Properties

Label 605.2.b.f.364.2
Level $605$
Weight $2$
Character 605.364
Analytic conductor $4.831$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(364,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.364");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1480160000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 27x^{4} + 31x^{2} + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 364.2
Root \(-1.65458i\) of defining polynomial
Character \(\chi\) \(=\) 605.364
Dual form 605.2.b.f.364.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.65458i q^{2} +1.97479i q^{3} -0.737640 q^{4} +(2.19353 + 0.434096i) q^{5} +3.26745 q^{6} +2.24307i q^{7} -2.08868i q^{8} -0.899788 q^{9} +(0.718246 - 3.62937i) q^{10} -1.45668i q^{12} -3.69976i q^{13} +3.71135 q^{14} +(-0.857247 + 4.33175i) q^{15} -4.93117 q^{16} +2.22461i q^{17} +1.48877i q^{18} +5.28684 q^{19} +(-1.61803 - 0.320206i) q^{20} -4.42960 q^{21} +3.85415i q^{23} +4.12469 q^{24} +(4.62312 + 1.90440i) q^{25} -6.12155 q^{26} +4.14747i q^{27} -1.65458i q^{28} +0.188439 q^{29} +(7.16724 + 1.41838i) q^{30} +0.686867 q^{31} +3.98166i q^{32} +3.68079 q^{34} +(-0.973708 + 4.92024i) q^{35} +0.663720 q^{36} +2.59316i q^{37} -8.74751i q^{38} +7.30624 q^{39} +(0.906685 - 4.58157i) q^{40} -7.91604 q^{41} +7.32913i q^{42} +8.41368i q^{43} +(-1.97371 - 0.390594i) q^{45} +6.37701 q^{46} -12.0132i q^{47} -9.73801i q^{48} +1.96862 q^{49} +(3.15099 - 7.64933i) q^{50} -4.39313 q^{51} +2.72909i q^{52} -12.6566i q^{53} +6.86233 q^{54} +4.68506 q^{56} +10.4404i q^{57} -0.311788i q^{58} +0.343688 q^{59} +(0.632340 - 3.19527i) q^{60} -1.73338 q^{61} -1.13648i q^{62} -2.01829i q^{63} -3.27435 q^{64} +(1.60605 - 8.11552i) q^{65} +0.650461i q^{67} -1.64096i q^{68} -7.61114 q^{69} +(8.14094 + 1.61108i) q^{70} +4.64760 q^{71} +1.87937i q^{72} -8.85841i q^{73} +4.29059 q^{74} +(-3.76079 + 9.12969i) q^{75} -3.89979 q^{76} -12.0888i q^{78} -7.23426 q^{79} +(-10.8166 - 2.14060i) q^{80} -10.8897 q^{81} +13.0977i q^{82} +3.18165i q^{83} +3.26745 q^{84} +(-0.965692 + 4.87974i) q^{85} +13.9211 q^{86} +0.372127i q^{87} -9.92195 q^{89} +(-0.646269 + 3.26566i) q^{90} +8.29883 q^{91} -2.84298i q^{92} +1.35642i q^{93} -19.8768 q^{94} +(11.5968 + 2.29499i) q^{95} -7.86294 q^{96} +2.26811i q^{97} -3.25724i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{4} + 4 q^{5} - 6 q^{6} - 4 q^{9} + 4 q^{14} - 8 q^{15} - 22 q^{16} + 12 q^{19} - 4 q^{20} - 4 q^{21} + 2 q^{24} - 8 q^{25} + 10 q^{26} + 24 q^{29} + 22 q^{30} + 14 q^{31} - 8 q^{34} + 14 q^{35}+ \cdots + 8 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.65458i 1.16997i −0.811046 0.584983i \(-0.801101\pi\)
0.811046 0.584983i \(-0.198899\pi\)
\(3\) 1.97479i 1.14014i 0.821595 + 0.570072i \(0.193085\pi\)
−0.821595 + 0.570072i \(0.806915\pi\)
\(4\) −0.737640 −0.368820
\(5\) 2.19353 + 0.434096i 0.980975 + 0.194133i
\(6\) 3.26745 1.33393
\(7\) 2.24307i 0.847802i 0.905708 + 0.423901i \(0.139340\pi\)
−0.905708 + 0.423901i \(0.860660\pi\)
\(8\) 2.08868i 0.738459i
\(9\) −0.899788 −0.299929
\(10\) 0.718246 3.62937i 0.227129 1.14771i
\(11\) 0 0
\(12\) 1.45668i 0.420508i
\(13\) 3.69976i 1.02613i −0.858350 0.513064i \(-0.828510\pi\)
0.858350 0.513064i \(-0.171490\pi\)
\(14\) 3.71135 0.991900
\(15\) −0.857247 + 4.33175i −0.221340 + 1.11845i
\(16\) −4.93117 −1.23279
\(17\) 2.22461i 0.539546i 0.962924 + 0.269773i \(0.0869487\pi\)
−0.962924 + 0.269773i \(0.913051\pi\)
\(18\) 1.48877i 0.350907i
\(19\) 5.28684 1.21288 0.606442 0.795127i \(-0.292596\pi\)
0.606442 + 0.795127i \(0.292596\pi\)
\(20\) −1.61803 0.320206i −0.361803 0.0716003i
\(21\) −4.42960 −0.966617
\(22\) 0 0
\(23\) 3.85415i 0.803647i 0.915717 + 0.401823i \(0.131623\pi\)
−0.915717 + 0.401823i \(0.868377\pi\)
\(24\) 4.12469 0.841950
\(25\) 4.62312 + 1.90440i 0.924624 + 0.380880i
\(26\) −6.12155 −1.20053
\(27\) 4.14747i 0.798182i
\(28\) 1.65458i 0.312687i
\(29\) 0.188439 0.0349922 0.0174961 0.999847i \(-0.494431\pi\)
0.0174961 + 0.999847i \(0.494431\pi\)
\(30\) 7.16724 + 1.41838i 1.30855 + 0.258960i
\(31\) 0.686867 0.123365 0.0616824 0.998096i \(-0.480353\pi\)
0.0616824 + 0.998096i \(0.480353\pi\)
\(32\) 3.98166i 0.703866i
\(33\) 0 0
\(34\) 3.68079 0.631251
\(35\) −0.973708 + 4.92024i −0.164587 + 0.831673i
\(36\) 0.663720 0.110620
\(37\) 2.59316i 0.426313i 0.977018 + 0.213156i \(0.0683744\pi\)
−0.977018 + 0.213156i \(0.931626\pi\)
\(38\) 8.74751i 1.41903i
\(39\) 7.30624 1.16993
\(40\) 0.906685 4.58157i 0.143360 0.724410i
\(41\) −7.91604 −1.23628 −0.618139 0.786069i \(-0.712113\pi\)
−0.618139 + 0.786069i \(0.712113\pi\)
\(42\) 7.32913i 1.13091i
\(43\) 8.41368i 1.28307i 0.767092 + 0.641537i \(0.221703\pi\)
−0.767092 + 0.641537i \(0.778297\pi\)
\(44\) 0 0
\(45\) −1.97371 0.390594i −0.294223 0.0582263i
\(46\) 6.37701 0.940239
\(47\) 12.0132i 1.75230i −0.482037 0.876151i \(-0.660103\pi\)
0.482037 0.876151i \(-0.339897\pi\)
\(48\) 9.73801i 1.40556i
\(49\) 1.96862 0.281231
\(50\) 3.15099 7.64933i 0.445617 1.08178i
\(51\) −4.39313 −0.615161
\(52\) 2.72909i 0.378457i
\(53\) 12.6566i 1.73851i −0.494360 0.869257i \(-0.664597\pi\)
0.494360 0.869257i \(-0.335403\pi\)
\(54\) 6.86233 0.933845
\(55\) 0 0
\(56\) 4.68506 0.626067
\(57\) 10.4404i 1.38286i
\(58\) 0.311788i 0.0409397i
\(59\) 0.343688 0.0447444 0.0223722 0.999750i \(-0.492878\pi\)
0.0223722 + 0.999750i \(0.492878\pi\)
\(60\) 0.632340 3.19527i 0.0816347 0.412508i
\(61\) −1.73338 −0.221936 −0.110968 0.993824i \(-0.535395\pi\)
−0.110968 + 0.993824i \(0.535395\pi\)
\(62\) 1.13648i 0.144333i
\(63\) 2.01829i 0.254281i
\(64\) −3.27435 −0.409293
\(65\) 1.60605 8.11552i 0.199206 1.00661i
\(66\) 0 0
\(67\) 0.650461i 0.0794664i 0.999210 + 0.0397332i \(0.0126508\pi\)
−0.999210 + 0.0397332i \(0.987349\pi\)
\(68\) 1.64096i 0.198996i
\(69\) −7.61114 −0.916273
\(70\) 8.14094 + 1.61108i 0.973029 + 0.192561i
\(71\) 4.64760 0.551569 0.275785 0.961219i \(-0.411062\pi\)
0.275785 + 0.961219i \(0.411062\pi\)
\(72\) 1.87937i 0.221485i
\(73\) 8.85841i 1.03680i −0.855139 0.518399i \(-0.826528\pi\)
0.855139 0.518399i \(-0.173472\pi\)
\(74\) 4.29059 0.498772
\(75\) −3.76079 + 9.12969i −0.434258 + 1.05421i
\(76\) −3.89979 −0.447336
\(77\) 0 0
\(78\) 12.0888i 1.36878i
\(79\) −7.23426 −0.813918 −0.406959 0.913447i \(-0.633411\pi\)
−0.406959 + 0.913447i \(0.633411\pi\)
\(80\) −10.8166 2.14060i −1.20934 0.239326i
\(81\) −10.8897 −1.20997
\(82\) 13.0977i 1.44640i
\(83\) 3.18165i 0.349232i 0.984637 + 0.174616i \(0.0558684\pi\)
−0.984637 + 0.174616i \(0.944132\pi\)
\(84\) 3.26745 0.356508
\(85\) −0.965692 + 4.87974i −0.104744 + 0.529282i
\(86\) 13.9211 1.50115
\(87\) 0.372127i 0.0398962i
\(88\) 0 0
\(89\) −9.92195 −1.05172 −0.525862 0.850570i \(-0.676257\pi\)
−0.525862 + 0.850570i \(0.676257\pi\)
\(90\) −0.646269 + 3.26566i −0.0681228 + 0.344231i
\(91\) 8.29883 0.869954
\(92\) 2.84298i 0.296401i
\(93\) 1.35642i 0.140654i
\(94\) −19.8768 −2.05013
\(95\) 11.5968 + 2.29499i 1.18981 + 0.235461i
\(96\) −7.86294 −0.802508
\(97\) 2.26811i 0.230292i 0.993349 + 0.115146i \(0.0367335\pi\)
−0.993349 + 0.115146i \(0.963266\pi\)
\(98\) 3.25724i 0.329031i
\(99\) 0 0
\(100\) −3.41020 1.40476i −0.341020 0.140476i
\(101\) −9.89686 −0.984774 −0.492387 0.870376i \(-0.663876\pi\)
−0.492387 + 0.870376i \(0.663876\pi\)
\(102\) 7.26879i 0.719717i
\(103\) 10.2411i 1.00909i −0.863386 0.504544i \(-0.831661\pi\)
0.863386 0.504544i \(-0.168339\pi\)
\(104\) −7.72760 −0.757753
\(105\) −9.71644 1.92287i −0.948227 0.187653i
\(106\) −20.9413 −2.03400
\(107\) 10.0468i 0.971261i −0.874164 0.485631i \(-0.838590\pi\)
0.874164 0.485631i \(-0.161410\pi\)
\(108\) 3.05934i 0.294386i
\(109\) −8.80173 −0.843053 −0.421527 0.906816i \(-0.638506\pi\)
−0.421527 + 0.906816i \(0.638506\pi\)
\(110\) 0 0
\(111\) −5.12094 −0.486058
\(112\) 11.0610i 1.04516i
\(113\) 0.231352i 0.0217638i −0.999941 0.0108819i \(-0.996536\pi\)
0.999941 0.0108819i \(-0.00346388\pi\)
\(114\) 17.2745 1.61790
\(115\) −1.67307 + 8.45419i −0.156015 + 0.788357i
\(116\) −0.139000 −0.0129058
\(117\) 3.32900i 0.307766i
\(118\) 0.568660i 0.0523494i
\(119\) −4.98996 −0.457429
\(120\) 9.04763 + 1.79051i 0.825932 + 0.163451i
\(121\) 0 0
\(122\) 2.86801i 0.259658i
\(123\) 15.6325i 1.40953i
\(124\) −0.506660 −0.0454995
\(125\) 9.31425 + 6.18423i 0.833092 + 0.553134i
\(126\) −3.33943 −0.297500
\(127\) 2.43034i 0.215658i 0.994169 + 0.107829i \(0.0343899\pi\)
−0.994169 + 0.107829i \(0.965610\pi\)
\(128\) 13.3810i 1.18272i
\(129\) −16.6152 −1.46289
\(130\) −13.4278 2.65734i −1.17769 0.233064i
\(131\) −1.58846 −0.138785 −0.0693924 0.997589i \(-0.522106\pi\)
−0.0693924 + 0.997589i \(0.522106\pi\)
\(132\) 0 0
\(133\) 11.8588i 1.02829i
\(134\) 1.07624 0.0929730
\(135\) −1.80040 + 9.09760i −0.154954 + 0.782997i
\(136\) 4.64649 0.398433
\(137\) 18.7019i 1.59781i −0.601457 0.798905i \(-0.705413\pi\)
0.601457 0.798905i \(-0.294587\pi\)
\(138\) 12.5932i 1.07201i
\(139\) 11.6274 0.986222 0.493111 0.869966i \(-0.335860\pi\)
0.493111 + 0.869966i \(0.335860\pi\)
\(140\) 0.718246 3.62937i 0.0607029 0.306738i
\(141\) 23.7235 1.99788
\(142\) 7.68984i 0.645317i
\(143\) 0 0
\(144\) 4.43700 0.369750
\(145\) 0.413346 + 0.0818005i 0.0343265 + 0.00679316i
\(146\) −14.6570 −1.21302
\(147\) 3.88761i 0.320644i
\(148\) 1.91282i 0.157233i
\(149\) 5.91553 0.484619 0.242309 0.970199i \(-0.422095\pi\)
0.242309 + 0.970199i \(0.422095\pi\)
\(150\) 15.1058 + 6.22253i 1.23338 + 0.508067i
\(151\) −12.7779 −1.03985 −0.519924 0.854213i \(-0.674040\pi\)
−0.519924 + 0.854213i \(0.674040\pi\)
\(152\) 11.0425i 0.895665i
\(153\) 2.00167i 0.161826i
\(154\) 0 0
\(155\) 1.50666 + 0.298166i 0.121018 + 0.0239492i
\(156\) −5.38937 −0.431495
\(157\) 14.3487i 1.14515i 0.819853 + 0.572574i \(0.194055\pi\)
−0.819853 + 0.572574i \(0.805945\pi\)
\(158\) 11.9697i 0.952256i
\(159\) 24.9941 1.98216
\(160\) −1.72842 + 8.73389i −0.136644 + 0.690475i
\(161\) −8.64515 −0.681333
\(162\) 18.0180i 1.41563i
\(163\) 3.62716i 0.284101i 0.989859 + 0.142051i \(0.0453696\pi\)
−0.989859 + 0.142051i \(0.954630\pi\)
\(164\) 5.83919 0.455964
\(165\) 0 0
\(166\) 5.26430 0.408589
\(167\) 3.82070i 0.295655i 0.989013 + 0.147827i \(0.0472280\pi\)
−0.989013 + 0.147827i \(0.952772\pi\)
\(168\) 9.25199i 0.713807i
\(169\) −0.688202 −0.0529386
\(170\) 8.07392 + 1.59782i 0.619241 + 0.122547i
\(171\) −4.75703 −0.363779
\(172\) 6.20627i 0.473224i
\(173\) 2.10714i 0.160203i 0.996787 + 0.0801016i \(0.0255245\pi\)
−0.996787 + 0.0801016i \(0.974476\pi\)
\(174\) 0.615714 0.0466772
\(175\) −4.27171 + 10.3700i −0.322911 + 0.783899i
\(176\) 0 0
\(177\) 0.678711i 0.0510151i
\(178\) 16.4167i 1.23048i
\(179\) −5.02397 −0.375509 −0.187755 0.982216i \(-0.560121\pi\)
−0.187755 + 0.982216i \(0.560121\pi\)
\(180\) 1.45589 + 0.288118i 0.108515 + 0.0214750i
\(181\) −15.6476 −1.16308 −0.581539 0.813519i \(-0.697549\pi\)
−0.581539 + 0.813519i \(0.697549\pi\)
\(182\) 13.7311i 1.01782i
\(183\) 3.42305i 0.253039i
\(184\) 8.05008 0.593460
\(185\) −1.12568 + 5.68817i −0.0827616 + 0.418202i
\(186\) 2.24430 0.164560
\(187\) 0 0
\(188\) 8.86140i 0.646284i
\(189\) −9.30309 −0.676700
\(190\) 3.79726 19.1879i 0.275482 1.39204i
\(191\) 3.11585 0.225455 0.112728 0.993626i \(-0.464041\pi\)
0.112728 + 0.993626i \(0.464041\pi\)
\(192\) 6.46614i 0.466653i
\(193\) 9.63638i 0.693642i −0.937931 0.346821i \(-0.887261\pi\)
0.937931 0.346821i \(-0.112739\pi\)
\(194\) 3.75277 0.269433
\(195\) 16.0264 + 3.17160i 1.14768 + 0.227123i
\(196\) −1.45213 −0.103724
\(197\) 14.3974i 1.02577i −0.858457 0.512885i \(-0.828577\pi\)
0.858457 0.512885i \(-0.171423\pi\)
\(198\) 0 0
\(199\) −14.7978 −1.04899 −0.524493 0.851415i \(-0.675745\pi\)
−0.524493 + 0.851415i \(0.675745\pi\)
\(200\) 3.97768 9.65621i 0.281264 0.682797i
\(201\) −1.28452 −0.0906032
\(202\) 16.3752i 1.15215i
\(203\) 0.422682i 0.0296665i
\(204\) 3.24055 0.226884
\(205\) −17.3640 3.43632i −1.21276 0.240003i
\(206\) −16.9448 −1.18060
\(207\) 3.46792i 0.241037i
\(208\) 18.2441i 1.26500i
\(209\) 0 0
\(210\) −3.18154 + 16.0766i −0.219547 + 1.10939i
\(211\) 6.77147 0.466167 0.233084 0.972457i \(-0.425118\pi\)
0.233084 + 0.972457i \(0.425118\pi\)
\(212\) 9.33600i 0.641199i
\(213\) 9.17803i 0.628868i
\(214\) −16.6233 −1.13634
\(215\) −3.65234 + 18.4556i −0.249088 + 1.25866i
\(216\) 8.66273 0.589424
\(217\) 1.54069i 0.104589i
\(218\) 14.5632i 0.986344i
\(219\) 17.4935 1.18210
\(220\) 0 0
\(221\) 8.23051 0.553644
\(222\) 8.47302i 0.568672i
\(223\) 8.71727i 0.583752i −0.956456 0.291876i \(-0.905721\pi\)
0.956456 0.291876i \(-0.0942794\pi\)
\(224\) −8.93117 −0.596739
\(225\) −4.15983 1.71356i −0.277322 0.114237i
\(226\) −0.382791 −0.0254629
\(227\) 3.80744i 0.252708i 0.991985 + 0.126354i \(0.0403276\pi\)
−0.991985 + 0.126354i \(0.959672\pi\)
\(228\) 7.70125i 0.510028i
\(229\) 2.71367 0.179324 0.0896621 0.995972i \(-0.471421\pi\)
0.0896621 + 0.995972i \(0.471421\pi\)
\(230\) 13.9881 + 2.76823i 0.922351 + 0.182532i
\(231\) 0 0
\(232\) 0.393588i 0.0258403i
\(233\) 10.5108i 0.688584i 0.938863 + 0.344292i \(0.111881\pi\)
−0.938863 + 0.344292i \(0.888119\pi\)
\(234\) 5.50809 0.360075
\(235\) 5.21486 26.3512i 0.340180 1.71896i
\(236\) −0.253518 −0.0165026
\(237\) 14.2861i 0.927984i
\(238\) 8.25629i 0.535176i
\(239\) 20.0396 1.29625 0.648127 0.761532i \(-0.275552\pi\)
0.648127 + 0.761532i \(0.275552\pi\)
\(240\) 4.22723 21.3606i 0.272866 1.37882i
\(241\) −28.4450 −1.83230 −0.916152 0.400832i \(-0.868721\pi\)
−0.916152 + 0.400832i \(0.868721\pi\)
\(242\) 0 0
\(243\) 9.06251i 0.581361i
\(244\) 1.27861 0.0818545
\(245\) 4.31822 + 0.854569i 0.275881 + 0.0545964i
\(246\) −25.8652 −1.64911
\(247\) 19.5600i 1.24457i
\(248\) 1.43464i 0.0910999i
\(249\) −6.28309 −0.398175
\(250\) 10.2323 15.4112i 0.647148 0.974689i
\(251\) −23.8370 −1.50458 −0.752289 0.658833i \(-0.771050\pi\)
−0.752289 + 0.658833i \(0.771050\pi\)
\(252\) 1.48877i 0.0937838i
\(253\) 0 0
\(254\) 4.02120 0.252313
\(255\) −9.63644 1.90704i −0.603457 0.119423i
\(256\) 15.5913 0.974454
\(257\) 24.6763i 1.53927i −0.638486 0.769633i \(-0.720439\pi\)
0.638486 0.769633i \(-0.279561\pi\)
\(258\) 27.4913i 1.71153i
\(259\) −5.81665 −0.361429
\(260\) −1.18469 + 5.98633i −0.0734711 + 0.371257i
\(261\) −0.169555 −0.0104952
\(262\) 2.62824i 0.162373i
\(263\) 5.44098i 0.335505i −0.985829 0.167753i \(-0.946349\pi\)
0.985829 0.167753i \(-0.0536510\pi\)
\(264\) 0 0
\(265\) 5.49416 27.7625i 0.337504 1.70544i
\(266\) 19.6213 1.20306
\(267\) 19.5937i 1.19912i
\(268\) 0.479806i 0.0293088i
\(269\) 6.70557 0.408846 0.204423 0.978883i \(-0.434468\pi\)
0.204423 + 0.978883i \(0.434468\pi\)
\(270\) 15.0527 + 2.97891i 0.916079 + 0.181291i
\(271\) 5.05983 0.307363 0.153681 0.988120i \(-0.450887\pi\)
0.153681 + 0.988120i \(0.450887\pi\)
\(272\) 10.9699i 0.665148i
\(273\) 16.3884i 0.991873i
\(274\) −30.9438 −1.86938
\(275\) 0 0
\(276\) 5.61428 0.337940
\(277\) 10.6937i 0.642522i −0.946991 0.321261i \(-0.895893\pi\)
0.946991 0.321261i \(-0.104107\pi\)
\(278\) 19.2385i 1.15385i
\(279\) −0.618034 −0.0370007
\(280\) 10.2768 + 2.03376i 0.614156 + 0.121541i
\(281\) 13.7197 0.818450 0.409225 0.912434i \(-0.365799\pi\)
0.409225 + 0.912434i \(0.365799\pi\)
\(282\) 39.2524i 2.33745i
\(283\) 21.9693i 1.30594i 0.757385 + 0.652969i \(0.226477\pi\)
−0.757385 + 0.652969i \(0.773523\pi\)
\(284\) −3.42826 −0.203430
\(285\) −4.53213 + 22.9013i −0.268460 + 1.35655i
\(286\) 0 0
\(287\) 17.7563i 1.04812i
\(288\) 3.58265i 0.211110i
\(289\) 12.0511 0.708890
\(290\) 0.135346 0.683915i 0.00794777 0.0401608i
\(291\) −4.47903 −0.262566
\(292\) 6.53432i 0.382392i
\(293\) 14.0380i 0.820110i −0.912061 0.410055i \(-0.865509\pi\)
0.912061 0.410055i \(-0.134491\pi\)
\(294\) 6.43236 0.375143
\(295\) 0.753889 + 0.149194i 0.0438931 + 0.00868638i
\(296\) 5.41627 0.314815
\(297\) 0 0
\(298\) 9.78772i 0.566988i
\(299\) 14.2594 0.824644
\(300\) 2.77411 6.73442i 0.160163 0.388812i
\(301\) −18.8725 −1.08779
\(302\) 21.1420i 1.21659i
\(303\) 19.5442i 1.12278i
\(304\) −26.0703 −1.49523
\(305\) −3.80221 0.752451i −0.217714 0.0430852i
\(306\) −3.31193 −0.189331
\(307\) 6.86951i 0.392064i −0.980598 0.196032i \(-0.937194\pi\)
0.980598 0.196032i \(-0.0628056\pi\)
\(308\) 0 0
\(309\) 20.2241 1.15051
\(310\) 0.493340 2.49289i 0.0280198 0.141587i
\(311\) −5.50157 −0.311966 −0.155983 0.987760i \(-0.549854\pi\)
−0.155983 + 0.987760i \(0.549854\pi\)
\(312\) 15.2604i 0.863948i
\(313\) 14.2320i 0.804440i 0.915543 + 0.402220i \(0.131761\pi\)
−0.915543 + 0.402220i \(0.868239\pi\)
\(314\) 23.7411 1.33979
\(315\) 0.876131 4.42717i 0.0493644 0.249443i
\(316\) 5.33628 0.300189
\(317\) 18.6864i 1.04953i −0.851246 0.524767i \(-0.824153\pi\)
0.851246 0.524767i \(-0.175847\pi\)
\(318\) 41.3547i 2.31906i
\(319\) 0 0
\(320\) −7.18237 1.42138i −0.401506 0.0794575i
\(321\) 19.8403 1.10738
\(322\) 14.3041i 0.797137i
\(323\) 11.7611i 0.654408i
\(324\) 8.03271 0.446262
\(325\) 7.04582 17.1044i 0.390832 0.948783i
\(326\) 6.00143 0.332389
\(327\) 17.3816i 0.961202i
\(328\) 16.5340i 0.912940i
\(329\) 26.9464 1.48560
\(330\) 0 0
\(331\) 0.468249 0.0257373 0.0128686 0.999917i \(-0.495904\pi\)
0.0128686 + 0.999917i \(0.495904\pi\)
\(332\) 2.34691i 0.128804i
\(333\) 2.33329i 0.127864i
\(334\) 6.32166 0.345906
\(335\) −0.282362 + 1.42680i −0.0154271 + 0.0779546i
\(336\) 21.8431 1.19164
\(337\) 34.0872i 1.85685i 0.371522 + 0.928424i \(0.378836\pi\)
−0.371522 + 0.928424i \(0.621164\pi\)
\(338\) 1.13869i 0.0619363i
\(339\) 0.456871 0.0248139
\(340\) 0.712333 3.59949i 0.0386317 0.195210i
\(341\) 0 0
\(342\) 7.87090i 0.425610i
\(343\) 20.1173i 1.08623i
\(344\) 17.5735 0.947498
\(345\) −16.6952 3.30396i −0.898841 0.177879i
\(346\) 3.48644 0.187432
\(347\) 3.59292i 0.192878i 0.995339 + 0.0964391i \(0.0307453\pi\)
−0.995339 + 0.0964391i \(0.969255\pi\)
\(348\) 0.274496i 0.0147145i
\(349\) −6.37110 −0.341037 −0.170519 0.985354i \(-0.554544\pi\)
−0.170519 + 0.985354i \(0.554544\pi\)
\(350\) 17.1580 + 7.06789i 0.917135 + 0.377795i
\(351\) 15.3446 0.819037
\(352\) 0 0
\(353\) 12.1971i 0.649186i −0.945854 0.324593i \(-0.894773\pi\)
0.945854 0.324593i \(-0.105227\pi\)
\(354\) 1.12298 0.0596859
\(355\) 10.1946 + 2.01750i 0.541076 + 0.107078i
\(356\) 7.31883 0.387897
\(357\) 9.85411i 0.521535i
\(358\) 8.31257i 0.439333i
\(359\) 24.1149 1.27273 0.636367 0.771386i \(-0.280436\pi\)
0.636367 + 0.771386i \(0.280436\pi\)
\(360\) −0.815824 + 4.12244i −0.0429977 + 0.217272i
\(361\) 8.95069 0.471089
\(362\) 25.8902i 1.36076i
\(363\) 0 0
\(364\) −6.12155 −0.320856
\(365\) 3.84539 19.4312i 0.201277 1.01707i
\(366\) −5.66372 −0.296047
\(367\) 20.3899i 1.06435i 0.846636 + 0.532173i \(0.178624\pi\)
−0.846636 + 0.532173i \(0.821376\pi\)
\(368\) 19.0055i 0.990729i
\(369\) 7.12275 0.370796
\(370\) 9.41154 + 1.86253i 0.489282 + 0.0968282i
\(371\) 28.3896 1.47392
\(372\) 1.00055i 0.0518759i
\(373\) 7.51997i 0.389369i −0.980866 0.194685i \(-0.937632\pi\)
0.980866 0.194685i \(-0.0623684\pi\)
\(374\) 0 0
\(375\) −12.2125 + 18.3937i −0.630653 + 0.949845i
\(376\) −25.0916 −1.29400
\(377\) 0.697178i 0.0359065i
\(378\) 15.3927i 0.791716i
\(379\) −23.1912 −1.19125 −0.595627 0.803261i \(-0.703096\pi\)
−0.595627 + 0.803261i \(0.703096\pi\)
\(380\) −8.55429 1.69288i −0.438826 0.0868429i
\(381\) −4.79942 −0.245881
\(382\) 5.15543i 0.263775i
\(383\) 2.44039i 0.124698i 0.998054 + 0.0623491i \(0.0198592\pi\)
−0.998054 + 0.0623491i \(0.980141\pi\)
\(384\) −26.4246 −1.34848
\(385\) 0 0
\(386\) −15.9442 −0.811537
\(387\) 7.57053i 0.384832i
\(388\) 1.67305i 0.0849362i
\(389\) −33.9732 −1.72251 −0.861254 0.508175i \(-0.830320\pi\)
−0.861254 + 0.508175i \(0.830320\pi\)
\(390\) 5.24768 26.5170i 0.265726 1.34274i
\(391\) −8.57398 −0.433605
\(392\) 4.11181i 0.207678i
\(393\) 3.13688i 0.158235i
\(394\) −23.8216 −1.20012
\(395\) −15.8685 3.14036i −0.798433 0.158009i
\(396\) 0 0
\(397\) 27.4961i 1.37999i 0.723814 + 0.689995i \(0.242387\pi\)
−0.723814 + 0.689995i \(0.757613\pi\)
\(398\) 24.4841i 1.22728i
\(399\) −23.4186 −1.17239
\(400\) −22.7974 9.39092i −1.13987 0.469546i
\(401\) −1.88743 −0.0942535 −0.0471268 0.998889i \(-0.515006\pi\)
−0.0471268 + 0.998889i \(0.515006\pi\)
\(402\) 2.12535i 0.106003i
\(403\) 2.54124i 0.126588i
\(404\) 7.30032 0.363205
\(405\) −23.8870 4.72719i −1.18695 0.234896i
\(406\) 0.699363 0.0347088
\(407\) 0 0
\(408\) 9.17582i 0.454271i
\(409\) 13.5575 0.670374 0.335187 0.942152i \(-0.391201\pi\)
0.335187 + 0.942152i \(0.391201\pi\)
\(410\) −5.68567 + 28.7302i −0.280795 + 1.41888i
\(411\) 36.9323 1.82173
\(412\) 7.55427i 0.372172i
\(413\) 0.770918i 0.0379344i
\(414\) −5.73796 −0.282005
\(415\) −1.38114 + 6.97904i −0.0677975 + 0.342588i
\(416\) 14.7312 0.722256
\(417\) 22.9616i 1.12444i
\(418\) 0 0
\(419\) 22.1368 1.08145 0.540727 0.841198i \(-0.318149\pi\)
0.540727 + 0.841198i \(0.318149\pi\)
\(420\) 7.16724 + 1.41838i 0.349725 + 0.0692101i
\(421\) 17.9026 0.872517 0.436259 0.899821i \(-0.356303\pi\)
0.436259 + 0.899821i \(0.356303\pi\)
\(422\) 11.2040i 0.545400i
\(423\) 10.8093i 0.525566i
\(424\) −26.4355 −1.28382
\(425\) −4.23654 + 10.2846i −0.205503 + 0.498878i
\(426\) 15.1858 0.735755
\(427\) 3.88809i 0.188158i
\(428\) 7.41093i 0.358221i
\(429\) 0 0
\(430\) 30.5364 + 6.04310i 1.47259 + 0.291424i
\(431\) −33.4457 −1.61102 −0.805510 0.592582i \(-0.798109\pi\)
−0.805510 + 0.592582i \(0.798109\pi\)
\(432\) 20.4519i 0.983992i
\(433\) 31.4914i 1.51338i 0.653774 + 0.756690i \(0.273185\pi\)
−0.653774 + 0.756690i \(0.726815\pi\)
\(434\) 2.54920 0.122366
\(435\) −0.161539 + 0.816270i −0.00774518 + 0.0391372i
\(436\) 6.49251 0.310935
\(437\) 20.3763i 0.974731i
\(438\) 28.9444i 1.38302i
\(439\) 35.6208 1.70009 0.850045 0.526710i \(-0.176575\pi\)
0.850045 + 0.526710i \(0.176575\pi\)
\(440\) 0 0
\(441\) −1.77134 −0.0843495
\(442\) 13.6180i 0.647744i
\(443\) 23.4876i 1.11593i 0.829865 + 0.557964i \(0.188417\pi\)
−0.829865 + 0.557964i \(0.811583\pi\)
\(444\) 3.77741 0.179268
\(445\) −21.7641 4.30707i −1.03172 0.204175i
\(446\) −14.4234 −0.682970
\(447\) 11.6819i 0.552535i
\(448\) 7.34460i 0.347000i
\(449\) 31.3920 1.48148 0.740740 0.671792i \(-0.234475\pi\)
0.740740 + 0.671792i \(0.234475\pi\)
\(450\) −2.83522 + 6.88277i −0.133653 + 0.324457i
\(451\) 0 0
\(452\) 0.170655i 0.00802692i
\(453\) 25.2336i 1.18558i
\(454\) 6.29971 0.295660
\(455\) 18.2037 + 3.60248i 0.853403 + 0.168887i
\(456\) 21.8066 1.02119
\(457\) 39.1106i 1.82952i 0.404000 + 0.914759i \(0.367620\pi\)
−0.404000 + 0.914759i \(0.632380\pi\)
\(458\) 4.48999i 0.209803i
\(459\) −9.22650 −0.430656
\(460\) 1.23412 6.23615i 0.0575414 0.290762i
\(461\) 8.88399 0.413769 0.206884 0.978365i \(-0.433668\pi\)
0.206884 + 0.978365i \(0.433668\pi\)
\(462\) 0 0
\(463\) 4.21081i 0.195693i 0.995202 + 0.0978464i \(0.0311954\pi\)
−0.995202 + 0.0978464i \(0.968805\pi\)
\(464\) −0.929224 −0.0431381
\(465\) −0.588814 + 2.97534i −0.0273056 + 0.137978i
\(466\) 17.3909 0.805620
\(467\) 6.72844i 0.311355i 0.987808 + 0.155677i \(0.0497560\pi\)
−0.987808 + 0.155677i \(0.950244\pi\)
\(468\) 2.45560i 0.113510i
\(469\) −1.45903 −0.0673718
\(470\) −43.6002 8.62842i −2.01113 0.397999i
\(471\) −28.3356 −1.30564
\(472\) 0.717854i 0.0330419i
\(473\) 0 0
\(474\) −23.6376 −1.08571
\(475\) 24.4417 + 10.0683i 1.12146 + 0.461964i
\(476\) 3.68079 0.168709
\(477\) 11.3882i 0.521431i
\(478\) 33.1572i 1.51657i
\(479\) 20.8094 0.950806 0.475403 0.879768i \(-0.342302\pi\)
0.475403 + 0.879768i \(0.342302\pi\)
\(480\) −17.2476 3.41327i −0.787241 0.155794i
\(481\) 9.59406 0.437452
\(482\) 47.0646i 2.14373i
\(483\) 17.0723i 0.776818i
\(484\) 0 0
\(485\) −0.984576 + 4.97516i −0.0447073 + 0.225910i
\(486\) −14.9947 −0.680172
\(487\) 15.7794i 0.715032i 0.933907 + 0.357516i \(0.116376\pi\)
−0.933907 + 0.357516i \(0.883624\pi\)
\(488\) 3.62047i 0.163891i
\(489\) −7.16287 −0.323916
\(490\) 1.41395 7.14485i 0.0638760 0.322771i
\(491\) −19.3303 −0.872366 −0.436183 0.899858i \(-0.643670\pi\)
−0.436183 + 0.899858i \(0.643670\pi\)
\(492\) 11.5312i 0.519865i
\(493\) 0.419203i 0.0188799i
\(494\) −32.3637 −1.45611
\(495\) 0 0
\(496\) −3.38705 −0.152083
\(497\) 10.4249i 0.467622i
\(498\) 10.3959i 0.465851i
\(499\) 41.4596 1.85599 0.927994 0.372594i \(-0.121532\pi\)
0.927994 + 0.372594i \(0.121532\pi\)
\(500\) −6.87057 4.56174i −0.307261 0.204007i
\(501\) −7.54507 −0.337089
\(502\) 39.4403i 1.76031i
\(503\) 32.6613i 1.45630i 0.685420 + 0.728148i \(0.259619\pi\)
−0.685420 + 0.728148i \(0.740381\pi\)
\(504\) −4.21556 −0.187776
\(505\) −21.7090 4.29618i −0.966039 0.191178i
\(506\) 0 0
\(507\) 1.35905i 0.0603576i
\(508\) 1.79272i 0.0795391i
\(509\) −16.6452 −0.737785 −0.368892 0.929472i \(-0.620263\pi\)
−0.368892 + 0.929472i \(0.620263\pi\)
\(510\) −3.15535 + 15.9443i −0.139721 + 0.706025i
\(511\) 19.8701 0.879000
\(512\) 0.964978i 0.0426464i
\(513\) 21.9270i 0.968102i
\(514\) −40.8290 −1.80089
\(515\) 4.44563 22.4642i 0.195898 0.989891i
\(516\) 12.2561 0.539543
\(517\) 0 0
\(518\) 9.62412i 0.422860i
\(519\) −4.16116 −0.182655
\(520\) −16.9507 3.35452i −0.743337 0.147105i
\(521\) 14.0563 0.615816 0.307908 0.951416i \(-0.400371\pi\)
0.307908 + 0.951416i \(0.400371\pi\)
\(522\) 0.280543i 0.0122790i
\(523\) 15.6677i 0.685101i 0.939499 + 0.342550i \(0.111291\pi\)
−0.939499 + 0.342550i \(0.888709\pi\)
\(524\) 1.17171 0.0511866
\(525\) −20.4786 8.43572i −0.893758 0.368165i
\(526\) −9.00255 −0.392530
\(527\) 1.52801i 0.0665611i
\(528\) 0 0
\(529\) 8.14550 0.354152
\(530\) −45.9354 9.09054i −1.99531 0.394868i
\(531\) −0.309246 −0.0134202
\(532\) 8.74751i 0.379253i
\(533\) 29.2874i 1.26858i
\(534\) −32.4195 −1.40293
\(535\) 4.36127 22.0379i 0.188554 0.952783i
\(536\) 1.35860 0.0586827
\(537\) 9.92128i 0.428135i
\(538\) 11.0949i 0.478336i
\(539\) 0 0
\(540\) 1.32805 6.71075i 0.0571501 0.288785i
\(541\) 39.6384 1.70419 0.852094 0.523389i \(-0.175333\pi\)
0.852094 + 0.523389i \(0.175333\pi\)
\(542\) 8.37190i 0.359604i
\(543\) 30.9007i 1.32608i
\(544\) −8.85764 −0.379768
\(545\) −19.3068 3.82079i −0.827014 0.163665i
\(546\) 27.1160 1.16046
\(547\) 41.1664i 1.76015i −0.474835 0.880075i \(-0.657492\pi\)
0.474835 0.880075i \(-0.342508\pi\)
\(548\) 13.7953i 0.589305i
\(549\) 1.55967 0.0665651
\(550\) 0 0
\(551\) 0.996247 0.0424415
\(552\) 15.8972i 0.676630i
\(553\) 16.2270i 0.690041i
\(554\) −17.6936 −0.751728
\(555\) −11.2329 2.22298i −0.476811 0.0943601i
\(556\) −8.57683 −0.363739
\(557\) 29.8760i 1.26589i −0.774199 0.632943i \(-0.781847\pi\)
0.774199 0.632943i \(-0.218153\pi\)
\(558\) 1.02259i 0.0432896i
\(559\) 31.1286 1.31660
\(560\) 4.80152 24.2625i 0.202901 1.02528i
\(561\) 0 0
\(562\) 22.7004i 0.957558i
\(563\) 2.15779i 0.0909401i 0.998966 + 0.0454701i \(0.0144786\pi\)
−0.998966 + 0.0454701i \(0.985521\pi\)
\(564\) −17.4994 −0.736857
\(565\) 0.100429 0.507477i 0.00422508 0.0213497i
\(566\) 36.3500 1.52790
\(567\) 24.4265i 1.02582i
\(568\) 9.70734i 0.407311i
\(569\) 0.717288 0.0300703 0.0150351 0.999887i \(-0.495214\pi\)
0.0150351 + 0.999887i \(0.495214\pi\)
\(570\) 37.8920 + 7.49877i 1.58712 + 0.314089i
\(571\) 21.6311 0.905235 0.452617 0.891705i \(-0.350490\pi\)
0.452617 + 0.891705i \(0.350490\pi\)
\(572\) 0 0
\(573\) 6.15315i 0.257051i
\(574\) −29.3792 −1.22626
\(575\) −7.33985 + 17.8182i −0.306093 + 0.743071i
\(576\) 2.94622 0.122759
\(577\) 23.4276i 0.975303i 0.873038 + 0.487652i \(0.162146\pi\)
−0.873038 + 0.487652i \(0.837854\pi\)
\(578\) 19.9396i 0.829377i
\(579\) 19.0298 0.790852
\(580\) −0.304901 0.0603393i −0.0126603 0.00250545i
\(581\) −7.13668 −0.296079
\(582\) 7.41093i 0.307193i
\(583\) 0 0
\(584\) −18.5023 −0.765633
\(585\) −1.44510 + 7.30224i −0.0597476 + 0.301911i
\(586\) −23.2271 −0.959501
\(587\) 2.24734i 0.0927576i −0.998924 0.0463788i \(-0.985232\pi\)
0.998924 0.0463788i \(-0.0147681\pi\)
\(588\) 2.86766i 0.118260i
\(589\) 3.63135 0.149627
\(590\) 0.246853 1.24737i 0.0101628 0.0513535i
\(591\) 28.4318 1.16953
\(592\) 12.7873i 0.525555i
\(593\) 25.4034i 1.04319i 0.853193 + 0.521596i \(0.174663\pi\)
−0.853193 + 0.521596i \(0.825337\pi\)
\(594\) 0 0
\(595\) −10.9456 2.16612i −0.448726 0.0888022i
\(596\) −4.36353 −0.178737
\(597\) 29.2224i 1.19600i
\(598\) 23.5934i 0.964806i
\(599\) 18.2253 0.744667 0.372333 0.928099i \(-0.378558\pi\)
0.372333 + 0.928099i \(0.378558\pi\)
\(600\) 19.0690 + 7.85507i 0.778487 + 0.320682i
\(601\) 34.6398 1.41299 0.706494 0.707719i \(-0.250276\pi\)
0.706494 + 0.707719i \(0.250276\pi\)
\(602\) 31.2261i 1.27268i
\(603\) 0.585276i 0.0238343i
\(604\) 9.42547 0.383517
\(605\) 0 0
\(606\) −32.3375 −1.31362
\(607\) 25.4482i 1.03291i −0.856314 0.516456i \(-0.827251\pi\)
0.856314 0.516456i \(-0.172749\pi\)
\(608\) 21.0504i 0.853708i
\(609\) −0.834708 −0.0338241
\(610\) −1.24499 + 6.29107i −0.0504083 + 0.254718i
\(611\) −44.4458 −1.79809
\(612\) 1.47652i 0.0596846i
\(613\) 37.0616i 1.49690i −0.663189 0.748452i \(-0.730797\pi\)
0.663189 0.748452i \(-0.269203\pi\)
\(614\) −11.3662 −0.458701
\(615\) 6.78600 34.2903i 0.273638 1.38272i
\(616\) 0 0
\(617\) 27.5937i 1.11088i −0.831557 0.555439i \(-0.812550\pi\)
0.831557 0.555439i \(-0.187450\pi\)
\(618\) 33.4624i 1.34605i
\(619\) −20.4435 −0.821694 −0.410847 0.911704i \(-0.634767\pi\)
−0.410847 + 0.911704i \(0.634767\pi\)
\(620\) −1.11137 0.219939i −0.0446338 0.00883296i
\(621\) −15.9850 −0.641456
\(622\) 9.10280i 0.364989i
\(623\) 22.2557i 0.891654i
\(624\) −36.0283 −1.44229
\(625\) 17.7465 + 17.6086i 0.709861 + 0.704342i
\(626\) 23.5480 0.941167
\(627\) 0 0
\(628\) 10.5842i 0.422354i
\(629\) −5.76876 −0.230016
\(630\) −7.32512 1.44963i −0.291840 0.0577546i
\(631\) 0.759137 0.0302208 0.0151104 0.999886i \(-0.495190\pi\)
0.0151104 + 0.999886i \(0.495190\pi\)
\(632\) 15.1100i 0.601045i
\(633\) 13.3722i 0.531498i
\(634\) −30.9182 −1.22792
\(635\) −1.05500 + 5.33103i −0.0418665 + 0.211555i
\(636\) −18.4366 −0.731060
\(637\) 7.28342i 0.288579i
\(638\) 0 0
\(639\) −4.18186 −0.165432
\(640\) −5.80863 + 29.3516i −0.229606 + 1.16022i
\(641\) −14.9050 −0.588712 −0.294356 0.955696i \(-0.595105\pi\)
−0.294356 + 0.955696i \(0.595105\pi\)
\(642\) 32.8274i 1.29559i
\(643\) 27.6346i 1.08980i −0.838501 0.544900i \(-0.816568\pi\)
0.838501 0.544900i \(-0.183432\pi\)
\(644\) 6.37701 0.251289
\(645\) −36.4460 7.21260i −1.43506 0.283996i
\(646\) 19.4598 0.765635
\(647\) 24.9785i 0.982008i 0.871157 + 0.491004i \(0.163370\pi\)
−0.871157 + 0.491004i \(0.836630\pi\)
\(648\) 22.7452i 0.893514i
\(649\) 0 0
\(650\) −28.3007 11.6579i −1.11004 0.457260i
\(651\) −3.04254 −0.119247
\(652\) 2.67554i 0.104782i
\(653\) 27.7630i 1.08645i −0.839587 0.543225i \(-0.817203\pi\)
0.839587 0.543225i \(-0.182797\pi\)
\(654\) −28.7592 −1.12457
\(655\) −3.48434 0.689545i −0.136144 0.0269428i
\(656\) 39.0353 1.52407
\(657\) 7.97068i 0.310966i
\(658\) 44.5851i 1.73811i
\(659\) −21.5863 −0.840883 −0.420442 0.907320i \(-0.638125\pi\)
−0.420442 + 0.907320i \(0.638125\pi\)
\(660\) 0 0
\(661\) −16.0174 −0.623003 −0.311502 0.950246i \(-0.600832\pi\)
−0.311502 + 0.950246i \(0.600832\pi\)
\(662\) 0.774756i 0.0301118i
\(663\) 16.2535i 0.631234i
\(664\) 6.64544 0.257893
\(665\) −5.14784 + 26.0125i −0.199625 + 1.00872i
\(666\) −3.86062 −0.149596
\(667\) 0.726273i 0.0281214i
\(668\) 2.81830i 0.109043i
\(669\) 17.2148 0.665561
\(670\) 2.36076 + 0.467191i 0.0912042 + 0.0180492i
\(671\) 0 0
\(672\) 17.6372i 0.680368i
\(673\) 31.3469i 1.20834i 0.796857 + 0.604168i \(0.206494\pi\)
−0.796857 + 0.604168i \(0.793506\pi\)
\(674\) 56.4001 2.17245
\(675\) −7.89845 + 19.1743i −0.304012 + 0.738018i
\(676\) 0.507645 0.0195248
\(677\) 30.6664i 1.17860i 0.807913 + 0.589302i \(0.200597\pi\)
−0.807913 + 0.589302i \(0.799403\pi\)
\(678\) 0.755931i 0.0290314i
\(679\) −5.08754 −0.195242
\(680\) 10.1922 + 2.01702i 0.390853 + 0.0773491i
\(681\) −7.51888 −0.288124
\(682\) 0 0
\(683\) 3.27236i 0.125213i 0.998038 + 0.0626066i \(0.0199414\pi\)
−0.998038 + 0.0626066i \(0.980059\pi\)
\(684\) 3.50898 0.134169
\(685\) 8.11841 41.0231i 0.310188 1.56741i
\(686\) 33.2857 1.27085
\(687\) 5.35892i 0.204456i
\(688\) 41.4893i 1.58176i
\(689\) −46.8263 −1.78394
\(690\) −5.46667 + 27.6236i −0.208113 + 1.05161i
\(691\) −36.4946 −1.38832 −0.694160 0.719821i \(-0.744224\pi\)
−0.694160 + 0.719821i \(0.744224\pi\)
\(692\) 1.55431i 0.0590862i
\(693\) 0 0
\(694\) 5.94478 0.225661
\(695\) 25.5050 + 5.04740i 0.967459 + 0.191459i
\(696\) 0.777253 0.0294617
\(697\) 17.6101i 0.667029i
\(698\) 10.5415i 0.399002i
\(699\) −20.7566 −0.785085
\(700\) 3.15099 7.64933i 0.119096 0.289118i
\(701\) −46.5607 −1.75857 −0.879286 0.476293i \(-0.841980\pi\)
−0.879286 + 0.476293i \(0.841980\pi\)
\(702\) 25.3890i 0.958245i
\(703\) 13.7096i 0.517068i
\(704\) 0 0
\(705\) 52.0381 + 10.2983i 1.95987 + 0.387855i
\(706\) −20.1811 −0.759525
\(707\) 22.1994i 0.834894i
\(708\) 0.500645i 0.0188154i
\(709\) 35.5966 1.33686 0.668429 0.743776i \(-0.266967\pi\)
0.668429 + 0.743776i \(0.266967\pi\)
\(710\) 3.33813 16.8679i 0.125278 0.633040i
\(711\) 6.50930 0.244118
\(712\) 20.7237i 0.776655i
\(713\) 2.64729i 0.0991418i
\(714\) −16.3044 −0.610178
\(715\) 0 0
\(716\) 3.70588 0.138495
\(717\) 39.5740i 1.47792i
\(718\) 39.9000i 1.48906i
\(719\) −22.0913 −0.823866 −0.411933 0.911214i \(-0.635146\pi\)
−0.411933 + 0.911214i \(0.635146\pi\)
\(720\) 9.73269 + 1.92608i 0.362716 + 0.0717809i
\(721\) 22.9716 0.855507
\(722\) 14.8097i 0.551158i
\(723\) 56.1728i 2.08909i
\(724\) 11.5423 0.428966
\(725\) 0.871176 + 0.358863i 0.0323547 + 0.0133278i
\(726\) 0 0
\(727\) 45.5415i 1.68904i 0.535522 + 0.844521i \(0.320115\pi\)
−0.535522 + 0.844521i \(0.679885\pi\)
\(728\) 17.3336i 0.642425i
\(729\) −14.7727 −0.547137
\(730\) −32.1504 6.36252i −1.18994 0.235487i
\(731\) −18.7171 −0.692278
\(732\) 2.52498i 0.0933260i
\(733\) 11.3789i 0.420289i 0.977670 + 0.210145i \(0.0673935\pi\)
−0.977670 + 0.210145i \(0.932607\pi\)
\(734\) 33.7368 1.24525
\(735\) −1.68759 + 8.52757i −0.0622478 + 0.314544i
\(736\) −15.3459 −0.565659
\(737\) 0 0
\(738\) 11.7852i 0.433818i
\(739\) −4.33778 −0.159568 −0.0797838 0.996812i \(-0.525423\pi\)
−0.0797838 + 0.996812i \(0.525423\pi\)
\(740\) 0.830346 4.19582i 0.0305241 0.154241i
\(741\) 38.6269 1.41900
\(742\) 46.9730i 1.72443i
\(743\) 17.2945i 0.634473i 0.948346 + 0.317237i \(0.102755\pi\)
−0.948346 + 0.317237i \(0.897245\pi\)
\(744\) 2.83311 0.103867
\(745\) 12.9759 + 2.56790i 0.475399 + 0.0940807i
\(746\) −12.4424 −0.455549
\(747\) 2.86281i 0.104745i
\(748\) 0 0
\(749\) 22.5357 0.823437
\(750\) 30.4338 + 20.2067i 1.11129 + 0.737843i
\(751\) −31.5130 −1.14993 −0.574963 0.818179i \(-0.694984\pi\)
−0.574963 + 0.818179i \(0.694984\pi\)
\(752\) 59.2390i 2.16022i
\(753\) 47.0730i 1.71544i
\(754\) −1.15354 −0.0420094
\(755\) −28.0286 5.54681i −1.02006 0.201869i
\(756\) 6.86233 0.249581
\(757\) 9.27739i 0.337192i 0.985685 + 0.168596i \(0.0539234\pi\)
−0.985685 + 0.168596i \(0.946077\pi\)
\(758\) 38.3718i 1.39373i
\(759\) 0 0
\(760\) 4.79350 24.2220i 0.173879 0.878626i
\(761\) 4.15810 0.150731 0.0753655 0.997156i \(-0.475988\pi\)
0.0753655 + 0.997156i \(0.475988\pi\)
\(762\) 7.94102i 0.287673i
\(763\) 19.7429i 0.714742i
\(764\) −2.29838 −0.0831524
\(765\) 0.868918 4.39073i 0.0314158 0.158747i
\(766\) 4.03783 0.145893
\(767\) 1.27156i 0.0459135i
\(768\) 30.7894i 1.11102i
\(769\) 16.8800 0.608709 0.304355 0.952559i \(-0.401559\pi\)
0.304355 + 0.952559i \(0.401559\pi\)
\(770\) 0 0
\(771\) 48.7305 1.75499
\(772\) 7.10818i 0.255829i
\(773\) 8.47760i 0.304918i 0.988310 + 0.152459i \(0.0487192\pi\)
−0.988310 + 0.152459i \(0.951281\pi\)
\(774\) −12.5261 −0.450240
\(775\) 3.17547 + 1.30807i 0.114066 + 0.0469872i
\(776\) 4.73735 0.170061
\(777\) 11.4866i 0.412081i
\(778\) 56.2114i 2.01527i
\(779\) −41.8508 −1.49946
\(780\) −11.8217 2.33950i −0.423286 0.0837676i
\(781\) 0 0
\(782\) 14.1863i 0.507303i
\(783\) 0.781546i 0.0279302i
\(784\) −9.70760 −0.346700
\(785\) −6.22870 + 31.4742i −0.222312 + 1.12336i
\(786\) −5.19022 −0.185129
\(787\) 53.6166i 1.91122i −0.294628 0.955612i \(-0.595196\pi\)
0.294628 0.955612i \(-0.404804\pi\)
\(788\) 10.6201i 0.378325i
\(789\) 10.7448 0.382525
\(790\) −5.19598 + 26.2558i −0.184865 + 0.934139i
\(791\) 0.518940 0.0184514
\(792\) 0 0
\(793\) 6.41307i 0.227735i
\(794\) 45.4946 1.61454
\(795\) 54.8251 + 10.8498i 1.94445 + 0.384803i
\(796\) 10.9154 0.386887
\(797\) 28.5448i 1.01111i 0.862795 + 0.505554i \(0.168712\pi\)
−0.862795 + 0.505554i \(0.831288\pi\)
\(798\) 38.7479i 1.37166i
\(799\) 26.7246 0.945448
\(800\) −7.58268 + 18.4077i −0.268088 + 0.650811i
\(801\) 8.92765 0.315443
\(802\) 3.12290i 0.110273i
\(803\) 0 0
\(804\) 0.947515 0.0334163
\(805\) −18.9634 3.75282i −0.668371 0.132270i
\(806\) −4.20469 −0.148104
\(807\) 13.2421i 0.466143i
\(808\) 20.6713i 0.727215i
\(809\) 36.9460 1.29895 0.649477 0.760382i \(-0.274988\pi\)
0.649477 + 0.760382i \(0.274988\pi\)
\(810\) −7.82152 + 39.5229i −0.274820 + 1.38869i
\(811\) 38.3768 1.34759 0.673795 0.738918i \(-0.264663\pi\)
0.673795 + 0.738918i \(0.264663\pi\)
\(812\) 0.311788i 0.0109416i
\(813\) 9.99209i 0.350438i
\(814\) 0 0
\(815\) −1.57453 + 7.95628i −0.0551535 + 0.278696i
\(816\) 21.6632 0.758365
\(817\) 44.4818i 1.55622i
\(818\) 22.4319i 0.784314i
\(819\) −7.46718 −0.260924
\(820\) 12.8084 + 2.53477i 0.447289 + 0.0885178i
\(821\) 10.2496 0.357715 0.178858 0.983875i \(-0.442760\pi\)
0.178858 + 0.983875i \(0.442760\pi\)
\(822\) 61.1074i 2.13137i
\(823\) 25.2296i 0.879448i −0.898133 0.439724i \(-0.855076\pi\)
0.898133 0.439724i \(-0.144924\pi\)
\(824\) −21.3904 −0.745170
\(825\) 0 0
\(826\) 1.27555 0.0443820
\(827\) 18.3485i 0.638041i 0.947748 + 0.319020i \(0.103354\pi\)
−0.947748 + 0.319020i \(0.896646\pi\)
\(828\) 2.55808i 0.0888993i
\(829\) −24.3826 −0.846842 −0.423421 0.905933i \(-0.639171\pi\)
−0.423421 + 0.905933i \(0.639171\pi\)
\(830\) 11.5474 + 2.28521i 0.400816 + 0.0793208i
\(831\) 21.1178 0.732567
\(832\) 12.1143i 0.419987i
\(833\) 4.37941i 0.151737i
\(834\) 37.9919 1.31555
\(835\) −1.65855 + 8.38081i −0.0573964 + 0.290030i
\(836\) 0 0
\(837\) 2.84876i 0.0984676i
\(838\) 36.6272i 1.26526i
\(839\) 42.2808 1.45970 0.729848 0.683609i \(-0.239591\pi\)
0.729848 + 0.683609i \(0.239591\pi\)
\(840\) −4.01625 + 20.2945i −0.138574 + 0.700227i
\(841\) −28.9645 −0.998776
\(842\) 29.6212i 1.02082i
\(843\) 27.0935i 0.933151i
\(844\) −4.99491 −0.171932
\(845\) −1.50959 0.298745i −0.0519314 0.0102771i
\(846\) 17.8849 0.614895
\(847\) 0 0
\(848\) 62.4117i 2.14323i
\(849\) −43.3847 −1.48896
\(850\) 17.0168 + 7.00971i 0.583670 + 0.240431i
\(851\) −9.99444 −0.342605
\(852\) 6.77009i 0.231939i
\(853\) 15.3885i 0.526891i 0.964674 + 0.263445i \(0.0848589\pi\)
−0.964674 + 0.263445i \(0.915141\pi\)
\(854\) −6.43317 −0.220138
\(855\) −10.4347 2.06501i −0.356859 0.0706218i
\(856\) −20.9845 −0.717236
\(857\) 36.1038i 1.23328i −0.787245 0.616641i \(-0.788493\pi\)
0.787245 0.616641i \(-0.211507\pi\)
\(858\) 0 0
\(859\) −48.3509 −1.64971 −0.824855 0.565344i \(-0.808743\pi\)
−0.824855 + 0.565344i \(0.808743\pi\)
\(860\) 2.69411 13.6136i 0.0918685 0.464221i
\(861\) 35.0648 1.19501
\(862\) 55.3386i 1.88484i
\(863\) 37.1887i 1.26592i −0.774186 0.632959i \(-0.781840\pi\)
0.774186 0.632959i \(-0.218160\pi\)
\(864\) −16.5139 −0.561813
\(865\) −0.914702 + 4.62208i −0.0311008 + 0.157155i
\(866\) 52.1051 1.77060
\(867\) 23.7984i 0.808237i
\(868\) 1.13648i 0.0385745i
\(869\) 0 0
\(870\) 1.35059 + 0.267279i 0.0457892 + 0.00906160i
\(871\) 2.40655 0.0815427
\(872\) 18.3840i 0.622560i
\(873\) 2.04082i 0.0690712i
\(874\) 33.7143 1.14040
\(875\) −13.8717 + 20.8926i −0.468949 + 0.706297i
\(876\) −12.9039 −0.435982
\(877\) 25.7932i 0.870976i 0.900195 + 0.435488i \(0.143424\pi\)
−0.900195 + 0.435488i \(0.856576\pi\)
\(878\) 58.9376i 1.98905i
\(879\) 27.7221 0.935044
\(880\) 0 0
\(881\) −45.6820 −1.53906 −0.769532 0.638608i \(-0.779511\pi\)
−0.769532 + 0.638608i \(0.779511\pi\)
\(882\) 2.93083i 0.0986861i
\(883\) 4.96631i 0.167130i 0.996502 + 0.0835648i \(0.0266306\pi\)
−0.996502 + 0.0835648i \(0.973369\pi\)
\(884\) −6.07115 −0.204195
\(885\) −0.294626 + 1.48877i −0.00990373 + 0.0500445i
\(886\) 38.8621 1.30560
\(887\) 28.9232i 0.971147i −0.874196 0.485573i \(-0.838611\pi\)
0.874196 0.485573i \(-0.161389\pi\)
\(888\) 10.6960i 0.358934i
\(889\) −5.45144 −0.182836
\(890\) −7.12641 + 36.0104i −0.238878 + 1.20707i
\(891\) 0 0
\(892\) 6.43021i 0.215299i
\(893\) 63.5117i 2.12534i
\(894\) 19.3287 0.646448
\(895\) −11.0202 2.18088i −0.368365 0.0728989i
\(896\) −30.0146 −1.00272
\(897\) 28.1594i 0.940213i
\(898\) 51.9406i 1.73328i
\(899\) 0.129432 0.00431681
\(900\) 3.06846 + 1.26399i 0.102282 + 0.0421329i
\(901\) 28.1559 0.938010
\(902\) 0 0
\(903\) 37.2692i 1.24024i
\(904\) −0.483220 −0.0160717
\(905\) −34.3234 6.79255i −1.14095 0.225792i
\(906\) −41.7510 −1.38708
\(907\) 13.2527i 0.440049i −0.975494 0.220024i \(-0.929386\pi\)
0.975494 0.220024i \(-0.0706137\pi\)
\(908\) 2.80852i 0.0932040i
\(909\) 8.90507 0.295363
\(910\) 5.96060 30.1195i 0.197592 0.998452i
\(911\) 13.7326 0.454982 0.227491 0.973780i \(-0.426948\pi\)
0.227491 + 0.973780i \(0.426948\pi\)
\(912\) 51.4833i 1.70478i
\(913\) 0 0
\(914\) 64.7117 2.14047
\(915\) 1.48593 7.50856i 0.0491234 0.248225i
\(916\) −2.00171 −0.0661384
\(917\) 3.56304i 0.117662i
\(918\) 15.2660i 0.503853i
\(919\) 59.3800 1.95876 0.979382 0.202016i \(-0.0647493\pi\)
0.979382 + 0.202016i \(0.0647493\pi\)
\(920\) 17.6581 + 3.49450i 0.582169 + 0.115210i
\(921\) 13.5658 0.447009
\(922\) 14.6993i 0.484095i
\(923\) 17.1950i 0.565981i
\(924\) 0 0
\(925\) −4.93842 + 11.9885i −0.162374 + 0.394179i
\(926\) 6.96713 0.228954
\(927\) 9.21484i 0.302655i
\(928\) 0.750301i 0.0246298i
\(929\) −19.5881 −0.642664 −0.321332 0.946967i \(-0.604131\pi\)
−0.321332 + 0.946967i \(0.604131\pi\)
\(930\) 4.92293 + 0.974241i 0.161429 + 0.0319466i
\(931\) 10.4078 0.341101
\(932\) 7.75317i 0.253964i
\(933\) 10.8644i 0.355686i
\(934\) 11.1327 0.364275
\(935\) 0 0
\(936\) 6.95320 0.227272
\(937\) 40.5452i 1.32455i −0.749259 0.662277i \(-0.769590\pi\)
0.749259 0.662277i \(-0.230410\pi\)
\(938\) 2.41409i 0.0788227i
\(939\) −28.1052 −0.917178
\(940\) −3.84669 + 19.4377i −0.125465 + 0.633989i
\(941\) 0.409691 0.0133556 0.00667778 0.999978i \(-0.497874\pi\)
0.00667778 + 0.999978i \(0.497874\pi\)
\(942\) 46.8835i 1.52755i
\(943\) 30.5096i 0.993530i
\(944\) −1.69478 −0.0551605
\(945\) −20.4066 4.03843i −0.663826 0.131370i
\(946\) 0 0
\(947\) 2.45729i 0.0798511i 0.999203 + 0.0399256i \(0.0127121\pi\)
−0.999203 + 0.0399256i \(0.987288\pi\)
\(948\) 10.5380i 0.342259i
\(949\) −32.7739 −1.06389
\(950\) 16.6588 40.4408i 0.540482 1.31207i
\(951\) 36.9017 1.19662
\(952\) 10.4224i 0.337792i
\(953\) 61.0264i 1.97684i 0.151744 + 0.988420i \(0.451511\pi\)
−0.151744 + 0.988420i \(0.548489\pi\)
\(954\) 18.8428 0.610057
\(955\) 6.83471 + 1.35258i 0.221166 + 0.0437684i
\(956\) −14.7820 −0.478085
\(957\) 0 0
\(958\) 34.4309i 1.11241i
\(959\) 41.9497 1.35463
\(960\) 2.80692 14.1837i 0.0905930 0.457775i
\(961\) −30.5282 −0.984781
\(962\) 15.8742i 0.511803i
\(963\) 9.03999i 0.291310i
\(964\) 20.9822 0.675790
\(965\) 4.18311 21.1377i 0.134659 0.680445i
\(966\) −28.2476 −0.908851
\(967\) 17.1997i 0.553106i −0.960999 0.276553i \(-0.910808\pi\)
0.960999 0.276553i \(-0.0891921\pi\)
\(968\) 0 0
\(969\) −23.2258 −0.746119
\(970\) 8.23180 + 1.62906i 0.264307 + 0.0523060i
\(971\) 27.2090 0.873177 0.436589 0.899661i \(-0.356187\pi\)
0.436589 + 0.899661i \(0.356187\pi\)
\(972\) 6.68488i 0.214417i
\(973\) 26.0811i 0.836121i
\(974\) 26.1083 0.836563
\(975\) 33.7776 + 13.9140i 1.08175 + 0.445605i
\(976\) 8.54757 0.273601
\(977\) 19.1722i 0.613374i −0.951810 0.306687i \(-0.900780\pi\)
0.951810 0.306687i \(-0.0992204\pi\)
\(978\) 11.8516i 0.378971i
\(979\) 0 0
\(980\) −3.18529 0.630365i −0.101750 0.0201363i
\(981\) 7.91969 0.252856
\(982\) 31.9836i 1.02064i
\(983\) 24.1305i 0.769642i 0.922991 + 0.384821i \(0.125737\pi\)
−0.922991 + 0.384821i \(0.874263\pi\)
\(984\) −32.6512 −1.04088
\(985\) 6.24984 31.5810i 0.199136 1.00626i
\(986\) 0.693605 0.0220889
\(987\) 53.2135i 1.69380i
\(988\) 14.4283i 0.459024i
\(989\) −32.4276 −1.03114
\(990\) 0 0
\(991\) 27.7081 0.880177 0.440089 0.897954i \(-0.354947\pi\)
0.440089 + 0.897954i \(0.354947\pi\)
\(992\) 2.73487i 0.0868323i
\(993\) 0.924692i 0.0293442i
\(994\) 17.2489 0.547101
\(995\) −32.4593 6.42364i −1.02903 0.203643i
\(996\) 4.63466 0.146855
\(997\) 33.4912i 1.06068i −0.847786 0.530339i \(-0.822065\pi\)
0.847786 0.530339i \(-0.177935\pi\)
\(998\) 68.5984i 2.17144i
\(999\) −10.7551 −0.340275
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.b.f.364.2 8
5.2 odd 4 3025.2.a.bk.1.7 8
5.3 odd 4 3025.2.a.bk.1.2 8
5.4 even 2 inner 605.2.b.f.364.7 8
11.2 odd 10 605.2.j.h.444.4 16
11.3 even 5 605.2.j.d.9.1 16
11.4 even 5 605.2.j.d.269.4 16
11.5 even 5 605.2.j.g.124.4 16
11.6 odd 10 605.2.j.h.124.1 16
11.7 odd 10 55.2.j.a.49.1 yes 16
11.8 odd 10 55.2.j.a.9.4 yes 16
11.9 even 5 605.2.j.g.444.1 16
11.10 odd 2 605.2.b.g.364.7 8
33.8 even 10 495.2.ba.a.64.1 16
33.29 even 10 495.2.ba.a.379.4 16
44.7 even 10 880.2.cd.c.49.1 16
44.19 even 10 880.2.cd.c.449.4 16
55.4 even 10 605.2.j.d.269.1 16
55.7 even 20 275.2.h.d.126.1 16
55.8 even 20 275.2.h.d.251.4 16
55.9 even 10 605.2.j.g.444.4 16
55.14 even 10 605.2.j.d.9.4 16
55.18 even 20 275.2.h.d.126.4 16
55.19 odd 10 55.2.j.a.9.1 16
55.24 odd 10 605.2.j.h.444.1 16
55.29 odd 10 55.2.j.a.49.4 yes 16
55.32 even 4 3025.2.a.bl.1.2 8
55.39 odd 10 605.2.j.h.124.4 16
55.43 even 4 3025.2.a.bl.1.7 8
55.49 even 10 605.2.j.g.124.1 16
55.52 even 20 275.2.h.d.251.1 16
55.54 odd 2 605.2.b.g.364.2 8
165.29 even 10 495.2.ba.a.379.1 16
165.74 even 10 495.2.ba.a.64.4 16
220.19 even 10 880.2.cd.c.449.1 16
220.139 even 10 880.2.cd.c.49.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.j.a.9.1 16 55.19 odd 10
55.2.j.a.9.4 yes 16 11.8 odd 10
55.2.j.a.49.1 yes 16 11.7 odd 10
55.2.j.a.49.4 yes 16 55.29 odd 10
275.2.h.d.126.1 16 55.7 even 20
275.2.h.d.126.4 16 55.18 even 20
275.2.h.d.251.1 16 55.52 even 20
275.2.h.d.251.4 16 55.8 even 20
495.2.ba.a.64.1 16 33.8 even 10
495.2.ba.a.64.4 16 165.74 even 10
495.2.ba.a.379.1 16 165.29 even 10
495.2.ba.a.379.4 16 33.29 even 10
605.2.b.f.364.2 8 1.1 even 1 trivial
605.2.b.f.364.7 8 5.4 even 2 inner
605.2.b.g.364.2 8 55.54 odd 2
605.2.b.g.364.7 8 11.10 odd 2
605.2.j.d.9.1 16 11.3 even 5
605.2.j.d.9.4 16 55.14 even 10
605.2.j.d.269.1 16 55.4 even 10
605.2.j.d.269.4 16 11.4 even 5
605.2.j.g.124.1 16 55.49 even 10
605.2.j.g.124.4 16 11.5 even 5
605.2.j.g.444.1 16 11.9 even 5
605.2.j.g.444.4 16 55.9 even 10
605.2.j.h.124.1 16 11.6 odd 10
605.2.j.h.124.4 16 55.39 odd 10
605.2.j.h.444.1 16 55.24 odd 10
605.2.j.h.444.4 16 11.2 odd 10
880.2.cd.c.49.1 16 44.7 even 10
880.2.cd.c.49.4 16 220.139 even 10
880.2.cd.c.449.1 16 220.19 even 10
880.2.cd.c.449.4 16 44.19 even 10
3025.2.a.bk.1.2 8 5.3 odd 4
3025.2.a.bk.1.7 8 5.2 odd 4
3025.2.a.bl.1.2 8 55.32 even 4
3025.2.a.bl.1.7 8 55.43 even 4