L(s) = 1 | − 2·2-s + 4-s + 7-s + 9-s + 2·11-s − 2·14-s − 2·18-s − 4·22-s + 17·23-s + 25-s + 28-s + 36-s − 2·37-s + 2·44-s − 34·46-s − 2·50-s + 63-s − 17·71-s + 4·74-s + 2·77-s + 17·92-s + 2·99-s + 100-s + 2·107-s + 2·109-s + 121-s − 2·126-s + ⋯ |
L(s) = 1 | − 2·2-s + 4-s + 7-s + 9-s + 2·11-s − 2·14-s − 2·18-s − 4·22-s + 17·23-s + 25-s + 28-s + 36-s − 2·37-s + 2·44-s − 34·46-s − 2·50-s + 63-s − 17·71-s + 4·74-s + 2·77-s + 17·92-s + 2·99-s + 100-s + 2·107-s + 2·109-s + 121-s − 2·126-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{16} \cdot 137^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{16} \cdot 137^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2818114034\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2818114034\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} \) |
| 137 | \( ( 1 + T )^{16} \) |
good | 2 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )^{2} \) |
| 3 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32} \) |
| 5 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32} \) |
| 11 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )^{2} \) |
| 13 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32} \) |
| 17 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 19 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 23 | \( ( 1 - T )^{16}( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} ) \) |
| 29 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 31 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32} \) |
| 37 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )^{2} \) |
| 41 | \( ( 1 + T^{2} )^{16} \) |
| 43 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 47 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32} \) |
| 53 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 59 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 61 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 67 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 71 | \( ( 1 + T )^{16}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 73 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 79 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 83 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32} \) |
| 89 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32} \) |
| 97 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{32} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−2.83659624188346207892517598100, −2.82067995709621959303502339696, −2.79316767997292805511927804283, −2.69329381089355561226914867858, −2.69092146065958371812964747243, −2.64412711623360736253359120611, −2.43333732129233661685461638866, −2.39181598818617889686586792535, −2.29842816213623331753485952534, −2.24962939761678538199063142631, −2.05488769182451142071173634315, −1.91142803111573887872964263058, −1.73141058467629817108323076608, −1.57083221882918829491113949023, −1.55405214211732689603387849099, −1.53381487883075891578295769059, −1.29554734125878117701305106424, −1.28452899262356262498712570862, −1.25835708961806479113656621189, −1.20292350742541234857455084095, −1.16350869840808422243785762060, −1.09050692018812924224439802498, −1.08480369663458077543599622311, −1.03341601508565436157433883195, −0.65991919945432458549897673333,
0.65991919945432458549897673333, 1.03341601508565436157433883195, 1.08480369663458077543599622311, 1.09050692018812924224439802498, 1.16350869840808422243785762060, 1.20292350742541234857455084095, 1.25835708961806479113656621189, 1.28452899262356262498712570862, 1.29554734125878117701305106424, 1.53381487883075891578295769059, 1.55405214211732689603387849099, 1.57083221882918829491113949023, 1.73141058467629817108323076608, 1.91142803111573887872964263058, 2.05488769182451142071173634315, 2.24962939761678538199063142631, 2.29842816213623331753485952534, 2.39181598818617889686586792535, 2.43333732129233661685461638866, 2.64412711623360736253359120611, 2.69092146065958371812964747243, 2.69329381089355561226914867858, 2.79316767997292805511927804283, 2.82067995709621959303502339696, 2.83659624188346207892517598100
Plot not available for L-functions of degree greater than 10.