L(s) = 1 | + 12·5-s + 8·7-s + 12·11-s + 2·16-s + 36·17-s + 4·23-s + 78·25-s + 24·31-s + 96·35-s + 4·37-s − 8·43-s − 12·47-s + 32·49-s + 28·53-s + 144·55-s − 12·61-s + 32·67-s − 16·71-s − 12·73-s + 96·77-s + 24·80-s + 432·85-s − 60·101-s + 24·103-s − 20·107-s + 16·112-s + 8·113-s + ⋯ |
L(s) = 1 | + 5.36·5-s + 3.02·7-s + 3.61·11-s + 1/2·16-s + 8.73·17-s + 0.834·23-s + 78/5·25-s + 4.31·31-s + 16.2·35-s + 0.657·37-s − 1.21·43-s − 1.75·47-s + 32/7·49-s + 3.84·53-s + 19.4·55-s − 1.53·61-s + 3.90·67-s − 1.89·71-s − 1.40·73-s + 10.9·77-s + 2.68·80-s + 46.8·85-s − 5.97·101-s + 2.36·103-s − 1.93·107-s + 1.51·112-s + 0.752·113-s + ⋯ |
Λ(s)=(=((216⋅332⋅516⋅716)s/2ΓC(s)16L(s)Λ(2−s)
Λ(s)=(=((216⋅332⋅516⋅716)s/2ΓC(s+1/2)16L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1105.113289 |
L(21) |
≈ |
1105.113289 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1−T4+T8)2 |
| 3 | 1 |
| 5 | 1−12T+66T2−216T3+18p2T4−468T5−864T6+6252T7−18241T8+6252pT9−864p2T10−468p3T11+18p6T12−216p5T13+66p6T14−12p7T15+p8T16 |
| 7 | 1−8T+32T2−80T3+73T4+160T5−416T6−696T7+4944T8−696pT9−416p2T10+160p3T11+73p4T12−80p5T13+32p6T14−8p7T15+p8T16 |
good | 11 | (1−6T+5T2+18T3−29T4+252T5−544T6+516T7−6650T8+516pT9−544p2T10+252p3T11−29p4T12+18p5T13+5p6T14−6p7T15+p8T16)2 |
| 13 | 1+714T4+266977T8+68653746T12+13237862628T16+68653746p4T20+266977p8T24+714p12T28+p16T32 |
| 17 | 1−36T+648T2−7776T3+70080T4−507420T5+3088368T6−16357284T7+77768530T8−343436904T9+1468660248T10−6351048828T11+28493424864T12−131692528476T13+608521516920T14−2723900163624T15+11569567164915T16−2723900163624pT17+608521516920p2T18−131692528476p3T19+28493424864p4T20−6351048828p5T21+1468660248p6T22−343436904p7T23+77768530p8T24−16357284p9T25+3088368p10T26−507420p11T27+70080p12T28−7776p13T29+648p14T30−36p15T31+p16T32 |
| 19 | 1−90T2+4011T4−123414T6+3034057T8−61998180T10+1094493006T12−18780034728T14+344074548210T16−18780034728p2T18+1094493006p4T20−61998180p6T22+3034057p8T24−123414p10T26+4011p12T28−90p14T30+p16T32 |
| 23 | 1−4T+8T2+128T3−198T4+292T5+8608T6−3564T7−17335T8−1017836T9+5500848T10+18484pT11+20115594T12−929862264T13+4560471720T14+14572270428T15−102219015884T16+14572270428pT17+4560471720p2T18−929862264p3T19+20115594p4T20+18484p6T21+5500848p6T22−1017836p7T23−17335p8T24−3564p9T25+8608p10T26+292p11T27−198p12T28+128p13T29+8p14T30−4p15T31+p16T32 |
| 29 | (1−70T2+2685T4−80906T6+2505752T8−80906p2T10+2685p4T12−70p6T14+p8T16)2 |
| 31 | (1−12T+156T2−1296T3+10686T4−72996T5+489600T6−2919012T7+17046947T8−2919012pT9+489600p2T10−72996p3T11+10686p4T12−1296p5T13+156p6T14−12p7T15+p8T16)2 |
| 37 | 1−4T+8T2+240T3−3049T4+13544T5−984T6−514972T7+3800209T8−12256568T9−16248928T10+7999752pT11+119383314T12−6433305488T13+16607500784T14+478842888760T15−3828375485890T16+478842888760pT17+16607500784p2T18−6433305488p3T19+119383314p4T20+7999752p6T21−16248928p6T22−12256568p7T23+3800209p8T24−514972p9T25−984p10T26+13544p11T27−3049p12T28+240p13T29+8p14T30−4p15T31+p16T32 |
| 41 | (1−188T2+17802T4−1146544T6+54447827T8−1146544p2T10+17802p4T12−188p6T14+p8T16)2 |
| 43 | (1+4T+8T2+32T3+3425T4+20696T5+55896T6+651228T7+6527152T8+651228pT9+55896p2T10+20696p3T11+3425p4T12+32p5T13+8p6T14+4p7T15+p8T16)2 |
| 47 | 1+12T+72T2+288T3−449T4−2880T5+39240T6+500820T7+44673T8−37644384T9−288946944T10−1723474464T11+9984376994T12+179746348152T13+1044056404368T14+4096130163936T15+8350203627806T16+4096130163936pT17+1044056404368p2T18+179746348152p3T19+9984376994p4T20−1723474464p5T21−288946944p6T22−37644384p7T23+44673p8T24+500820p9T25+39240p10T26−2880p11T27−449p12T28+288p13T29+72p14T30+12p15T31+p16T32 |
| 53 | 1−28T+392T2−1808T3−25321T4+567704T5−4335448T6−1435172T7+392677969T8−4105212392T9+14977011104T10+124625519288T11−2189877391278T12+14281594759536T13−14623477702416T14−648224117593688T15+7103959219709822T16−648224117593688pT17−14623477702416p2T18+14281594759536p3T19−2189877391278p4T20+124625519288p5T21+14977011104p6T22−4105212392p7T23+392677969p8T24−1435172p9T25−4335448p10T26+567704p11T27−25321p12T28−1808p13T29+392p14T30−28p15T31+p16T32 |
| 59 | 1−320T2+54244T4−6209920T6+532238186T8−36082424000T10+2045329177232T12−105925693186240T14+5808829694261683T16−105925693186240p2T18+2045329177232p4T20−36082424000p6T22+532238186p8T24−6209920p10T26+54244p12T28−320p14T30+p16T32 |
| 61 | (1+6T+207T2+1170T3+23079T4+119796T5+1969284T6+9244740T7+135493478T8+9244740pT9+1969284p2T10+119796p3T11+23079p4T12+1170p5T13+207p6T14+6p7T15+p8T16)2 |
| 67 | 1−32T+512T2−3896T3−10509T4+663104T5−8249312T6+44834240T7+165963557T8−5505231928T9+49681319072T10−159136747544T11−1412717145882T12+21627811976512T13−103082665870656T14−335467607852040T15+7552610469365206T16−335467607852040pT17−103082665870656p2T18+21627811976512p3T19−1412717145882p4T20−159136747544p5T21+49681319072p6T22−5505231928p7T23+165963557p8T24+44834240p9T25−8249312p10T26+663104p11T27−10509p12T28−3896p13T29+512p14T30−32p15T31+p16T32 |
| 71 | (1+4T+94T2−964T3−1158T4−964pT5+94p2T6+4p3T7+p4T8)4 |
| 73 | 1+12T+72T2+288T3+12064T4+83700T5+177264T6−3613524T7+19255890T8−96865032T9−2225167272T10−39441388620T11+6056513120T12−1050679100940T13−2551121523144T14−71385024146568T15+865631164724531T16−71385024146568pT17−2551121523144p2T18−1050679100940p3T19+6056513120p4T20−39441388620p5T21−2225167272p6T22−96865032p7T23+19255890p8T24−3613524p9T25+177264p10T26+83700p11T27+12064p12T28+288p13T29+72p14T30+12p15T31+p16T32 |
| 79 | 1+344T2+56836T4+6614224T6+630756554T8+45125337896T10+2052833339792T12+54520165812136T14+1660868031271123T16+54520165812136p2T18+2052833339792p4T20+45125337896p6T22+630756554p8T24+6614224p10T26+56836p12T28+344p14T30+p16T32 |
| 83 | 1−25638T4+318852241T8−2957648820318T12+22747905510477444T16−2957648820318p4T20+318852241p8T24−25638p12T28+p16T32 |
| 89 | 1−522T2+144915T4−27754278T6+4091335849T8−494840689332T10+51768593923950T12−4926383904774360T14+445675116984224850T16−4926383904774360p2T18+51768593923950p4T20−494840689332p6T22+4091335849p8T24−27754278p10T26+144915p12T28−522p14T30+p16T32 |
| 97 | (1+3868T4+90482118T8+3868p4T12+p8T16)2 |
show more | |
show less | |
L(s)=p∏ j=1∏32(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−2.75841717720257866238299995902, −2.72640420678823942159950493606, −2.63484634073159485401117583238, −2.60421717837181026570780493793, −2.52391863492926282631861118635, −2.51927265441559047764650928932, −2.25499030152367403283208101337, −2.16919217681946424645019821924, −2.11812145018474310328442749794, −1.99735540798851866062670092075, −1.82530149626850066439324096428, −1.79629812043631793362247417639, −1.62668413371298413934532213010, −1.60815948809842461146701914419, −1.47045975906220467538209455184, −1.44983713360727171187961998959, −1.38823176069122681008577388684, −1.37076850971702774257066682277, −1.12892687118478778412766127055, −1.11659055317809220023476540030, −1.00997864481205690381397040070, −0.981609851928948372742980243870, −0.882854889155919811856378915011, −0.74917322387410588225036565539, −0.63912672160233422288413676949,
0.63912672160233422288413676949, 0.74917322387410588225036565539, 0.882854889155919811856378915011, 0.981609851928948372742980243870, 1.00997864481205690381397040070, 1.11659055317809220023476540030, 1.12892687118478778412766127055, 1.37076850971702774257066682277, 1.38823176069122681008577388684, 1.44983713360727171187961998959, 1.47045975906220467538209455184, 1.60815948809842461146701914419, 1.62668413371298413934532213010, 1.79629812043631793362247417639, 1.82530149626850066439324096428, 1.99735540798851866062670092075, 2.11812145018474310328442749794, 2.16919217681946424645019821924, 2.25499030152367403283208101337, 2.51927265441559047764650928932, 2.52391863492926282631861118635, 2.60421717837181026570780493793, 2.63484634073159485401117583238, 2.72640420678823942159950493606, 2.75841717720257866238299995902
Plot not available for L-functions of degree greater than 10.