Properties

Label 495.2.ba.a.379.4
Level $495$
Weight $2$
Character 495.379
Analytic conductor $3.953$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [495,2,Mod(64,495)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(495, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("495.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.ba (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{14} + 25x^{12} - 57x^{10} + 194x^{8} - 303x^{6} + 235x^{4} - 33x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 379.4
Root \(0.972539 - 1.33858i\) of defining polynomial
Character \(\chi\) \(=\) 495.379
Dual form 495.2.ba.a.64.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.57360 - 0.511294i) q^{2} +(0.596764 - 0.433574i) q^{4} +(-1.09069 + 1.95203i) q^{5} +(1.31845 + 1.81468i) q^{7} +(-1.22769 + 1.68978i) q^{8} +(-0.718246 + 3.62937i) q^{10} +(3.27115 - 0.547326i) q^{11} +(-3.51868 + 1.14329i) q^{13} +(3.00254 + 2.18148i) q^{14} +(-1.52381 + 4.68982i) q^{16} +(2.11573 + 0.687441i) q^{17} +(4.27714 + 3.10753i) q^{19} +(0.195466 + 1.63779i) q^{20} +(4.86764 - 2.53379i) q^{22} -3.85415i q^{23} +(-2.62081 - 4.25810i) q^{25} +(-4.95244 + 3.59816i) q^{26} +(1.57360 + 0.511294i) q^{28} +(-0.152450 + 0.110762i) q^{29} +(0.212253 + 0.653249i) q^{31} +3.98166i q^{32} +3.68079 q^{34} +(-4.98032 + 0.594387i) q^{35} +(-1.52422 - 2.09791i) q^{37} +(8.31938 + 2.70313i) q^{38} +(-1.95946 - 4.23950i) q^{40} +(6.40421 + 4.65293i) q^{41} -8.41368i q^{43} +(1.71480 - 1.74491i) q^{44} +(-1.97060 - 6.06490i) q^{46} +(7.06117 - 9.71886i) q^{47} +(0.608337 - 1.87227i) q^{49} +(-6.30124 - 5.36054i) q^{50} +(-1.60412 + 2.20788i) q^{52} +(-12.0371 + 3.91110i) q^{53} +(-2.49941 + 6.98233i) q^{55} -4.68506 q^{56} +(-0.183264 + 0.252241i) q^{58} +(0.278050 - 0.202015i) q^{59} +(0.535643 - 1.64854i) q^{61} +(0.668004 + 0.919429i) q^{62} +(-1.01183 - 3.11409i) q^{64} +(1.60605 - 8.11552i) q^{65} +0.650461i q^{67} +(1.56065 - 0.507084i) q^{68} +(-7.53313 + 3.48174i) q^{70} +(-1.43619 + 4.42013i) q^{71} +(-5.20684 - 7.16660i) q^{73} +(-3.47116 - 2.52195i) q^{74} +3.89979 q^{76} +(5.30606 + 5.21449i) q^{77} +(2.23551 + 6.88019i) q^{79} +(-7.49264 - 8.08965i) q^{80} +(12.4567 + 4.04742i) q^{82} +(3.02593 + 0.983185i) q^{83} +(-3.64950 + 3.38017i) q^{85} +(-4.30186 - 13.2398i) q^{86} +(-3.09111 + 6.19946i) q^{88} +9.92195 q^{89} +(-6.71389 - 4.87793i) q^{91} +(-1.67106 - 2.30002i) q^{92} +(6.14226 - 18.9039i) q^{94} +(-10.7310 + 4.95976i) q^{95} +(-2.15710 + 0.700884i) q^{97} -3.25724i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{4} + 2 q^{5} + 6 q^{11} + 12 q^{14} + 16 q^{16} + 6 q^{19} + 8 q^{20} - 16 q^{25} - 40 q^{26} - 2 q^{29} + 8 q^{31} - 16 q^{34} - 22 q^{35} + 12 q^{40} + 52 q^{41} - 4 q^{44} - 62 q^{46} - 10 q^{49}+ \cdots - 48 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.57360 0.511294i 1.11270 0.361539i 0.305725 0.952120i \(-0.401101\pi\)
0.806979 + 0.590581i \(0.201101\pi\)
\(3\) 0 0
\(4\) 0.596764 0.433574i 0.298382 0.216787i
\(5\) −1.09069 + 1.95203i −0.487770 + 0.872972i
\(6\) 0 0
\(7\) 1.31845 + 1.81468i 0.498326 + 0.685886i 0.981896 0.189419i \(-0.0606604\pi\)
−0.483571 + 0.875305i \(0.660660\pi\)
\(8\) −1.22769 + 1.68978i −0.434055 + 0.597426i
\(9\) 0 0
\(10\) −0.718246 + 3.62937i −0.227129 + 1.14771i
\(11\) 3.27115 0.547326i 0.986289 0.165025i
\(12\) 0 0
\(13\) −3.51868 + 1.14329i −0.975906 + 0.317091i −0.753198 0.657794i \(-0.771490\pi\)
−0.222708 + 0.974885i \(0.571490\pi\)
\(14\) 3.00254 + 2.18148i 0.802464 + 0.583024i
\(15\) 0 0
\(16\) −1.52381 + 4.68982i −0.380954 + 1.17245i
\(17\) 2.11573 + 0.687441i 0.513139 + 0.166729i 0.554129 0.832431i \(-0.313051\pi\)
−0.0409903 + 0.999160i \(0.513051\pi\)
\(18\) 0 0
\(19\) 4.27714 + 3.10753i 0.981244 + 0.712916i 0.957986 0.286814i \(-0.0925961\pi\)
0.0232580 + 0.999729i \(0.492596\pi\)
\(20\) 0.195466 + 1.63779i 0.0437074 + 0.366221i
\(21\) 0 0
\(22\) 4.86764 2.53379i 1.03778 0.540206i
\(23\) 3.85415i 0.803647i −0.915717 0.401823i \(-0.868377\pi\)
0.915717 0.401823i \(-0.131623\pi\)
\(24\) 0 0
\(25\) −2.62081 4.25810i −0.524161 0.851619i
\(26\) −4.95244 + 3.59816i −0.971253 + 0.705657i
\(27\) 0 0
\(28\) 1.57360 + 0.511294i 0.297383 + 0.0966255i
\(29\) −0.152450 + 0.110762i −0.0283093 + 0.0205679i −0.601850 0.798609i \(-0.705569\pi\)
0.573541 + 0.819177i \(0.305569\pi\)
\(30\) 0 0
\(31\) 0.212253 + 0.653249i 0.0381218 + 0.117327i 0.968306 0.249765i \(-0.0803534\pi\)
−0.930185 + 0.367092i \(0.880353\pi\)
\(32\) 3.98166i 0.703866i
\(33\) 0 0
\(34\) 3.68079 0.631251
\(35\) −4.98032 + 0.594387i −0.841828 + 0.100470i
\(36\) 0 0
\(37\) −1.52422 2.09791i −0.250580 0.344894i 0.665134 0.746724i \(-0.268374\pi\)
−0.915714 + 0.401830i \(0.868374\pi\)
\(38\) 8.31938 + 2.70313i 1.34958 + 0.438506i
\(39\) 0 0
\(40\) −1.95946 4.23950i −0.309817 0.670324i
\(41\) 6.40421 + 4.65293i 1.00017 + 0.726666i 0.962124 0.272611i \(-0.0878870\pi\)
0.0380448 + 0.999276i \(0.487887\pi\)
\(42\) 0 0
\(43\) 8.41368i 1.28307i −0.767092 0.641537i \(-0.778297\pi\)
0.767092 0.641537i \(-0.221703\pi\)
\(44\) 1.71480 1.74491i 0.258515 0.263055i
\(45\) 0 0
\(46\) −1.97060 6.06490i −0.290550 0.894220i
\(47\) 7.06117 9.71886i 1.02998 1.41764i 0.125012 0.992155i \(-0.460103\pi\)
0.904965 0.425486i \(-0.139897\pi\)
\(48\) 0 0
\(49\) 0.608337 1.87227i 0.0869053 0.267467i
\(50\) −6.30124 5.36054i −0.891130 0.758095i
\(51\) 0 0
\(52\) −1.60412 + 2.20788i −0.222451 + 0.306178i
\(53\) −12.0371 + 3.91110i −1.65343 + 0.537231i −0.979479 0.201549i \(-0.935403\pi\)
−0.673947 + 0.738779i \(0.735403\pi\)
\(54\) 0 0
\(55\) −2.49941 + 6.98233i −0.337020 + 0.941498i
\(56\) −4.68506 −0.626067
\(57\) 0 0
\(58\) −0.183264 + 0.252241i −0.0240638 + 0.0331209i
\(59\) 0.278050 0.202015i 0.0361990 0.0263001i −0.569539 0.821965i \(-0.692878\pi\)
0.605738 + 0.795664i \(0.292878\pi\)
\(60\) 0 0
\(61\) 0.535643 1.64854i 0.0685821 0.211074i −0.910892 0.412645i \(-0.864605\pi\)
0.979474 + 0.201572i \(0.0646049\pi\)
\(62\) 0.668004 + 0.919429i 0.0848366 + 0.116768i
\(63\) 0 0
\(64\) −1.01183 3.11409i −0.126479 0.389261i
\(65\) 1.60605 8.11552i 0.199206 1.00661i
\(66\) 0 0
\(67\) 0.650461i 0.0794664i 0.999210 + 0.0397332i \(0.0126508\pi\)
−0.999210 + 0.0397332i \(0.987349\pi\)
\(68\) 1.56065 0.507084i 0.189256 0.0614930i
\(69\) 0 0
\(70\) −7.53313 + 3.48174i −0.900381 + 0.416147i
\(71\) −1.43619 + 4.42013i −0.170444 + 0.524573i −0.999396 0.0347464i \(-0.988938\pi\)
0.828952 + 0.559320i \(0.188938\pi\)
\(72\) 0 0
\(73\) −5.20684 7.16660i −0.609415 0.838787i 0.387115 0.922032i \(-0.373472\pi\)
−0.996529 + 0.0832444i \(0.973472\pi\)
\(74\) −3.47116 2.52195i −0.403515 0.293171i
\(75\) 0 0
\(76\) 3.89979 0.447336
\(77\) 5.30606 + 5.21449i 0.604682 + 0.594246i
\(78\) 0 0
\(79\) 2.23551 + 6.88019i 0.251514 + 0.774082i 0.994496 + 0.104770i \(0.0334108\pi\)
−0.742982 + 0.669311i \(0.766589\pi\)
\(80\) −7.49264 8.08965i −0.837703 0.904450i
\(81\) 0 0
\(82\) 12.4567 + 4.04742i 1.37561 + 0.446963i
\(83\) 3.02593 + 0.983185i 0.332139 + 0.107919i 0.470339 0.882486i \(-0.344132\pi\)
−0.138200 + 0.990404i \(0.544132\pi\)
\(84\) 0 0
\(85\) −3.64950 + 3.38017i −0.395844 + 0.366631i
\(86\) −4.30186 13.2398i −0.463882 1.42768i
\(87\) 0 0
\(88\) −3.09111 + 6.19946i −0.329514 + 0.660865i
\(89\) 9.92195 1.05172 0.525862 0.850570i \(-0.323743\pi\)
0.525862 + 0.850570i \(0.323743\pi\)
\(90\) 0 0
\(91\) −6.71389 4.87793i −0.703807 0.511346i
\(92\) −1.67106 2.30002i −0.174220 0.239793i
\(93\) 0 0
\(94\) 6.14226 18.9039i 0.633526 1.94979i
\(95\) −10.7310 + 4.95976i −1.10098 + 0.508860i
\(96\) 0 0
\(97\) −2.15710 + 0.700884i −0.219020 + 0.0711640i −0.416472 0.909149i \(-0.636734\pi\)
0.197451 + 0.980313i \(0.436734\pi\)
\(98\) 3.25724i 0.329031i
\(99\) 0 0
\(100\) −3.41020 1.40476i −0.341020 0.140476i
\(101\) −3.05830 9.41247i −0.304312 0.936576i −0.979933 0.199327i \(-0.936124\pi\)
0.675621 0.737249i \(-0.263876\pi\)
\(102\) 0 0
\(103\) 6.01958 + 8.28525i 0.593127 + 0.816370i 0.995057 0.0993007i \(-0.0316606\pi\)
−0.401930 + 0.915670i \(0.631661\pi\)
\(104\) 2.38796 7.34938i 0.234159 0.720666i
\(105\) 0 0
\(106\) −16.9419 + 12.3090i −1.64554 + 1.19556i
\(107\) −5.90536 + 8.12803i −0.570893 + 0.785767i −0.992660 0.120937i \(-0.961410\pi\)
0.421767 + 0.906704i \(0.361410\pi\)
\(108\) 0 0
\(109\) 8.80173 0.843053 0.421527 0.906816i \(-0.361494\pi\)
0.421527 + 0.906816i \(0.361494\pi\)
\(110\) −0.363043 + 12.2653i −0.0346148 + 1.16945i
\(111\) 0 0
\(112\) −10.5196 + 3.41803i −0.994010 + 0.322973i
\(113\) 0.135985 0.187168i 0.0127924 0.0176073i −0.802573 0.596554i \(-0.796536\pi\)
0.815365 + 0.578947i \(0.196536\pi\)
\(114\) 0 0
\(115\) 7.52341 + 4.20367i 0.701561 + 0.391995i
\(116\) −0.0429534 + 0.132197i −0.00398812 + 0.0122742i
\(117\) 0 0
\(118\) 0.334250 0.460056i 0.0307702 0.0423516i
\(119\) 1.54198 + 4.74573i 0.141353 + 0.435040i
\(120\) 0 0
\(121\) 10.4009 3.58078i 0.945533 0.325525i
\(122\) 2.86801i 0.259658i
\(123\) 0 0
\(124\) 0.409897 + 0.297808i 0.0368098 + 0.0267439i
\(125\) 11.1704 0.471632i 0.999110 0.0421840i
\(126\) 0 0
\(127\) −2.31140 0.751018i −0.205103 0.0666421i 0.204664 0.978832i \(-0.434390\pi\)
−0.409767 + 0.912190i \(0.634390\pi\)
\(128\) −7.86516 10.8255i −0.695188 0.956844i
\(129\) 0 0
\(130\) −1.62214 13.5917i −0.142271 1.19207i
\(131\) −1.58846 −0.138785 −0.0693924 0.997589i \(-0.522106\pi\)
−0.0693924 + 0.997589i \(0.522106\pi\)
\(132\) 0 0
\(133\) 11.8588i 1.02829i
\(134\) 0.332577 + 1.02357i 0.0287302 + 0.0884226i
\(135\) 0 0
\(136\) −3.75909 + 2.73114i −0.322339 + 0.234193i
\(137\) 17.7866 + 5.77920i 1.51961 + 0.493750i 0.945664 0.325145i \(-0.105413\pi\)
0.573943 + 0.818895i \(0.305413\pi\)
\(138\) 0 0
\(139\) 9.40675 6.83441i 0.797870 0.579687i −0.112418 0.993661i \(-0.535860\pi\)
0.910289 + 0.413974i \(0.135860\pi\)
\(140\) −2.71436 + 2.51405i −0.229406 + 0.212476i
\(141\) 0 0
\(142\) 7.68984i 0.645317i
\(143\) −10.8844 + 5.66573i −0.910197 + 0.473792i
\(144\) 0 0
\(145\) −0.0499340 0.418393i −0.00414679 0.0347457i
\(146\) −11.8577 8.61514i −0.981352 0.712994i
\(147\) 0 0
\(148\) −1.81920 0.591094i −0.149537 0.0485876i
\(149\) 1.82800 5.62600i 0.149755 0.460900i −0.847836 0.530258i \(-0.822095\pi\)
0.997592 + 0.0693580i \(0.0220951\pi\)
\(150\) 0 0
\(151\) −10.3375 7.51064i −0.841254 0.611207i 0.0814664 0.996676i \(-0.474040\pi\)
−0.922721 + 0.385469i \(0.874040\pi\)
\(152\) −10.5020 + 3.41232i −0.851828 + 0.276776i
\(153\) 0 0
\(154\) 11.0158 + 5.49257i 0.887675 + 0.442604i
\(155\) −1.50666 0.298166i −0.121018 0.0239492i
\(156\) 0 0
\(157\) 8.43394 11.6083i 0.673102 0.926445i −0.326724 0.945120i \(-0.605945\pi\)
0.999826 + 0.0186749i \(0.00594475\pi\)
\(158\) 7.03560 + 9.68367i 0.559722 + 0.770391i
\(159\) 0 0
\(160\) −7.77231 4.34275i −0.614455 0.343324i
\(161\) 6.99407 5.08149i 0.551210 0.400478i
\(162\) 0 0
\(163\) −3.44963 + 1.12085i −0.270196 + 0.0877921i −0.440982 0.897516i \(-0.645370\pi\)
0.170785 + 0.985308i \(0.445370\pi\)
\(164\) 5.83919 0.455964
\(165\) 0 0
\(166\) 5.26430 0.408589
\(167\) −3.63370 + 1.18066i −0.281184 + 0.0913623i −0.446214 0.894926i \(-0.647228\pi\)
0.165030 + 0.986289i \(0.447228\pi\)
\(168\) 0 0
\(169\) 0.556767 0.404515i 0.0428282 0.0311165i
\(170\) −4.01459 + 7.18500i −0.307905 + 0.551065i
\(171\) 0 0
\(172\) −3.64795 5.02098i −0.278154 0.382846i
\(173\) 1.23855 1.70472i 0.0941651 0.129607i −0.759335 0.650700i \(-0.774476\pi\)
0.853500 + 0.521093i \(0.174476\pi\)
\(174\) 0 0
\(175\) 4.27171 10.3700i 0.322911 0.783899i
\(176\) −2.41777 + 16.1751i −0.182246 + 1.21925i
\(177\) 0 0
\(178\) 15.6132 5.07303i 1.17026 0.380240i
\(179\) −4.06448 2.95302i −0.303793 0.220719i 0.425435 0.904989i \(-0.360121\pi\)
−0.729229 + 0.684270i \(0.760121\pi\)
\(180\) 0 0
\(181\) −4.83538 + 14.8818i −0.359411 + 1.10615i 0.593997 + 0.804467i \(0.297549\pi\)
−0.953408 + 0.301685i \(0.902451\pi\)
\(182\) −13.0590 4.24314i −0.968000 0.314522i
\(183\) 0 0
\(184\) 6.51265 + 4.73172i 0.480119 + 0.348827i
\(185\) 5.75762 0.687156i 0.423309 0.0505207i
\(186\) 0 0
\(187\) 7.29712 + 1.09073i 0.533618 + 0.0797622i
\(188\) 8.86140i 0.646284i
\(189\) 0 0
\(190\) −14.3504 + 13.2914i −1.04109 + 0.964257i
\(191\) 2.52078 1.83145i 0.182397 0.132519i −0.492840 0.870120i \(-0.664041\pi\)
0.675237 + 0.737601i \(0.264041\pi\)
\(192\) 0 0
\(193\) 9.16474 + 2.97780i 0.659692 + 0.214347i 0.619683 0.784852i \(-0.287261\pi\)
0.0400095 + 0.999199i \(0.487261\pi\)
\(194\) −3.03606 + 2.20582i −0.217976 + 0.158369i
\(195\) 0 0
\(196\) −0.448734 1.38106i −0.0320524 0.0986472i
\(197\) 14.3974i 1.02577i −0.858457 0.512885i \(-0.828577\pi\)
0.858457 0.512885i \(-0.171423\pi\)
\(198\) 0 0
\(199\) −14.7978 −1.04899 −0.524493 0.851415i \(-0.675745\pi\)
−0.524493 + 0.851415i \(0.675745\pi\)
\(200\) 10.4128 + 0.799064i 0.736294 + 0.0565023i
\(201\) 0 0
\(202\) −9.62508 13.2478i −0.677218 0.932111i
\(203\) −0.401995 0.130616i −0.0282145 0.00916745i
\(204\) 0 0
\(205\) −16.0676 + 7.42629i −1.12221 + 0.518675i
\(206\) 13.7086 + 9.95989i 0.955125 + 0.693939i
\(207\) 0 0
\(208\) 18.2441i 1.26500i
\(209\) 15.6920 + 7.82420i 1.08544 + 0.541211i
\(210\) 0 0
\(211\) −2.09250 6.44005i −0.144054 0.443352i 0.852834 0.522181i \(-0.174882\pi\)
−0.996888 + 0.0788298i \(0.974882\pi\)
\(212\) −5.48756 + 7.55299i −0.376888 + 0.518741i
\(213\) 0 0
\(214\) −5.13687 + 15.8097i −0.351149 + 1.08073i
\(215\) 16.4237 + 9.17669i 1.12009 + 0.625845i
\(216\) 0 0
\(217\) −0.905596 + 1.24645i −0.0614759 + 0.0846143i
\(218\) 13.8504 4.50027i 0.938069 0.304797i
\(219\) 0 0
\(220\) 1.53580 + 5.25048i 0.103544 + 0.353987i
\(221\) −8.23051 −0.553644
\(222\) 0 0
\(223\) −5.12388 + 7.05242i −0.343121 + 0.472265i −0.945350 0.326058i \(-0.894279\pi\)
0.602229 + 0.798323i \(0.294279\pi\)
\(224\) −7.22547 + 5.24961i −0.482772 + 0.350754i
\(225\) 0 0
\(226\) 0.118289 0.364056i 0.00786846 0.0242166i
\(227\) −2.23795 3.08028i −0.148538 0.204445i 0.728264 0.685297i \(-0.240328\pi\)
−0.876802 + 0.480852i \(0.840328\pi\)
\(228\) 0 0
\(229\) 0.838570 + 2.58085i 0.0554142 + 0.170547i 0.974933 0.222499i \(-0.0714213\pi\)
−0.919519 + 0.393046i \(0.871421\pi\)
\(230\) 13.9881 + 2.76823i 0.922351 + 0.182532i
\(231\) 0 0
\(232\) 0.393588i 0.0258403i
\(233\) −9.99634 + 3.24801i −0.654882 + 0.212784i −0.617566 0.786519i \(-0.711881\pi\)
−0.0373166 + 0.999303i \(0.511881\pi\)
\(234\) 0 0
\(235\) 11.2699 + 24.3838i 0.735170 + 1.59062i
\(236\) 0.0783415 0.241110i 0.00509959 0.0156949i
\(237\) 0 0
\(238\) 4.85293 + 6.67948i 0.314569 + 0.432966i
\(239\) −16.2124 11.7790i −1.04869 0.761919i −0.0767288 0.997052i \(-0.524448\pi\)
−0.971963 + 0.235133i \(0.924448\pi\)
\(240\) 0 0
\(241\) 28.4450 1.83230 0.916152 0.400832i \(-0.131279\pi\)
0.916152 + 0.400832i \(0.131279\pi\)
\(242\) 14.5360 10.9526i 0.934408 0.704060i
\(243\) 0 0
\(244\) −0.395112 1.21603i −0.0252944 0.0778483i
\(245\) 2.99121 + 3.22955i 0.191101 + 0.206328i
\(246\) 0 0
\(247\) −18.6027 6.04438i −1.18366 0.384595i
\(248\) −1.36443 0.443329i −0.0866411 0.0281514i
\(249\) 0 0
\(250\) 17.3366 6.45351i 1.09646 0.408156i
\(251\) 7.36604 + 22.6703i 0.464940 + 1.43094i 0.859058 + 0.511879i \(0.171050\pi\)
−0.394117 + 0.919060i \(0.628950\pi\)
\(252\) 0 0
\(253\) −2.10948 12.6075i −0.132622 0.792628i
\(254\) −4.02120 −0.252313
\(255\) 0 0
\(256\) −12.6136 9.16432i −0.788350 0.572770i
\(257\) −14.5044 19.9636i −0.904758 1.24529i −0.968925 0.247354i \(-0.920439\pi\)
0.0641671 0.997939i \(-0.479561\pi\)
\(258\) 0 0
\(259\) 1.79744 5.53196i 0.111688 0.343739i
\(260\) −2.56025 5.53939i −0.158780 0.343538i
\(261\) 0 0
\(262\) −2.49961 + 0.812172i −0.154426 + 0.0501761i
\(263\) 5.44098i 0.335505i −0.985829 0.167753i \(-0.946349\pi\)
0.985829 0.167753i \(-0.0536510\pi\)
\(264\) 0 0
\(265\) 5.49416 27.7625i 0.337504 1.70544i
\(266\) 6.06332 + 18.6610i 0.371766 + 1.14418i
\(267\) 0 0
\(268\) 0.282023 + 0.388171i 0.0172273 + 0.0237113i
\(269\) −2.07213 + 6.37738i −0.126340 + 0.388835i −0.994143 0.108074i \(-0.965532\pi\)
0.867803 + 0.496909i \(0.165532\pi\)
\(270\) 0 0
\(271\) 4.09349 2.97409i 0.248662 0.180663i −0.456472 0.889738i \(-0.650887\pi\)
0.705134 + 0.709075i \(0.250887\pi\)
\(272\) −6.44795 + 8.87484i −0.390964 + 0.538116i
\(273\) 0 0
\(274\) 30.9438 1.86938
\(275\) −10.9036 12.4944i −0.657513 0.753443i
\(276\) 0 0
\(277\) −10.1703 + 3.30453i −0.611074 + 0.198550i −0.598173 0.801367i \(-0.704107\pi\)
−0.0129009 + 0.999917i \(0.504107\pi\)
\(278\) 11.3081 15.5642i 0.678214 0.933481i
\(279\) 0 0
\(280\) 5.10993 9.14535i 0.305377 0.546539i
\(281\) 4.23963 13.0482i 0.252915 0.778392i −0.741319 0.671153i \(-0.765799\pi\)
0.994233 0.107238i \(-0.0342008\pi\)
\(282\) 0 0
\(283\) −12.9132 + 17.7735i −0.767611 + 1.05653i 0.228932 + 0.973442i \(0.426477\pi\)
−0.996543 + 0.0830832i \(0.973523\pi\)
\(284\) 1.05939 + 3.26047i 0.0628633 + 0.193473i
\(285\) 0 0
\(286\) −14.2308 + 14.4807i −0.841485 + 0.856263i
\(287\) 17.7563i 1.04812i
\(288\) 0 0
\(289\) −9.74956 7.08347i −0.573504 0.416675i
\(290\) −0.292498 0.632853i −0.0171761 0.0371624i
\(291\) 0 0
\(292\) −6.21450 2.01922i −0.363676 0.118166i
\(293\) 8.25135 + 11.3570i 0.482049 + 0.663483i 0.978897 0.204354i \(-0.0655094\pi\)
−0.496848 + 0.867837i \(0.665509\pi\)
\(294\) 0 0
\(295\) 0.0910732 + 0.763095i 0.00530249 + 0.0444291i
\(296\) 5.41627 0.314815
\(297\) 0 0
\(298\) 9.78772i 0.566988i
\(299\) 4.40641 + 13.5615i 0.254829 + 0.784283i
\(300\) 0 0
\(301\) 15.2682 11.0930i 0.880043 0.639389i
\(302\) −20.1073 6.53324i −1.15704 0.375946i
\(303\) 0 0
\(304\) −21.0913 + 15.3237i −1.20967 + 0.878877i
\(305\) 2.63377 + 2.84363i 0.150809 + 0.162826i
\(306\) 0 0
\(307\) 6.86951i 0.392064i 0.980598 + 0.196032i \(0.0628056\pi\)
−0.980598 + 0.196032i \(0.937194\pi\)
\(308\) 5.42733 + 0.811246i 0.309251 + 0.0462251i
\(309\) 0 0
\(310\) −2.52333 + 0.301152i −0.143316 + 0.0171043i
\(311\) −4.45087 3.23374i −0.252385 0.183369i 0.454398 0.890799i \(-0.349854\pi\)
−0.706783 + 0.707430i \(0.749854\pi\)
\(312\) 0 0
\(313\) 13.5354 + 4.39793i 0.765068 + 0.248586i 0.665452 0.746440i \(-0.268239\pi\)
0.0996156 + 0.995026i \(0.468239\pi\)
\(314\) 7.33639 22.5791i 0.414016 1.27421i
\(315\) 0 0
\(316\) 4.31714 + 3.13659i 0.242858 + 0.176447i
\(317\) −17.7718 + 5.77442i −0.998166 + 0.324324i −0.762132 0.647421i \(-0.775847\pi\)
−0.236033 + 0.971745i \(0.575847\pi\)
\(318\) 0 0
\(319\) −0.438065 + 0.445758i −0.0245269 + 0.0249577i
\(320\) 7.18237 + 1.42138i 0.401506 + 0.0794575i
\(321\) 0 0
\(322\) 8.40774 11.5723i 0.468545 0.644897i
\(323\) 6.91303 + 9.51497i 0.384651 + 0.529427i
\(324\) 0 0
\(325\) 14.0900 + 11.9865i 0.781573 + 0.664893i
\(326\) −4.85526 + 3.52755i −0.268908 + 0.195373i
\(327\) 0 0
\(328\) −15.7248 + 5.10930i −0.868257 + 0.282114i
\(329\) 26.9464 1.48560
\(330\) 0 0
\(331\) 0.468249 0.0257373 0.0128686 0.999917i \(-0.495904\pi\)
0.0128686 + 0.999917i \(0.495904\pi\)
\(332\) 2.23205 0.725237i 0.122500 0.0398025i
\(333\) 0 0
\(334\) −5.11433 + 3.71578i −0.279844 + 0.203318i
\(335\) −1.26972 0.709449i −0.0693720 0.0387613i
\(336\) 0 0
\(337\) 20.0360 + 27.5771i 1.09143 + 1.50222i 0.846282 + 0.532735i \(0.178836\pi\)
0.245146 + 0.969486i \(0.421164\pi\)
\(338\) 0.669303 0.921216i 0.0364053 0.0501075i
\(339\) 0 0
\(340\) −0.712333 + 3.59949i −0.0386317 + 0.195210i
\(341\) 1.05185 + 2.02070i 0.0569611 + 0.109427i
\(342\) 0 0
\(343\) 19.1327 6.21658i 1.03307 0.335664i
\(344\) 14.2172 + 10.3294i 0.766542 + 0.556925i
\(345\) 0 0
\(346\) 1.07737 3.31580i 0.0579198 0.178259i
\(347\) 3.41707 + 1.11027i 0.183438 + 0.0596026i 0.399296 0.916822i \(-0.369255\pi\)
−0.215858 + 0.976425i \(0.569255\pi\)
\(348\) 0 0
\(349\) −5.15433 3.74484i −0.275905 0.200457i 0.441224 0.897397i \(-0.354544\pi\)
−0.717129 + 0.696940i \(0.754544\pi\)
\(350\) 1.41985 18.5023i 0.0758941 0.988992i
\(351\) 0 0
\(352\) 2.17927 + 13.0246i 0.116156 + 0.694215i
\(353\) 12.1971i 0.649186i 0.945854 + 0.324593i \(0.105227\pi\)
−0.945854 + 0.324593i \(0.894773\pi\)
\(354\) 0 0
\(355\) −7.06178 7.62446i −0.374800 0.404664i
\(356\) 5.92106 4.30190i 0.313815 0.228000i
\(357\) 0 0
\(358\) −7.90573 2.56873i −0.417831 0.135761i
\(359\) −19.5093 + 14.1744i −1.02966 + 0.748094i −0.968241 0.250018i \(-0.919564\pi\)
−0.0614222 + 0.998112i \(0.519564\pi\)
\(360\) 0 0
\(361\) 2.76592 + 8.51262i 0.145575 + 0.448032i
\(362\) 25.8902i 1.36076i
\(363\) 0 0
\(364\) −6.12155 −0.320856
\(365\) 19.6684 2.34737i 1.02949 0.122867i
\(366\) 0 0
\(367\) −11.9849 16.4958i −0.625606 0.861073i 0.372140 0.928177i \(-0.378624\pi\)
−0.997746 + 0.0671034i \(0.978624\pi\)
\(368\) 18.0753 + 5.87302i 0.942239 + 0.306152i
\(369\) 0 0
\(370\) 8.70886 4.02515i 0.452752 0.209257i
\(371\) −22.9677 16.6870i −1.19242 0.866347i
\(372\) 0 0
\(373\) 7.51997i 0.389369i 0.980866 + 0.194685i \(0.0623684\pi\)
−0.980866 + 0.194685i \(0.937632\pi\)
\(374\) 12.0404 2.01460i 0.622596 0.104172i
\(375\) 0 0
\(376\) 7.75374 + 23.8636i 0.399869 + 1.23067i
\(377\) 0.409791 0.564029i 0.0211053 0.0290490i
\(378\) 0 0
\(379\) −7.16649 + 22.0562i −0.368118 + 1.13295i 0.579888 + 0.814696i \(0.303096\pi\)
−0.948006 + 0.318254i \(0.896904\pi\)
\(380\) −4.25345 + 7.61248i −0.218197 + 0.390512i
\(381\) 0 0
\(382\) 3.03029 4.17083i 0.155043 0.213398i
\(383\) 2.32095 0.754123i 0.118595 0.0385339i −0.249118 0.968473i \(-0.580141\pi\)
0.367713 + 0.929939i \(0.380141\pi\)
\(384\) 0 0
\(385\) −15.9661 + 4.67019i −0.813706 + 0.238015i
\(386\) 15.9442 0.811537
\(387\) 0 0
\(388\) −0.983393 + 1.35352i −0.0499242 + 0.0687148i
\(389\) −27.4849 + 19.9689i −1.39354 + 1.01246i −0.398071 + 0.917355i \(0.630320\pi\)
−0.995467 + 0.0951096i \(0.969680\pi\)
\(390\) 0 0
\(391\) 2.64950 8.15434i 0.133991 0.412383i
\(392\) 2.41686 + 3.32653i 0.122070 + 0.168015i
\(393\) 0 0
\(394\) −7.36129 22.6557i −0.370856 1.14138i
\(395\) −15.8685 3.14036i −0.798433 0.158009i
\(396\) 0 0
\(397\) 27.4961i 1.37999i 0.723814 + 0.689995i \(0.242387\pi\)
−0.723814 + 0.689995i \(0.757613\pi\)
\(398\) −23.2858 + 7.56601i −1.16721 + 0.379250i
\(399\) 0 0
\(400\) 23.9633 5.80256i 1.19817 0.290128i
\(401\) 0.583247 1.79505i 0.0291259 0.0896404i −0.935437 0.353494i \(-0.884994\pi\)
0.964563 + 0.263853i \(0.0849935\pi\)
\(402\) 0 0
\(403\) −1.49370 2.05591i −0.0744067 0.102412i
\(404\) −5.90608 4.29102i −0.293839 0.213486i
\(405\) 0 0
\(406\) −0.699363 −0.0347088
\(407\) −6.13420 6.02834i −0.304061 0.298814i
\(408\) 0 0
\(409\) −4.18949 12.8939i −0.207157 0.637563i −0.999618 0.0276408i \(-0.991201\pi\)
0.792461 0.609923i \(-0.208799\pi\)
\(410\) −21.4870 + 19.9013i −1.06117 + 0.982855i
\(411\) 0 0
\(412\) 7.18454 + 2.33440i 0.353957 + 0.115008i
\(413\) 0.733187 + 0.238227i 0.0360778 + 0.0117224i
\(414\) 0 0
\(415\) −5.21954 + 4.83435i −0.256217 + 0.237309i
\(416\) −4.55219 14.0102i −0.223189 0.686906i
\(417\) 0 0
\(418\) 28.6934 + 4.28893i 1.40344 + 0.209779i
\(419\) −22.1368 −1.08145 −0.540727 0.841198i \(-0.681851\pi\)
−0.540727 + 0.841198i \(0.681851\pi\)
\(420\) 0 0
\(421\) −14.4835 10.5229i −0.705881 0.512853i 0.175961 0.984397i \(-0.443697\pi\)
−0.881842 + 0.471544i \(0.843697\pi\)
\(422\) −6.58552 9.06419i −0.320578 0.441238i
\(423\) 0 0
\(424\) 8.16902 25.1417i 0.396723 1.22099i
\(425\) −2.61772 10.8106i −0.126978 0.524392i
\(426\) 0 0
\(427\) 3.69780 1.20149i 0.178949 0.0581440i
\(428\) 7.41093i 0.358221i
\(429\) 0 0
\(430\) 30.5364 + 6.04310i 1.47259 + 0.291424i
\(431\) −10.3353 31.8087i −0.497833 1.53217i −0.812495 0.582968i \(-0.801891\pi\)
0.314662 0.949204i \(-0.398109\pi\)
\(432\) 0 0
\(433\) −18.5102 25.4771i −0.889543 1.22435i −0.973685 0.227897i \(-0.926815\pi\)
0.0841428 0.996454i \(-0.473185\pi\)
\(434\) −0.787747 + 2.42443i −0.0378130 + 0.116377i
\(435\) 0 0
\(436\) 5.25255 3.81620i 0.251552 0.182763i
\(437\) 11.9769 16.4848i 0.572932 0.788574i
\(438\) 0 0
\(439\) −35.6208 −1.70009 −0.850045 0.526710i \(-0.823425\pi\)
−0.850045 + 0.526710i \(0.823425\pi\)
\(440\) −8.73007 12.7956i −0.416190 0.610006i
\(441\) 0 0
\(442\) −12.9515 + 4.20821i −0.616041 + 0.200164i
\(443\) −13.8056 + 19.0018i −0.655926 + 0.902805i −0.999338 0.0363802i \(-0.988417\pi\)
0.343412 + 0.939185i \(0.388417\pi\)
\(444\) 0 0
\(445\) −10.8217 + 19.3679i −0.513000 + 0.918126i
\(446\) −4.45709 + 13.7175i −0.211049 + 0.649543i
\(447\) 0 0
\(448\) 4.31705 5.94191i 0.203961 0.280729i
\(449\) −9.70066 29.8555i −0.457802 1.40897i −0.867814 0.496890i \(-0.834475\pi\)
0.410011 0.912080i \(-0.365525\pi\)
\(450\) 0 0
\(451\) 23.4958 + 11.7152i 1.10637 + 0.551649i
\(452\) 0.170655i 0.00802692i
\(453\) 0 0
\(454\) −5.09658 3.70288i −0.239194 0.173785i
\(455\) 16.8446 7.78540i 0.789687 0.364985i
\(456\) 0 0
\(457\) −37.1964 12.0859i −1.73998 0.565352i −0.745145 0.666903i \(-0.767620\pi\)
−0.994830 + 0.101550i \(0.967620\pi\)
\(458\) 2.63915 + 3.63247i 0.123319 + 0.169734i
\(459\) 0 0
\(460\) 6.31230 0.753355i 0.294312 0.0351253i
\(461\) 8.88399 0.413769 0.206884 0.978365i \(-0.433668\pi\)
0.206884 + 0.978365i \(0.433668\pi\)
\(462\) 0 0
\(463\) 4.21081i 0.195693i 0.995202 + 0.0978464i \(0.0311954\pi\)
−0.995202 + 0.0978464i \(0.968805\pi\)
\(464\) −0.287146 0.883744i −0.0133304 0.0410268i
\(465\) 0 0
\(466\) −14.0696 + 10.2221i −0.651760 + 0.473531i
\(467\) −6.39912 2.07920i −0.296116 0.0962139i 0.157191 0.987568i \(-0.449756\pi\)
−0.453307 + 0.891354i \(0.649756\pi\)
\(468\) 0 0
\(469\) −1.18038 + 0.857597i −0.0545049 + 0.0396002i
\(470\) 30.2017 + 32.6081i 1.39310 + 1.50410i
\(471\) 0 0
\(472\) 0.717854i 0.0330419i
\(473\) −4.60503 27.5224i −0.211740 1.26548i
\(474\) 0 0
\(475\) 2.02258 26.3567i 0.0928025 1.20933i
\(476\) 2.97782 + 2.16352i 0.136488 + 0.0991646i
\(477\) 0 0
\(478\) −31.5343 10.2461i −1.44235 0.468647i
\(479\) 6.43046 19.7909i 0.293815 0.904270i −0.689802 0.723998i \(-0.742302\pi\)
0.983617 0.180272i \(-0.0576977\pi\)
\(480\) 0 0
\(481\) 7.76176 + 5.63925i 0.353906 + 0.257128i
\(482\) 44.7611 14.5437i 2.03881 0.662450i
\(483\) 0 0
\(484\) 4.65433 6.64642i 0.211560 0.302110i
\(485\) 0.984576 4.97516i 0.0447073 0.225910i
\(486\) 0 0
\(487\) 9.27489 12.7658i 0.420285 0.578473i −0.545404 0.838173i \(-0.683624\pi\)
0.965689 + 0.259700i \(0.0836237\pi\)
\(488\) 2.12806 + 2.92902i 0.0963326 + 0.132590i
\(489\) 0 0
\(490\) 6.35822 + 3.55263i 0.287235 + 0.160491i
\(491\) 15.6386 11.3621i 0.705759 0.512764i −0.176044 0.984382i \(-0.556330\pi\)
0.881803 + 0.471618i \(0.156330\pi\)
\(492\) 0 0
\(493\) −0.398685 + 0.129541i −0.0179559 + 0.00583422i
\(494\) −32.3637 −1.45611
\(495\) 0 0
\(496\) −3.38705 −0.152083
\(497\) −9.91469 + 3.22148i −0.444734 + 0.144503i
\(498\) 0 0
\(499\) −33.5416 + 24.3694i −1.50153 + 1.09092i −0.531758 + 0.846896i \(0.678468\pi\)
−0.969769 + 0.244026i \(0.921532\pi\)
\(500\) 6.46159 5.12464i 0.288971 0.229181i
\(501\) 0 0
\(502\) 23.1824 + 31.9078i 1.03468 + 1.42412i
\(503\) 19.1978 26.4236i 0.855990 1.17817i −0.126521 0.991964i \(-0.540381\pi\)
0.982511 0.186205i \(-0.0596188\pi\)
\(504\) 0 0
\(505\) 21.7090 + 4.29618i 0.966039 + 0.191178i
\(506\) −9.76563 18.7606i −0.434135 0.834012i
\(507\) 0 0
\(508\) −1.70498 + 0.553981i −0.0756462 + 0.0245789i
\(509\) −13.4662 9.78379i −0.596881 0.433659i 0.247890 0.968788i \(-0.420263\pi\)
−0.844770 + 0.535129i \(0.820263\pi\)
\(510\) 0 0
\(511\) 6.14019 18.8975i 0.271626 0.835978i
\(512\) 0.917749 + 0.298195i 0.0405592 + 0.0131785i
\(513\) 0 0
\(514\) −33.0313 23.9987i −1.45695 1.05854i
\(515\) −22.7385 + 2.71377i −1.00198 + 0.119583i
\(516\) 0 0
\(517\) 17.7788 35.6566i 0.781909 1.56818i
\(518\) 9.62412i 0.422860i
\(519\) 0 0
\(520\) 11.7417 + 12.6772i 0.514906 + 0.555933i
\(521\) 11.3717 8.26206i 0.498205 0.361967i −0.310126 0.950696i \(-0.600371\pi\)
0.808331 + 0.588728i \(0.200371\pi\)
\(522\) 0 0
\(523\) −14.9009 4.84159i −0.651570 0.211708i −0.0354635 0.999371i \(-0.511291\pi\)
−0.616106 + 0.787663i \(0.711291\pi\)
\(524\) −0.947937 + 0.688717i −0.0414108 + 0.0300867i
\(525\) 0 0
\(526\) −2.78194 8.56194i −0.121298 0.373318i
\(527\) 1.52801i 0.0665611i
\(528\) 0 0
\(529\) 8.14550 0.354152
\(530\) −5.54920 46.4963i −0.241042 2.01967i
\(531\) 0 0
\(532\) 5.14166 + 7.07689i 0.222919 + 0.306822i
\(533\) −27.8540 9.05031i −1.20649 0.392012i
\(534\) 0 0
\(535\) −9.42523 20.3926i −0.407488 0.881647i
\(536\) −1.09913 0.798567i −0.0474753 0.0344928i
\(537\) 0 0
\(538\) 11.0949i 0.478336i
\(539\) 0.965221 6.45743i 0.0415750 0.278141i
\(540\) 0 0
\(541\) −12.2489 37.6983i −0.526623 1.62078i −0.761084 0.648653i \(-0.775333\pi\)
0.234461 0.972125i \(-0.424667\pi\)
\(542\) 4.92088 6.77301i 0.211370 0.290926i
\(543\) 0 0
\(544\) −2.73716 + 8.42412i −0.117355 + 0.361181i
\(545\) −9.59993 + 17.1812i −0.411216 + 0.735962i
\(546\) 0 0
\(547\) 24.1970 33.3043i 1.03459 1.42399i 0.133145 0.991097i \(-0.457492\pi\)
0.901445 0.432895i \(-0.142508\pi\)
\(548\) 13.1201 4.26297i 0.560462 0.182105i
\(549\) 0 0
\(550\) −23.5463 14.0863i −1.00402 0.600642i
\(551\) −0.996247 −0.0424415
\(552\) 0 0
\(553\) −9.53798 + 13.1279i −0.405596 + 0.558255i
\(554\) −14.3144 + 10.4000i −0.608161 + 0.441855i
\(555\) 0 0
\(556\) 2.65039 8.15705i 0.112401 0.345936i
\(557\) 17.5606 + 24.1702i 0.744069 + 1.02412i 0.998374 + 0.0569987i \(0.0181531\pi\)
−0.254306 + 0.967124i \(0.581847\pi\)
\(558\) 0 0
\(559\) 9.61926 + 29.6050i 0.406851 + 1.25216i
\(560\) 4.80152 24.2625i 0.202901 1.02528i
\(561\) 0 0
\(562\) 22.7004i 0.957558i
\(563\) −2.05218 + 0.666795i −0.0864892 + 0.0281021i −0.351942 0.936022i \(-0.614479\pi\)
0.265453 + 0.964124i \(0.414479\pi\)
\(564\) 0 0
\(565\) 0.217039 + 0.469588i 0.00913090 + 0.0197557i
\(566\) −11.2328 + 34.5709i −0.472148 + 1.45312i
\(567\) 0 0
\(568\) −5.70583 7.85341i −0.239411 0.329522i
\(569\) −0.580298 0.421611i −0.0243274 0.0176749i 0.575555 0.817763i \(-0.304786\pi\)
−0.599882 + 0.800088i \(0.704786\pi\)
\(570\) 0 0
\(571\) −21.6311 −0.905235 −0.452617 0.891705i \(-0.649510\pi\)
−0.452617 + 0.891705i \(0.649510\pi\)
\(572\) −4.03888 + 8.10029i −0.168874 + 0.338690i
\(573\) 0 0
\(574\) 9.07866 + 27.9413i 0.378936 + 1.16625i
\(575\) −16.4114 + 10.1010i −0.684401 + 0.421240i
\(576\) 0 0
\(577\) 22.2810 + 7.23952i 0.927568 + 0.301385i 0.733568 0.679616i \(-0.237854\pi\)
0.194000 + 0.981001i \(0.437854\pi\)
\(578\) −18.9637 6.16167i −0.788784 0.256291i
\(579\) 0 0
\(580\) −0.211203 0.228032i −0.00876973 0.00946850i
\(581\) 2.20536 + 6.78739i 0.0914936 + 0.281588i
\(582\) 0 0
\(583\) −37.2346 + 19.3820i −1.54210 + 0.802722i
\(584\) 18.5023 0.765633
\(585\) 0 0
\(586\) 18.7911 + 13.6525i 0.776253 + 0.563981i
\(587\) −1.32095 1.81814i −0.0545216 0.0750425i 0.780886 0.624674i \(-0.214768\pi\)
−0.835407 + 0.549632i \(0.814768\pi\)
\(588\) 0 0
\(589\) −1.12215 + 3.45362i −0.0462374 + 0.142304i
\(590\) 0.533479 + 1.15424i 0.0219630 + 0.0475194i
\(591\) 0 0
\(592\) 12.1615 3.95149i 0.499833 0.162405i
\(593\) 25.4034i 1.04319i 0.853193 + 0.521596i \(0.174663\pi\)
−0.853193 + 0.521596i \(0.825337\pi\)
\(594\) 0 0
\(595\) −10.9456 2.16612i −0.448726 0.0888022i
\(596\) −1.34841 4.14996i −0.0552328 0.169989i
\(597\) 0 0
\(598\) 13.8678 + 19.0875i 0.567098 + 0.780544i
\(599\) −5.63194 + 17.3333i −0.230115 + 0.708220i 0.767617 + 0.640909i \(0.221442\pi\)
−0.997732 + 0.0673118i \(0.978558\pi\)
\(600\) 0 0
\(601\) 28.0242 20.3608i 1.14313 0.830533i 0.155579 0.987824i \(-0.450276\pi\)
0.987552 + 0.157290i \(0.0502758\pi\)
\(602\) 18.3542 25.2625i 0.748063 1.02962i
\(603\) 0 0
\(604\) −9.42547 −0.383517
\(605\) −4.35432 + 24.2083i −0.177028 + 0.984206i
\(606\) 0 0
\(607\) −24.2027 + 7.86394i −0.982358 + 0.319187i −0.755794 0.654809i \(-0.772749\pi\)
−0.226564 + 0.973996i \(0.572749\pi\)
\(608\) −12.3731 + 17.0302i −0.501797 + 0.690664i
\(609\) 0 0
\(610\) 5.59844 + 3.12810i 0.226674 + 0.126653i
\(611\) −13.7345 + 42.2705i −0.555639 + 1.71008i
\(612\) 0 0
\(613\) 21.7843 29.9835i 0.879859 1.21102i −0.0966016 0.995323i \(-0.530797\pi\)
0.976460 0.215698i \(-0.0692027\pi\)
\(614\) 3.51234 + 10.8099i 0.141746 + 0.436251i
\(615\) 0 0
\(616\) −15.3255 + 2.56426i −0.617483 + 0.103317i
\(617\) 27.5937i 1.11088i 0.831557 + 0.555439i \(0.187450\pi\)
−0.831557 + 0.555439i \(0.812550\pi\)
\(618\) 0 0
\(619\) 16.5391 + 12.0164i 0.664764 + 0.482979i 0.868268 0.496095i \(-0.165233\pi\)
−0.203504 + 0.979074i \(0.565233\pi\)
\(620\) −1.02840 + 0.475315i −0.0413014 + 0.0190891i
\(621\) 0 0
\(622\) −8.65728 2.81292i −0.347125 0.112788i
\(623\) 13.0816 + 18.0052i 0.524101 + 0.721364i
\(624\) 0 0
\(625\) −11.2628 + 22.3193i −0.450510 + 0.892771i
\(626\) 23.5480 0.941167
\(627\) 0 0
\(628\) 10.5842i 0.422354i
\(629\) −1.78265 5.48642i −0.0710787 0.218758i
\(630\) 0 0
\(631\) −0.614155 + 0.446210i −0.0244491 + 0.0177633i −0.599943 0.800043i \(-0.704810\pi\)
0.575494 + 0.817806i \(0.304810\pi\)
\(632\) −14.3705 4.66926i −0.571627 0.185733i
\(633\) 0 0
\(634\) −25.0133 + 18.1733i −0.993407 + 0.721752i
\(635\) 3.98701 3.69278i 0.158220 0.146543i
\(636\) 0 0
\(637\) 7.28342i 0.288579i
\(638\) −0.461426 + 0.925425i −0.0182680 + 0.0366379i
\(639\) 0 0
\(640\) 29.7100 3.54580i 1.17439 0.140160i
\(641\) −12.0584 8.76094i −0.476278 0.346037i 0.323605 0.946192i \(-0.395105\pi\)
−0.799883 + 0.600156i \(0.795105\pi\)
\(642\) 0 0
\(643\) −26.2820 8.53955i −1.03646 0.336767i −0.259120 0.965845i \(-0.583432\pi\)
−0.777342 + 0.629078i \(0.783432\pi\)
\(644\) 1.97060 6.06490i 0.0776527 0.238990i
\(645\) 0 0
\(646\) 15.7433 + 11.4382i 0.619411 + 0.450029i
\(647\) 23.7560 7.71879i 0.933945 0.303457i 0.197770 0.980248i \(-0.436630\pi\)
0.736175 + 0.676791i \(0.236630\pi\)
\(648\) 0 0
\(649\) 0.798974 0.813005i 0.0313625 0.0319132i
\(650\) 28.3007 + 11.6579i 1.11004 + 0.457260i
\(651\) 0 0
\(652\) −1.57264 + 2.16456i −0.0615895 + 0.0847706i
\(653\) −16.3187 22.4607i −0.638599 0.878956i 0.359941 0.932975i \(-0.382797\pi\)
−0.998540 + 0.0540191i \(0.982797\pi\)
\(654\) 0 0
\(655\) 1.73252 3.10072i 0.0676950 0.121155i
\(656\) −31.5802 + 22.9444i −1.23300 + 0.895827i
\(657\) 0 0
\(658\) 42.4029 13.7775i 1.65304 0.537105i
\(659\) −21.5863 −0.840883 −0.420442 0.907320i \(-0.638125\pi\)
−0.420442 + 0.907320i \(0.638125\pi\)
\(660\) 0 0
\(661\) −16.0174 −0.623003 −0.311502 0.950246i \(-0.600832\pi\)
−0.311502 + 0.950246i \(0.600832\pi\)
\(662\) 0.736837 0.239413i 0.0286380 0.00930504i
\(663\) 0 0
\(664\) −5.37628 + 3.90609i −0.208640 + 0.151586i
\(665\) −23.1486 12.9342i −0.897665 0.501567i
\(666\) 0 0
\(667\) 0.426892 + 0.587567i 0.0165293 + 0.0227507i
\(668\) −1.65656 + 2.28005i −0.0640941 + 0.0882180i
\(669\) 0 0
\(670\) −2.36076 0.467191i −0.0912042 0.0180492i
\(671\) 0.849880 5.68579i 0.0328093 0.219498i
\(672\) 0 0
\(673\) 29.8127 9.68673i 1.14920 0.373396i 0.328355 0.944554i \(-0.393506\pi\)
0.820840 + 0.571158i \(0.193506\pi\)
\(674\) 45.6286 + 33.1511i 1.75755 + 1.27693i
\(675\) 0 0
\(676\) 0.156871 0.482799i 0.00603350 0.0185692i
\(677\) 29.1654 + 9.47642i 1.12092 + 0.364209i 0.810118 0.586267i \(-0.199403\pi\)
0.310801 + 0.950475i \(0.399403\pi\)
\(678\) 0 0
\(679\) −4.11590 2.99038i −0.157954 0.114760i
\(680\) −1.23126 10.3166i −0.0472167 0.395625i
\(681\) 0 0
\(682\) 2.68837 + 2.64198i 0.102943 + 0.101166i
\(683\) 3.27236i 0.125213i −0.998038 0.0626066i \(-0.980059\pi\)
0.998038 0.0626066i \(-0.0199414\pi\)
\(684\) 0 0
\(685\) −30.6807 + 28.4165i −1.17225 + 1.08574i
\(686\) 26.9287 19.5648i 1.02814 0.746989i
\(687\) 0 0
\(688\) 39.4586 + 12.8209i 1.50435 + 0.488792i
\(689\) 37.8832 27.5238i 1.44324 1.04857i
\(690\) 0 0
\(691\) −11.2774 34.7084i −0.429014 1.32037i −0.899098 0.437748i \(-0.855776\pi\)
0.470083 0.882622i \(-0.344224\pi\)
\(692\) 1.55431i 0.0590862i
\(693\) 0 0
\(694\) 5.94478 0.225661
\(695\) 3.08111 + 25.8164i 0.116873 + 0.979272i
\(696\) 0 0
\(697\) 10.3509 + 14.2468i 0.392070 + 0.539638i
\(698\) −10.0256 3.25750i −0.379473 0.123298i
\(699\) 0 0
\(700\) −1.94696 8.04054i −0.0735883 0.303904i
\(701\) 37.6684 + 27.3677i 1.42272 + 1.03366i 0.991316 + 0.131502i \(0.0419800\pi\)
0.431399 + 0.902161i \(0.358020\pi\)
\(702\) 0 0
\(703\) 13.7096i 0.517068i
\(704\) −5.01427 9.63285i −0.188982 0.363052i
\(705\) 0 0
\(706\) 6.23630 + 19.1933i 0.234706 + 0.722351i
\(707\) 13.0485 17.9597i 0.490738 0.675443i
\(708\) 0 0
\(709\) 11.0000 33.8544i 0.413112 1.27143i −0.500817 0.865553i \(-0.666967\pi\)
0.913929 0.405874i \(-0.133033\pi\)
\(710\) −15.0108 8.38721i −0.563344 0.314766i
\(711\) 0 0
\(712\) −12.1811 + 16.7659i −0.456507 + 0.628327i
\(713\) 2.51772 0.818057i 0.0942894 0.0306365i
\(714\) 0 0
\(715\) 0.811789 27.4261i 0.0303592 1.02568i
\(716\) −3.70588 −0.138495
\(717\) 0 0
\(718\) −23.4526 + 32.2798i −0.875245 + 1.20467i
\(719\) −17.8722 + 12.9849i −0.666522 + 0.484256i −0.868859 0.495060i \(-0.835146\pi\)
0.202337 + 0.979316i \(0.435146\pi\)
\(720\) 0 0
\(721\) −7.09862 + 21.8473i −0.264366 + 0.813636i
\(722\) 8.70490 + 11.9813i 0.323963 + 0.445896i
\(723\) 0 0
\(724\) 3.56677 + 10.9774i 0.132558 + 0.407971i
\(725\) 0.871176 + 0.358863i 0.0323547 + 0.0133278i
\(726\) 0 0
\(727\) 45.5415i 1.68904i 0.535522 + 0.844521i \(0.320115\pi\)
−0.535522 + 0.844521i \(0.679885\pi\)
\(728\) 16.4852 5.35637i 0.610982 0.198520i
\(729\) 0 0
\(730\) 29.7500 13.7502i 1.10110 0.508916i
\(731\) 5.78391 17.8011i 0.213926 0.658396i
\(732\) 0 0
\(733\) 6.68835 + 9.20572i 0.247040 + 0.340021i 0.914472 0.404650i \(-0.132607\pi\)
−0.667432 + 0.744671i \(0.732607\pi\)
\(734\) −27.2936 19.8300i −1.00743 0.731938i
\(735\) 0 0
\(736\) 15.3459 0.565659
\(737\) 0.356014 + 2.12776i 0.0131140 + 0.0783769i
\(738\) 0 0
\(739\) 1.34045 + 4.12547i 0.0493091 + 0.151758i 0.972679 0.232153i \(-0.0745770\pi\)
−0.923370 + 0.383911i \(0.874577\pi\)
\(740\) 3.13801 2.90643i 0.115355 0.106842i
\(741\) 0 0
\(742\) −44.6740 14.5154i −1.64003 0.532879i
\(743\) 16.4480 + 5.34429i 0.603420 + 0.196063i 0.594765 0.803900i \(-0.297245\pi\)
0.00865478 + 0.999963i \(0.497245\pi\)
\(744\) 0 0
\(745\) 8.98832 + 9.70450i 0.329307 + 0.355545i
\(746\) 3.84491 + 11.8334i 0.140772 + 0.433253i
\(747\) 0 0
\(748\) 4.82757 2.51293i 0.176513 0.0918819i
\(749\) −22.5357 −0.823437
\(750\) 0 0
\(751\) 25.4946 + 18.5229i 0.930310 + 0.675910i 0.946069 0.323966i \(-0.105016\pi\)
−0.0157586 + 0.999876i \(0.505016\pi\)
\(752\) 34.8198 + 47.9253i 1.26975 + 1.74766i
\(753\) 0 0
\(754\) 0.356463 1.09708i 0.0129816 0.0399533i
\(755\) 25.9359 11.9873i 0.943905 0.436263i
\(756\) 0 0
\(757\) −8.82332 + 2.86687i −0.320689 + 0.104198i −0.464938 0.885343i \(-0.653923\pi\)
0.144249 + 0.989541i \(0.453923\pi\)
\(758\) 38.3718i 1.39373i
\(759\) 0 0
\(760\) 4.79350 24.2220i 0.173879 0.878626i
\(761\) 1.28492 + 3.95459i 0.0465784 + 0.143354i 0.971641 0.236461i \(-0.0759876\pi\)
−0.925062 + 0.379815i \(0.875988\pi\)
\(762\) 0 0
\(763\) 11.6046 + 15.9724i 0.420115 + 0.578239i
\(764\) 0.710238 2.18589i 0.0256955 0.0790827i
\(765\) 0 0
\(766\) 3.26667 2.37338i 0.118030 0.0857536i
\(767\) −0.747406 + 1.02872i −0.0269873 + 0.0371448i
\(768\) 0 0
\(769\) −16.8800 −0.608709 −0.304355 0.952559i \(-0.598441\pi\)
−0.304355 + 0.952559i \(0.598441\pi\)
\(770\) −22.7364 + 15.5124i −0.819362 + 0.559027i
\(771\) 0 0
\(772\) 6.76028 2.19655i 0.243308 0.0790555i
\(773\) −4.98301 + 6.85852i −0.179226 + 0.246684i −0.889173 0.457572i \(-0.848719\pi\)
0.709946 + 0.704256i \(0.248719\pi\)
\(774\) 0 0
\(775\) 2.22532 2.61583i 0.0799359 0.0939635i
\(776\) 1.46392 4.50548i 0.0525517 0.161737i
\(777\) 0 0
\(778\) −33.0402 + 45.4759i −1.18455 + 1.63039i
\(779\) 12.9326 + 39.8025i 0.463359 + 1.42607i
\(780\) 0 0
\(781\) −2.27873 + 15.2450i −0.0815395 + 0.545509i
\(782\) 14.1863i 0.507303i
\(783\) 0 0
\(784\) 7.85361 + 5.70598i 0.280486 + 0.203785i
\(785\) 13.4610 + 29.1243i 0.480442 + 1.03949i
\(786\) 0 0
\(787\) 50.9924 + 16.5684i 1.81768 + 0.590601i 0.999886 + 0.0150924i \(0.00480424\pi\)
0.817796 + 0.575508i \(0.195196\pi\)
\(788\) −6.24233 8.59183i −0.222374 0.306071i
\(789\) 0 0
\(790\) −26.5764 + 3.17182i −0.945546 + 0.112848i
\(791\) 0.518940 0.0184514
\(792\) 0 0
\(793\) 6.41307i 0.227735i
\(794\) 14.0586 + 43.2679i 0.498921 + 1.53552i
\(795\) 0 0
\(796\) −8.83077 + 6.41593i −0.312998 + 0.227407i
\(797\) −27.1477 8.82082i −0.961621 0.312450i −0.214192 0.976792i \(-0.568712\pi\)
−0.747429 + 0.664342i \(0.768712\pi\)
\(798\) 0 0
\(799\) 21.6206 15.7083i 0.764883 0.555720i
\(800\) 16.9543 10.4352i 0.599425 0.368939i
\(801\) 0 0
\(802\) 3.12290i 0.110273i
\(803\) −20.9548 20.5932i −0.739480 0.726718i
\(804\) 0 0
\(805\) 2.29086 + 19.1949i 0.0807422 + 0.676532i
\(806\) −3.40166 2.47145i −0.119819 0.0870532i
\(807\) 0 0
\(808\) 19.6596 + 6.38780i 0.691623 + 0.224722i
\(809\) 11.4170 35.1378i 0.401399 1.23538i −0.522466 0.852660i \(-0.674988\pi\)
0.923865 0.382718i \(-0.125012\pi\)
\(810\) 0 0
\(811\) 31.0475 + 22.5573i 1.09022 + 0.792094i 0.979437 0.201750i \(-0.0646629\pi\)
0.110787 + 0.993844i \(0.464663\pi\)
\(812\) −0.296528 + 0.0963477i −0.0104061 + 0.00338114i
\(813\) 0 0
\(814\) −12.7350 6.34982i −0.446363 0.222561i
\(815\) 1.57453 7.95628i 0.0551535 0.278696i
\(816\) 0 0
\(817\) 26.1458 35.9865i 0.914724 1.25901i
\(818\) −13.1852 18.1478i −0.461008 0.634524i
\(819\) 0 0
\(820\) −6.36872 + 11.3982i −0.222405 + 0.398044i
\(821\) −8.29214 + 6.02459i −0.289398 + 0.210260i −0.723006 0.690842i \(-0.757240\pi\)
0.433608 + 0.901101i \(0.357240\pi\)
\(822\) 0 0
\(823\) 23.9948 7.79637i 0.836405 0.271764i 0.140664 0.990057i \(-0.455076\pi\)
0.695741 + 0.718293i \(0.255076\pi\)
\(824\) −21.3904 −0.745170
\(825\) 0 0
\(826\) 1.27555 0.0443820
\(827\) −17.4505 + 5.67001i −0.606813 + 0.197165i −0.596277 0.802779i \(-0.703354\pi\)
−0.0105362 + 0.999944i \(0.503354\pi\)
\(828\) 0 0
\(829\) 19.7259 14.3317i 0.685110 0.497761i −0.189939 0.981796i \(-0.560829\pi\)
0.875049 + 0.484035i \(0.160829\pi\)
\(830\) −5.74170 + 10.2761i −0.199297 + 0.356687i
\(831\) 0 0
\(832\) 7.12060 + 9.80066i 0.246862 + 0.339777i
\(833\) 2.57415 3.54301i 0.0891890 0.122758i
\(834\) 0 0
\(835\) 1.65855 8.38081i 0.0573964 0.290030i
\(836\) 12.7568 2.13446i 0.441203 0.0738217i
\(837\) 0 0
\(838\) −34.8345 + 11.3184i −1.20334 + 0.390988i
\(839\) 34.2059 + 24.8520i 1.18092 + 0.857988i 0.992275 0.124058i \(-0.0395908\pi\)
0.188644 + 0.982046i \(0.439591\pi\)
\(840\) 0 0
\(841\) −8.95052 + 27.5469i −0.308639 + 0.949892i
\(842\) −28.1715 9.15347i −0.970853 0.315449i
\(843\) 0 0
\(844\) −4.04097 2.93594i −0.139096 0.101059i
\(845\) 0.182365 + 1.52802i 0.00627355 + 0.0525655i
\(846\) 0 0
\(847\) 20.2110 + 14.1532i 0.694457 + 0.486311i
\(848\) 62.4117i 2.14323i
\(849\) 0 0
\(850\) −9.64665 15.6732i −0.330877 0.537585i
\(851\) −8.08567 + 5.87458i −0.277173 + 0.201378i
\(852\) 0 0
\(853\) −14.6353 4.75529i −0.501103 0.162818i 0.0475493 0.998869i \(-0.484859\pi\)
−0.548652 + 0.836051i \(0.684859\pi\)
\(854\) 5.20454 3.78132i 0.178096 0.129394i
\(855\) 0 0
\(856\) −6.48458 19.9575i −0.221638 0.682132i
\(857\) 36.1038i 1.23328i −0.787245 0.616641i \(-0.788493\pi\)
0.787245 0.616641i \(-0.211507\pi\)
\(858\) 0 0
\(859\) −48.3509 −1.64971 −0.824855 0.565344i \(-0.808743\pi\)
−0.824855 + 0.565344i \(0.808743\pi\)
\(860\) 13.7799 1.64459i 0.469889 0.0560799i
\(861\) 0 0
\(862\) −32.5272 44.7699i −1.10788 1.52487i
\(863\) 35.3685 + 11.4919i 1.20396 + 0.391190i 0.841216 0.540699i \(-0.181840\pi\)
0.362743 + 0.931889i \(0.381840\pi\)
\(864\) 0 0
\(865\) 1.97678 + 4.27699i 0.0672125 + 0.145422i
\(866\) −42.1539 30.6266i −1.43245 1.04073i
\(867\) 0 0
\(868\) 1.13648i 0.0385745i
\(869\) 11.0784 + 21.2826i 0.375809 + 0.721962i
\(870\) 0 0
\(871\) −0.743664 2.28876i −0.0251981 0.0775517i
\(872\) −10.8058 + 14.8730i −0.365932 + 0.503662i
\(873\) 0 0
\(874\) 10.4183 32.0642i 0.352403 1.08459i
\(875\) 15.5834 + 19.6489i 0.526816 + 0.664254i
\(876\) 0 0
\(877\) −15.1609 + 20.8672i −0.511947 + 0.704634i −0.984246 0.176804i \(-0.943424\pi\)
0.472299 + 0.881438i \(0.343424\pi\)
\(878\) −56.0530 + 18.2127i −1.89170 + 0.614649i
\(879\) 0 0
\(880\) −28.9372 22.3615i −0.975474 0.753807i
\(881\) 45.6820 1.53906 0.769532 0.638608i \(-0.220489\pi\)
0.769532 + 0.638608i \(0.220489\pi\)
\(882\) 0 0
\(883\) 2.91912 4.01783i 0.0982364 0.135211i −0.757069 0.653335i \(-0.773369\pi\)
0.855306 + 0.518124i \(0.173369\pi\)
\(884\) −4.91167 + 3.56853i −0.165197 + 0.120023i
\(885\) 0 0
\(886\) −12.0090 + 36.9600i −0.403452 + 1.24170i
\(887\) 17.0006 + 23.3994i 0.570826 + 0.785674i 0.992652 0.121002i \(-0.0386109\pi\)
−0.421827 + 0.906677i \(0.638611\pi\)
\(888\) 0 0
\(889\) −1.68459 5.18463i −0.0564993 0.173887i
\(890\) −7.12641 + 36.0104i −0.238878 + 1.20707i
\(891\) 0 0
\(892\) 6.43021i 0.215299i
\(893\) 60.4033 19.6262i 2.02132 0.656766i
\(894\) 0 0
\(895\) 10.1974 4.71315i 0.340863 0.157543i
\(896\) 9.27501 28.5456i 0.309856 0.953640i
\(897\) 0 0
\(898\) −30.5299 42.0208i −1.01880 1.40225i
\(899\) −0.104713 0.0760785i −0.00349237 0.00253736i
\(900\) 0 0
\(901\) −28.1559 −0.938010
\(902\) 42.9630 + 6.42186i 1.43051 + 0.213824i
\(903\) 0 0
\(904\) 0.149323 + 0.459570i 0.00496642 + 0.0152851i
\(905\) −23.7757 25.6701i −0.790331 0.853303i
\(906\) 0 0
\(907\) −12.6041 4.09531i −0.418511 0.135983i 0.0921887 0.995742i \(-0.470614\pi\)
−0.510700 + 0.859759i \(0.670614\pi\)
\(908\) −2.67106 0.867880i −0.0886422 0.0288016i
\(909\) 0 0
\(910\) 22.5260 20.8636i 0.746731 0.691623i
\(911\) −4.24361 13.0605i −0.140597 0.432713i 0.855822 0.517271i \(-0.173052\pi\)
−0.996419 + 0.0845580i \(0.973052\pi\)
\(912\) 0 0
\(913\) 10.4364 + 1.55997i 0.345395 + 0.0516276i
\(914\) −64.7117 −2.14047
\(915\) 0 0
\(916\) 1.61942 + 1.17658i 0.0535071 + 0.0388752i
\(917\) −2.09430 2.88256i −0.0691600 0.0951906i
\(918\) 0 0
\(919\) −18.3494 + 56.4737i −0.605292 + 1.86290i −0.110517 + 0.993874i \(0.535251\pi\)
−0.494774 + 0.869022i \(0.664749\pi\)
\(920\) −16.3397 + 7.55204i −0.538704 + 0.248983i
\(921\) 0 0
\(922\) 13.9798 4.54233i 0.460402 0.149594i
\(923\) 17.1950i 0.565981i
\(924\) 0 0
\(925\) −4.93842 + 11.9885i −0.162374 + 0.394179i
\(926\) 2.15296 + 6.62613i 0.0707507 + 0.217748i
\(927\) 0 0
\(928\) −0.441016 0.607006i −0.0144770 0.0199259i
\(929\) 6.05305 18.6294i 0.198594 0.611210i −0.801322 0.598234i \(-0.795869\pi\)
0.999916 0.0129763i \(-0.00413060\pi\)
\(930\) 0 0
\(931\) 8.42007 6.11754i 0.275957 0.200494i
\(932\) −4.55720 + 6.27245i −0.149276 + 0.205461i
\(933\) 0 0
\(934\) −11.1327 −0.364275
\(935\) −10.0880 + 13.0545i −0.329913 + 0.426928i
\(936\) 0 0
\(937\) −38.5608 + 12.5292i −1.25973 + 0.409310i −0.861397 0.507933i \(-0.830410\pi\)
−0.398329 + 0.917242i \(0.630410\pi\)
\(938\) −1.41896 + 1.95304i −0.0463308 + 0.0637689i
\(939\) 0 0
\(940\) 17.2977 + 9.66501i 0.564188 + 0.315238i
\(941\) 0.126602 0.389640i 0.00412709 0.0127019i −0.948972 0.315361i \(-0.897874\pi\)
0.953099 + 0.302659i \(0.0978744\pi\)
\(942\) 0 0
\(943\) 17.9331 24.6828i 0.583982 0.803783i
\(944\) 0.523717 + 1.61184i 0.0170455 + 0.0524608i
\(945\) 0 0
\(946\) −21.3185 40.9548i −0.693125 1.33156i
\(947\) 2.45729i 0.0798511i −0.999203 0.0399256i \(-0.987288\pi\)
0.999203 0.0399256i \(-0.0127121\pi\)
\(948\) 0 0
\(949\) 26.5147 + 19.2640i 0.860703 + 0.625337i
\(950\) −10.2933 42.5091i −0.333958 1.37918i
\(951\) 0 0
\(952\) −9.91230 3.22070i −0.321260 0.104384i
\(953\) −35.8704 49.3714i −1.16196 1.59930i −0.703742 0.710456i \(-0.748489\pi\)
−0.458215 0.888841i \(-0.651511\pi\)
\(954\) 0 0
\(955\) 0.825663 + 6.91816i 0.0267178 + 0.223867i
\(956\) −14.7820 −0.478085
\(957\) 0 0
\(958\) 34.4309i 1.11241i
\(959\) 12.9632 + 39.8965i 0.418603 + 1.28833i
\(960\) 0 0
\(961\) 24.6978 17.9440i 0.796705 0.578840i
\(962\) 15.0972 + 4.90538i 0.486754 + 0.158156i
\(963\) 0 0
\(964\) 16.9749 12.3330i 0.546726 0.397220i
\(965\) −15.8086 + 14.6420i −0.508897 + 0.471341i
\(966\) 0 0
\(967\) 17.1997i 0.553106i 0.960999 + 0.276553i \(0.0891921\pi\)
−0.960999 + 0.276553i \(0.910808\pi\)
\(968\) −6.71837 + 21.9712i −0.215937 + 0.706182i
\(969\) 0 0
\(970\) −0.994438 8.33232i −0.0319295 0.267535i
\(971\) 22.0125 + 15.9930i 0.706415 + 0.513241i 0.882015 0.471221i \(-0.156187\pi\)
−0.175600 + 0.984462i \(0.556187\pi\)
\(972\) 0 0
\(973\) 24.8046 + 8.05950i 0.795198 + 0.258376i
\(974\) 8.06790 24.8304i 0.258512 0.795619i
\(975\) 0 0
\(976\) 6.91513 + 5.02414i 0.221348 + 0.160819i
\(977\) −18.2339 + 5.92454i −0.583353 + 0.189543i −0.585802 0.810454i \(-0.699220\pi\)
0.00244904 + 0.999997i \(0.499220\pi\)
\(978\) 0 0
\(979\) 32.4562 5.43055i 1.03730 0.173561i
\(980\) 3.18529 + 0.630365i 0.101750 + 0.0201363i
\(981\) 0 0
\(982\) 18.7995 25.8753i 0.599916 0.825714i
\(983\) 14.1835 + 19.5219i 0.452384 + 0.622653i 0.972908 0.231194i \(-0.0742632\pi\)
−0.520524 + 0.853847i \(0.674263\pi\)
\(984\) 0 0
\(985\) 28.1040 + 15.7030i 0.895469 + 0.500340i
\(986\) −0.561138 + 0.407691i −0.0178703 + 0.0129835i
\(987\) 0 0
\(988\) −13.7221 + 4.45858i −0.436558 + 0.141846i
\(989\) −32.4276 −1.03114
\(990\) 0 0
\(991\) 27.7081 0.880177 0.440089 0.897954i \(-0.354947\pi\)
0.440089 + 0.897954i \(0.354947\pi\)
\(992\) −2.60102 + 0.845122i −0.0825824 + 0.0268327i
\(993\) 0 0
\(994\) −13.9546 + 10.1386i −0.442614 + 0.321578i
\(995\) 16.1397 28.8856i 0.511664 0.915735i
\(996\) 0 0
\(997\) −19.6856 27.0950i −0.623451 0.858106i 0.374148 0.927369i \(-0.377935\pi\)
−0.997598 + 0.0692628i \(0.977935\pi\)
\(998\) −40.3211 + 55.4972i −1.27634 + 1.75673i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.2.ba.a.379.4 16
3.2 odd 2 55.2.j.a.49.1 yes 16
5.4 even 2 inner 495.2.ba.a.379.1 16
11.9 even 5 inner 495.2.ba.a.64.1 16
12.11 even 2 880.2.cd.c.49.1 16
15.2 even 4 275.2.h.d.126.1 16
15.8 even 4 275.2.h.d.126.4 16
15.14 odd 2 55.2.j.a.49.4 yes 16
33.2 even 10 605.2.j.d.9.1 16
33.5 odd 10 605.2.j.h.444.4 16
33.8 even 10 605.2.b.f.364.2 8
33.14 odd 10 605.2.b.g.364.7 8
33.17 even 10 605.2.j.g.444.1 16
33.20 odd 10 55.2.j.a.9.4 yes 16
33.26 odd 10 605.2.j.h.124.1 16
33.29 even 10 605.2.j.g.124.4 16
33.32 even 2 605.2.j.d.269.4 16
55.9 even 10 inner 495.2.ba.a.64.4 16
60.59 even 2 880.2.cd.c.49.4 16
132.119 even 10 880.2.cd.c.449.4 16
165.8 odd 20 3025.2.a.bk.1.2 8
165.14 odd 10 605.2.b.g.364.2 8
165.29 even 10 605.2.j.g.124.1 16
165.47 even 20 3025.2.a.bl.1.2 8
165.53 even 20 275.2.h.d.251.4 16
165.59 odd 10 605.2.j.h.124.4 16
165.74 even 10 605.2.b.f.364.7 8
165.104 odd 10 605.2.j.h.444.1 16
165.107 odd 20 3025.2.a.bk.1.7 8
165.113 even 20 3025.2.a.bl.1.7 8
165.119 odd 10 55.2.j.a.9.1 16
165.134 even 10 605.2.j.d.9.4 16
165.149 even 10 605.2.j.g.444.4 16
165.152 even 20 275.2.h.d.251.1 16
165.164 even 2 605.2.j.d.269.1 16
660.119 even 10 880.2.cd.c.449.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.j.a.9.1 16 165.119 odd 10
55.2.j.a.9.4 yes 16 33.20 odd 10
55.2.j.a.49.1 yes 16 3.2 odd 2
55.2.j.a.49.4 yes 16 15.14 odd 2
275.2.h.d.126.1 16 15.2 even 4
275.2.h.d.126.4 16 15.8 even 4
275.2.h.d.251.1 16 165.152 even 20
275.2.h.d.251.4 16 165.53 even 20
495.2.ba.a.64.1 16 11.9 even 5 inner
495.2.ba.a.64.4 16 55.9 even 10 inner
495.2.ba.a.379.1 16 5.4 even 2 inner
495.2.ba.a.379.4 16 1.1 even 1 trivial
605.2.b.f.364.2 8 33.8 even 10
605.2.b.f.364.7 8 165.74 even 10
605.2.b.g.364.2 8 165.14 odd 10
605.2.b.g.364.7 8 33.14 odd 10
605.2.j.d.9.1 16 33.2 even 10
605.2.j.d.9.4 16 165.134 even 10
605.2.j.d.269.1 16 165.164 even 2
605.2.j.d.269.4 16 33.32 even 2
605.2.j.g.124.1 16 165.29 even 10
605.2.j.g.124.4 16 33.29 even 10
605.2.j.g.444.1 16 33.17 even 10
605.2.j.g.444.4 16 165.149 even 10
605.2.j.h.124.1 16 33.26 odd 10
605.2.j.h.124.4 16 165.59 odd 10
605.2.j.h.444.1 16 165.104 odd 10
605.2.j.h.444.4 16 33.5 odd 10
880.2.cd.c.49.1 16 12.11 even 2
880.2.cd.c.49.4 16 60.59 even 2
880.2.cd.c.449.1 16 660.119 even 10
880.2.cd.c.449.4 16 132.119 even 10
3025.2.a.bk.1.2 8 165.8 odd 20
3025.2.a.bk.1.7 8 165.107 odd 20
3025.2.a.bl.1.2 8 165.47 even 20
3025.2.a.bl.1.7 8 165.113 even 20