L(s) = 1 | − 2·2-s + 4-s + 7-s + 9-s + 2·11-s − 2·14-s − 2·18-s − 4·22-s + 17·23-s + 25-s + 28-s + 36-s − 2·37-s + 2·44-s − 34·46-s − 2·50-s + 63-s − 17·71-s + 4·74-s + 2·77-s + 17·92-s + 2·99-s + 100-s + 2·107-s + 2·109-s + 121-s − 2·126-s + ⋯ |
L(s) = 1 | − 2·2-s + 4-s + 7-s + 9-s + 2·11-s − 2·14-s − 2·18-s − 4·22-s + 17·23-s + 25-s + 28-s + 36-s − 2·37-s + 2·44-s − 34·46-s − 2·50-s + 63-s − 17·71-s + 4·74-s + 2·77-s + 17·92-s + 2·99-s + 100-s + 2·107-s + 2·109-s + 121-s − 2·126-s + ⋯ |
Λ(s)=(=((716⋅13716)s/2ΓC(s)16L(s)Λ(1−s)
Λ(s)=(=((716⋅13716)s/2ΓC(s)16L(s)Λ(1−s)
Particular Values
L(21) |
≈ |
0.2818114034 |
L(21) |
≈ |
0.2818114034 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10−T11+T12−T13+T14−T15+T16 |
| 137 | (1+T)16 |
good | 2 | (1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16)2 |
| 3 | 1−T2+T4−T6+T8−T10+T12−T14+T16−T18+T20−T22+T24−T26+T28−T30+T32 |
| 5 | 1−T2+T4−T6+T8−T10+T12−T14+T16−T18+T20−T22+T24−T26+T28−T30+T32 |
| 11 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10−T11+T12−T13+T14−T15+T16)2 |
| 13 | 1−T2+T4−T6+T8−T10+T12−T14+T16−T18+T20−T22+T24−T26+T28−T30+T32 |
| 17 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10−T11+T12−T13+T14−T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) |
| 19 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10−T11+T12−T13+T14−T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) |
| 23 | (1−T)16(1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10−T11+T12−T13+T14−T15+T16) |
| 29 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10−T11+T12−T13+T14−T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) |
| 31 | 1−T2+T4−T6+T8−T10+T12−T14+T16−T18+T20−T22+T24−T26+T28−T30+T32 |
| 37 | (1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16)2 |
| 41 | (1+T2)16 |
| 43 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10−T11+T12−T13+T14−T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) |
| 47 | 1−T2+T4−T6+T8−T10+T12−T14+T16−T18+T20−T22+T24−T26+T28−T30+T32 |
| 53 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10−T11+T12−T13+T14−T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) |
| 59 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10−T11+T12−T13+T14−T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) |
| 61 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10−T11+T12−T13+T14−T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) |
| 67 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10−T11+T12−T13+T14−T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) |
| 71 | (1+T)16(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) |
| 73 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10−T11+T12−T13+T14−T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) |
| 79 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10−T11+T12−T13+T14−T15+T16)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16) |
| 83 | 1−T2+T4−T6+T8−T10+T12−T14+T16−T18+T20−T22+T24−T26+T28−T30+T32 |
| 89 | 1−T2+T4−T6+T8−T10+T12−T14+T16−T18+T20−T22+T24−T26+T28−T30+T32 |
| 97 | 1−T2+T4−T6+T8−T10+T12−T14+T16−T18+T20−T22+T24−T26+T28−T30+T32 |
show more | |
show less | |
L(s)=p∏ j=1∏32(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−2.83659624188346207892517598100, −2.82067995709621959303502339696, −2.79316767997292805511927804283, −2.69329381089355561226914867858, −2.69092146065958371812964747243, −2.64412711623360736253359120611, −2.43333732129233661685461638866, −2.39181598818617889686586792535, −2.29842816213623331753485952534, −2.24962939761678538199063142631, −2.05488769182451142071173634315, −1.91142803111573887872964263058, −1.73141058467629817108323076608, −1.57083221882918829491113949023, −1.55405214211732689603387849099, −1.53381487883075891578295769059, −1.29554734125878117701305106424, −1.28452899262356262498712570862, −1.25835708961806479113656621189, −1.20292350742541234857455084095, −1.16350869840808422243785762060, −1.09050692018812924224439802498, −1.08480369663458077543599622311, −1.03341601508565436157433883195, −0.65991919945432458549897673333,
0.65991919945432458549897673333, 1.03341601508565436157433883195, 1.08480369663458077543599622311, 1.09050692018812924224439802498, 1.16350869840808422243785762060, 1.20292350742541234857455084095, 1.25835708961806479113656621189, 1.28452899262356262498712570862, 1.29554734125878117701305106424, 1.53381487883075891578295769059, 1.55405214211732689603387849099, 1.57083221882918829491113949023, 1.73141058467629817108323076608, 1.91142803111573887872964263058, 2.05488769182451142071173634315, 2.24962939761678538199063142631, 2.29842816213623331753485952534, 2.39181598818617889686586792535, 2.43333732129233661685461638866, 2.64412711623360736253359120611, 2.69092146065958371812964747243, 2.69329381089355561226914867858, 2.79316767997292805511927804283, 2.82067995709621959303502339696, 2.83659624188346207892517598100
Plot not available for L-functions of degree greater than 10.