0.505016\pi\)
\(752\) 47.9253 34.8198i 1.74766 1.26975i
\(753\) −14.5464 + 44.7691i −0.530099 + 1.63148i
\(754\) −0.356463 + 1.09708i −0.0129816 + 0.0399533i
\(755\) 0 0
\(756\) 5.55175 + 4.03358i 0.201915 + 0.146700i
\(757\) −2.86687 8.82332i −0.104198 0.320689i 0.885343 0.464938i \(-0.153923\pi\)
−0.989541 + 0.144249i \(0.953923\pi\)
\(758\) −38.3718 −1.39373
\(759\) 22.5908 + 11.2640i 0.819995 + 0.408858i
\(760\) 0 0
\(761\) −1.28492 3.95459i −0.0465784 0.143354i 0.925062 0.379815i \(-0.124012\pi\)
−0.971641 + 0.236461i \(0.924012\pi\)
\(762\) 6.42442 + 4.66762i 0.232732 + 0.169090i
\(763\) 15.9724 11.6046i 0.578239 0.420115i
\(764\) 0.710238 2.18589i 0.0256955 0.0790827i
\(765\) 0 0
\(766\) 3.26667 2.37338i 0.118030 0.0857536i
\(767\) 1.02872 + 0.747406i 0.0371448 + 0.0269873i
\(768\) 9.51446 + 29.2825i 0.343324 + 1.05664i
\(769\) 16.8800 0.608709 0.304355 0.952559i \(-0.401559\pi\)
0.304355 + 0.952559i \(0.401559\pi\)
\(770\) 0 0
\(771\) 48.7305 1.75499
\(772\) 2.19655 + 6.76028i 0.0790555 + 0.243308i
\(773\) −6.85852 4.98301i −0.246684 0.179226i 0.457572 0.889173i \(-0.348719\pi\)
−0.704256 + 0.709946i \(0.748719\pi\)
\(774\) −10.1338 + 7.36263i −0.364252 + 0.264644i
\(775\) 0 0
\(776\) −1.46392 + 4.50548i −0.0525517 + 0.161737i
\(777\) 9.29289 6.75168i 0.333381 0.242215i
\(778\) 45.4759 + 33.0402i 1.63039 + 1.18455i
\(779\) 12.9326 + 39.8025i 0.463359 + 1.42607i
\(780\) 0 0
\(781\) −2.27873 + 15.2450i −0.0815395 + 0.545509i
\(782\) −14.1863 −0.507303
\(783\) −0.241511 0.743294i −0.00863089 0.0265632i
\(784\) −7.85361 5.70598i −0.280486 0.203785i
\(785\) 0 0
\(786\) −1.60387 + 4.93620i −0.0572080 + 0.176068i
\(787\) −16.5684 + 50.9924i −0.590601 + 1.81768i −0.0150924 + 0.999886i \(0.504804\pi\)
−0.575508 + 0.817796i \(0.695196\pi\)
\(788\) 8.59183 6.24233i 0.306071 0.222374i
\(789\) −8.69272 6.31563i −0.309469 0.224842i
\(790\) 0 0
\(791\) −0.518940 −0.0184514
\(792\) −0.921459 + 6.16466i −0.0327426 + 0.219052i
\(793\) 6.41307 0.227735
\(794\) 14.0586 + 43.2679i 0.498921 + 1.53552i
\(795\) 0 0
\(796\) −8.83077 + 6.41593i −0.312998 + 0.227407i
\(797\) −8.82082 + 27.1477i −0.312450 + 0.961621i 0.664342 + 0.747429i \(0.268712\pi\)
−0.976792 + 0.214192i \(0.931288\pi\)
\(798\) −11.9738 + 36.8515i −0.423867 + 1.30453i
\(799\) −21.6206 + 15.7083i −0.764883 + 0.555720i
\(800\) 0 0
\(801\) 2.75879 + 8.49070i 0.0974772 + 0.300004i
\(802\) 3.12290 0.110273
\(803\) 20.5932 20.9548i 0.726718 0.739480i
\(804\) −0.947515 −0.0334163
\(805\) 0 0
\(806\) 3.40166 + 2.47145i 0.119819 + 0.0870532i
\(807\) 10.7131 7.78350i 0.377118 0.273992i
\(808\) 6.38780 19.6596i 0.224722 0.691623i
\(809\) 11.4170 35.1378i 0.401399 1.23538i −0.522466 0.852660i \(-0.674988\pi\)
0.923865 0.382718i \(-0.125012\pi\)
\(810\) 0 0
\(811\) 31.0475 + 22.5573i 1.09022 + 0.792094i 0.979437 0.201750i \(-0.0646629\pi\)
0.110787 + 0.993844i \(0.464663\pi\)
\(812\) 0.0963477 + 0.296528i 0.00338114 + 0.0104061i
\(813\) −9.99209 −0.350438
\(814\) 12.7350 + 6.34982i 0.446363 + 0.222561i
\(815\) 0 0
\(816\) −6.69431 20.6030i −0.234348 0.721248i
\(817\) 35.9865 + 26.1458i 1.25901 + 0.914724i
\(818\) 18.1478 13.1852i 0.634524 0.461008i
\(819\) 2.30749 7.10171i 0.0806301 0.248154i
\(820\) 0 0
\(821\) 8.29214 6.02459i 0.289398 0.210260i −0.433608 0.901101i \(-0.642760\pi\)
0.723006 + 0.690842i \(0.242760\pi\)
\(822\) 49.4370 + 35.9181i 1.72431 + 1.25279i
\(823\) −7.79637 23.9948i −0.271764 0.836405i −0.990057 0.140664i \(-0.955076\pi\)
0.718293 0.695741i \(-0.244924\pi\)
\(824\) −21.3904 −0.745170
\(825\) 0 0
\(826\) 1.27555 0.0443820
\(827\) 5.67001 + 17.4505i 0.197165 + 0.606813i 0.999944 + 0.0105362i \(0.00335385\pi\)
−0.802779 + 0.596277i \(0.796646\pi\)
\(828\) −2.06953 1.50360i −0.0719211 0.0522537i
\(829\) −19.7259 + 14.3317i −0.685110 + 0.497761i −0.875049 0.484035i \(-0.839171\pi\)
0.189939 + 0.981796i \(0.439171\pi\)
\(830\) 0 0
\(831\) −6.52575 + 20.0842i −0.226376 + 0.696713i
\(832\) −9.80066 + 7.12060i −0.339777 + 0.246862i
\(833\) 3.54301 + 2.57415i 0.122758 + 0.0891890i
\(834\) −11.7401 36.1324i −0.406528 1.25116i
\(835\) 0 0
\(836\) −12.7568 + 2.13446i −0.441203 + 0.0738217i
\(837\) −2.84876 −0.0984676
\(838\) 11.3184 + 34.8345i 0.390988 + 1.20334i
\(839\) 34.2059 + 24.8520i 1.18092 + 0.857988i 0.992275 0.124058i \(-0.0395908\pi\)
0.188644 + 0.982046i \(0.439591\pi\)
\(840\) 0 0
\(841\) −8.95052 + 27.5469i −0.308639 + 0.949892i
\(842\) −9.15347 + 28.1715i −0.315449 + 0.970853i
\(843\) 21.9191 15.9252i 0.754935 0.548492i
\(844\) 4.04097 + 2.93594i 0.139096 + 0.101059i
\(845\) 0 0
\(846\) −17.8849 −0.614895
\(847\) −14.1532 + 20.2110i −0.486311 + 0.694457i
\(848\) 62.4117 2.14323
\(849\) −13.4066 41.2613i −0.460113 1.41608i
\(850\) 0 0
\(851\) 8.08567 5.87458i 0.277173 0.201378i
\(852\) 2.09207 6.43874i 0.0716732 0.220587i
\(853\) −4.75529 + 14.6353i −0.162818 + 0.501103i −0.998869 0.0475493i \(-0.984859\pi\)
0.836051 + 0.548652i \(0.184859\pi\)
\(854\) 5.20454 3.78132i 0.178096 0.129394i
\(855\) 0 0
\(856\) −6.48458 19.9575i −0.221638 0.682132i
\(857\) −36.1038 −1.23328 −0.616641 0.787245i \(-0.711507\pi\)
−0.616641 + 0.787245i \(0.711507\pi\)
\(858\) 39.5442 6.61650i 1.35002 0.225884i
\(859\) 48.3509 1.64971 0.824855 0.565344i \(-0.191257\pi\)
0.824855 + 0.565344i \(0.191257\pi\)
\(860\) 0 0
\(861\) −28.3680 20.6106i −0.966781 0.702407i
\(862\) 44.7699 32.5272i 1.52487 1.10788i
\(863\) −11.4919 + 35.3685i −0.391190 + 1.20396i 0.540699 + 0.841216i \(0.318160\pi\)
−0.931889 + 0.362743i \(0.881840\pi\)
\(864\) −5.10306 + 15.7056i −0.173610 + 0.534316i
\(865\) 0 0
\(866\) 42.1539 + 30.6266i 1.43245 + 1.04073i
\(867\) −7.35411 22.6336i −0.249759 0.768679i
\(868\) 1.13648 0.0385745
\(869\) 11.0784 + 21.2826i 0.375809 + 0.721962i
\(870\) 0 0
\(871\) −0.743664 2.28876i −0.0251981 0.0775517i
\(872\) 14.8730 + 10.8058i 0.503662 + 0.365932i
\(873\) 1.65105 1.19956i 0.0558797 0.0405990i
\(874\) −10.4183 + 32.0642i −0.352403 + 1.08459i
\(875\) 0 0
\(876\) −10.4395 + 7.58472i −0.352717 + 0.256264i
\(877\) −20.8672 15.1609i −0.704634 0.511947i 0.176804 0.984246i \(-0.443424\pi\)
−0.881438 + 0.472299i \(0.843424\pi\)
\(878\) −18.2127 56.0530i −0.614649 1.89170i
\(879\) 27.7221 0.935044
\(880\) 0 0
\(881\) −45.6820 −1.53906 −0.769532 0.638608i \(-0.779511\pi\)
−0.769532 + 0.638608i \(0.779511\pi\)
\(882\) 0.905675 + 2.78738i 0.0304957 + 0.0938560i
\(883\) −4.01783 2.91912i −0.135211 0.0982364i 0.518124 0.855306i \(-0.326631\pi\)
−0.653335 + 0.757069i \(0.726631\pi\)
\(884\) −4.91167 + 3.56853i −0.165197 + 0.120023i
\(885\) 0 0
\(886\) −12.0090 + 36.9600i −0.403452 + 1.24170i
\(887\) 23.3994 17.0006i 0.785674 0.570826i −0.121002 0.992652i \(-0.538611\pi\)
0.906677 + 0.421827i \(0.138611\pi\)
\(888\) 8.65324 + 6.28695i 0.290384 + 0.210976i
\(889\) 1.68459 + 5.18463i 0.0564993 + 0.173887i
\(890\) 0 0
\(891\) −25.3155 + 25.7600i −0.848100 + 0.862994i
\(892\) −6.43021 −0.215299
\(893\) 19.6262 + 60.4033i 0.656766 + 2.02132i
\(894\) 15.6372 + 11.3611i 0.522987 + 0.379972i
\(895\) 0 0
\(896\) −9.27501 + 28.5456i −0.309856 + 0.953640i
\(897\) 8.70172 26.7811i 0.290542 0.894196i
\(898\) −42.0208 + 30.5299i −1.40225 + 1.01880i
\(899\) −0.104713 0.0760785i −0.00349237 0.00253736i
\(900\) 0 0
\(901\) −28.1559 −0.938010
\(902\) 6.42186 42.9630i 0.213824 1.43051i
\(903\) −37.2692 −1.24024
\(904\) −0.149323 0.459570i −0.00496642 0.0152851i
\(905\) 0 0
\(906\) 33.7773 24.5406i 1.12217 0.815307i
\(907\) 4.09531 12.6041i 0.135983 0.418511i −0.859759 0.510700i \(-0.829386\pi\)
0.995742 + 0.0921887i \(0.0293863\pi\)
\(908\) 0.867880 2.67106i 0.0288016 0.0886422i
\(909\) −7.20435 + 5.23427i −0.238953 + 0.173610i
\(910\) 0 0
\(911\) 4.24361 + 13.0605i 0.140597 + 0.432713i 0.996419 0.0845580i \(-0.0269478\pi\)
−0.855822 + 0.517271i \(0.826948\pi\)
\(912\) −51.4833 −1.70478
\(913\) 1.55997 10.4364i 0.0516276 0.345395i
\(914\) −64.7117 −2.14047
\(915\) 0 0
\(916\) 1.61942 + 1.17658i 0.0535071 + 0.0388752i
\(917\) −2.88256 + 2.09430i −0.0951906 + 0.0691600i
\(918\) 4.71745 14.5188i 0.155699 0.479193i
\(919\) 18.3494 56.4737i 0.605292 1.86290i 0.110517 0.993874i \(-0.464749\pi\)
0.494774 0.869022i \(-0.335251\pi\)
\(920\) 0 0
\(921\) 10.9750 + 7.97379i 0.361638 + 0.262745i
\(922\) 4.54233 + 13.9798i 0.149594 + 0.460402i
\(923\) 17.1950 0.565981
\(924\) 7.59586 7.72925i 0.249885 0.254274i
\(925\) 0 0
\(926\) −2.15296 6.62613i −0.0707507 0.217748i
\(927\) 7.45496 + 5.41635i 0.244853 + 0.177896i
\(928\) −0.607006 + 0.441016i −0.0199259 + 0.0144770i
\(929\) 6.05305 18.6294i 0.198594 0.611210i −0.801322 0.598234i \(-0.795869\pi\)
0.999916 0.0129763i \(-0.00413060\pi\)
\(930\) 0 0
\(931\) 8.42007 6.11754i 0.275957 0.200494i
\(932\) 6.27245 + 4.55720i 0.205461 + 0.149276i
\(933\) −3.35730 10.3327i −0.109913 0.338277i
\(934\) 11.1327 0.364275
\(935\) 0 0
\(936\) 6.95320 0.227272
\(937\) −12.5292 38.5608i −0.409310 1.25973i −0.917242 0.398329i \(-0.869590\pi\)
0.507933 0.861397i \(-0.330410\pi\)
\(938\) −1.95304 1.41896i −0.0637689 0.0463308i
\(939\) −22.7376 + 16.5198i −0.742012 + 0.539104i
\(940\) 0 0
\(941\) −0.126602 + 0.389640i −0.00412709 + 0.0127019i −0.953099 0.302659i \(-0.902126\pi\)
0.948972 + 0.315361i \(0.102126\pi\)
\(942\) −37.9296 + 27.5575i −1.23581 + 0.897870i
\(943\) −24.6828 17.9331i −0.803783 0.583982i
\(944\) 0.523717 + 1.61184i 0.0170455 + 0.0524608i
\(945\) 0 0
\(946\) −21.3185 40.9548i −0.693125 1.33156i
\(947\) −2.45729 −0.0798511 −0.0399256 0.999203i \(-0.512712\pi\)
−0.0399256 + 0.999203i \(0.512712\pi\)
\(948\) −3.25643 10.0223i −0.105764 0.325508i
\(949\) −26.5147 19.2640i −0.860703 0.625337i
\(950\) 0 0
\(951\) 11.4033 35.0956i 0.369776 1.13805i
\(952\) 3.22070 9.91230i 0.104384 0.321260i
\(953\) 49.3714 35.8704i 1.59930 1.16196i 0.710456 0.703742i \(-0.248489\pi\)
0.888841 0.458215i \(-0.151511\pi\)
\(954\) −15.2441 11.0755i −0.493546 0.358582i
\(955\) 0 0
\(956\) 14.7820 0.478085
\(957\) −1.21728 + 0.203675i −0.0393492 + 0.00658387i
\(958\) −34.4309 −1.11241
\(959\) 12.9632 + 39.8965i 0.418603 + 1.28833i
\(960\) 0 0
\(961\) 24.6978 17.9440i 0.796705 0.578840i
\(962\) 4.90538 15.0972i 0.158156 0.486754i
\(963\) −2.79351 + 8.59754i −0.0900196 + 0.277052i
\(964\) −16.9749 + 12.3330i −0.546726 + 0.397220i
\(965\) 0 0
\(966\) −8.72898 26.8650i −0.280850 0.864369i
\(967\) −17.1997 −0.553106 −0.276553 0.960999i \(-0.589192\pi\)
−0.276553 + 0.960999i \(0.589192\pi\)
\(968\) −21.9712 6.71837i −0.706182 0.215937i
\(969\) 23.2258 0.746119
\(970\) 0 0
\(971\) −22.0125 15.9930i −0.706415 0.513241i 0.175600 0.984462i \(-0.443813\pi\)
−0.882015 + 0.471221i \(0.843813\pi\)
\(972\) 5.40818 3.92927i 0.173467 0.126031i
\(973\) 8.05950 24.8046i 0.258376 0.795198i
\(974\) 8.06790 24.8304i 0.258512 0.795619i
\(975\) 0 0
\(976\) 6.91513 + 5.02414i 0.221348 + 0.160819i
\(977\) 5.92454 + 18.2339i 0.189543 + 0.583353i 0.999997 0.00244904i \(-0.000779555\pi\)
−0.810454 + 0.585802i \(0.800780\pi\)
\(978\) −11.8516 −0.378971
\(979\) −32.4562 + 5.43055i −1.03730 + 0.173561i
\(980\) 0 0
\(981\) −2.44732 7.53207i −0.0781369 0.240481i
\(982\) 25.8753 + 18.7995i 0.825714 + 0.599916i
\(983\) −19.5219 + 14.1835i −0.622653 + 0.452384i −0.853847 0.520524i \(-0.825737\pi\)
0.231194 + 0.972908i \(0.425737\pi\)
\(984\) 10.0898 31.0532i 0.321651 0.989939i
\(985\) 0 0
\(986\) 0.561138 0.407691i 0.0178703 0.0129835i
\(987\) −43.0506 31.2781i −1.37032 0.995593i
\(988\) 4.45858 + 13.7221i 0.141846 + 0.436558i
\(989\) −32.4276 −1.03114
\(990\) 0 0
\(991\) 27.7081 0.880177 0.440089 0.897954i \(-0.354947\pi\)
0.440089 + 0.897954i \(0.354947\pi\)
\(992\) 0.845122 + 2.60102i 0.0268327 + 0.0825824i
\(993\) −0.748092 0.543521i −0.0237400 0.0172481i
\(994\) 13.9546 10.1386i 0.442614 0.321578i
\(995\) 0 0
\(996\) −1.43219 + 4.40782i −0.0453806 + 0.139667i
\(997\) 27.0950 19.6856i 0.858106 0.623451i −0.0692628 0.997598i \(-0.522065\pi\)
0.927369 + 0.374148i \(0.122065\pi\)
\(998\) −55.4972 40.3211i −1.75673 1.27634i
\(999\) 3.32350 + 10.2287i 0.105151 + 0.323621i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.h.d.126.1 16
5.2 odd 4 55.2.j.a.49.4 yes 16
5.3 odd 4 55.2.j.a.49.1 yes 16
5.4 even 2 inner 275.2.h.d.126.4 16
11.3 even 5 3025.2.a.bl.1.2 8
11.8 odd 10 3025.2.a.bk.1.7 8
11.9 even 5 inner 275.2.h.d.251.1 16
15.2 even 4 495.2.ba.a.379.1 16
15.8 even 4 495.2.ba.a.379.4 16
20.3 even 4 880.2.cd.c.49.1 16
20.7 even 4 880.2.cd.c.49.4 16
55.2 even 20 605.2.j.d.9.4 16
55.3 odd 20 605.2.b.g.364.7 8
55.7 even 20 605.2.j.g.124.1 16
55.8 even 20 605.2.b.f.364.2 8
55.9 even 10 inner 275.2.h.d.251.4 16
55.13 even 20 605.2.j.d.9.1 16
55.14 even 10 3025.2.a.bl.1.7 8
55.17 even 20 605.2.j.g.444.4 16
55.18 even 20 605.2.j.g.124.4 16
55.19 odd 10 3025.2.a.bk.1.2 8
55.27 odd 20 605.2.j.h.444.1 16
55.28 even 20 605.2.j.g.444.1 16
55.32 even 4 605.2.j.d.269.1 16
55.37 odd 20 605.2.j.h.124.4 16
55.38 odd 20 605.2.j.h.444.4 16
55.42 odd 20 55.2.j.a.9.1 16
55.43 even 4 605.2.j.d.269.4 16
55.47 odd 20 605.2.b.g.364.2 8
55.48 odd 20 605.2.j.h.124.1 16
55.52 even 20 605.2.b.f.364.7 8
55.53 odd 20 55.2.j.a.9.4 yes 16
165.53 even 20 495.2.ba.a.64.1 16
165.152 even 20 495.2.ba.a.64.4 16
220.163 even 20 880.2.cd.c.449.4 16
220.207 even 20 880.2.cd.c.449.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.j.a.9.1 16 55.42 odd 20
55.2.j.a.9.4 yes 16 55.53 odd 20
55.2.j.a.49.1 yes 16 5.3 odd 4
55.2.j.a.49.4 yes 16 5.2 odd 4
275.2.h.d.126.1 16 1.1 even 1 trivial
275.2.h.d.126.4 16 5.4 even 2 inner
275.2.h.d.251.1 16 11.9 even 5 inner
275.2.h.d.251.4 16 55.9 even 10 inner
495.2.ba.a.64.1 16 165.53 even 20
495.2.ba.a.64.4 16 165.152 even 20
495.2.ba.a.379.1 16 15.2 even 4
495.2.ba.a.379.4 16 15.8 even 4
605.2.b.f.364.2 8 55.8 even 20
605.2.b.f.364.7 8 55.52 even 20
605.2.b.g.364.2 8 55.47 odd 20
605.2.b.g.364.7 8 55.3 odd 20
605.2.j.d.9.1 16 55.13 even 20
605.2.j.d.9.4 16 55.2 even 20
605.2.j.d.269.1 16 55.32 even 4
605.2.j.d.269.4 16 55.43 even 4
605.2.j.g.124.1 16 55.7 even 20
605.2.j.g.124.4 16 55.18 even 20
605.2.j.g.444.1 16 55.28 even 20
605.2.j.g.444.4 16 55.17 even 20
605.2.j.h.124.1 16 55.48 odd 20
605.2.j.h.124.4 16 55.37 odd 20
605.2.j.h.444.1 16 55.27 odd 20
605.2.j.h.444.4 16 55.38 odd 20
880.2.cd.c.49.1 16 20.3 even 4
880.2.cd.c.49.4 16 20.7 even 4
880.2.cd.c.449.1 16 220.207 even 20
880.2.cd.c.449.4 16 220.163 even 20
3025.2.a.bk.1.2 8 55.19 odd 10
3025.2.a.bk.1.7 8 11.8 odd 10
3025.2.a.bl.1.2 8 11.3 even 5
3025.2.a.bl.1.7 8 55.14 even 10