L(s) = 1 | − 2·5-s + 162·9-s − 28·11-s − 68·19-s − 9·25-s − 340·29-s + 336·31-s + 236·41-s − 324·45-s + 2.64e3·49-s + 56·55-s − 1.75e3·59-s + 780·61-s + 72·71-s − 1.95e3·79-s + 1.25e4·81-s − 292·89-s + 136·95-s − 4.53e3·99-s + 3.72e3·101-s − 1.74e3·109-s − 1.06e4·121-s − 452·125-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | − 0.178·5-s + 6·9-s − 0.767·11-s − 0.821·19-s − 0.0719·25-s − 2.17·29-s + 1.94·31-s + 0.898·41-s − 1.07·45-s + 54/7·49-s + 0.137·55-s − 3.87·59-s + 1.63·61-s + 0.120·71-s − 2.77·79-s + 17.2·81-s − 0.347·89-s + 0.146·95-s − 4.60·99-s + 3.66·101-s − 1.53·109-s − 8.01·121-s − 0.323·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + ⋯ |
Λ(s)=(=((2126⋅518)s/2ΓC(s)18L(s)Λ(4−s)
Λ(s)=(=((2126⋅518)s/2ΓC(s+3/2)18L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.06284480792 |
L(21) |
≈ |
0.06284480792 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+2T+13T2+496T3+10556T4−77448T5+521596pT6+85136p2T7+676718p3T8−1895412p4T9+676718p6T10+85136p8T11+521596p10T12−77448p12T13+10556p15T14+496p18T15+13p21T16+2p24T17+p27T18 |
good | 3 | 1−2p4T2+13697T4−89056p2T6+11917900pT8−1276761368T10+12599676220pT12−321794417120pT14+23009371354142T16−581214078652172T18+23009371354142p6T20−321794417120p13T22+12599676220p19T24−1276761368p24T26+11917900p31T28−89056p38T30+13697p42T32−2p52T34+p54T36 |
| 7 | 1−54p2T2+3505273T4−3175456896T6+2244628262820T8−1321783876957640T10+671383044235627732T12−30⋯00T14+12⋯30T16−43⋯76T18+12⋯30p6T20−30⋯00p12T22+671383044235627732p18T24−1321783876957640p24T26+2244628262820p30T28−3175456896p36T30+3505273p42T32−54p50T34+p54T36 |
| 11 | (1+14T+5627T2+3120pT3+15719060T4+15589128T5+32297994924T6+11904627440T7+4972487740586pT8+52083142943380T9+4972487740586p4T10+11904627440p6T11+32297994924p9T12+15589128p12T13+15719060p15T14+3120p19T15+5627p21T16+14p24T17+p27T18)2 |
| 13 | 1−18410T2+168206929T4−1021303084400T6+4682432877868276T8−17526512779132279448T10+56⋯04T12−16⋯52T14+41⋯06T16−96⋯68T18+41⋯06p6T20−16⋯52p12T22+56⋯04p18T24−17526512779132279448p24T26+4682432877868276p30T28−1021303084400p36T30+168206929p42T32−18410p48T34+p54T36 |
| 17 | 1−45282T2+1080021241T4−17672305163440T6+220352751485334260T8−22⋯96T10+18⋯40T12−13⋯44T14+79⋯74T16−42⋯36T18+79⋯74p6T20−13⋯44p12T22+18⋯40p18T24−22⋯96p24T26+220352751485334260p30T28−17672305163440p36T30+1080021241p42T32−45282p48T34+p54T36 |
| 19 | (1+34T+31907T2+1025104T3+521944740T4+15342161400T5+5760096801308T6+151273640580272T7+48681526084193758T8+1148710323738341260T9+48681526084193758p3T10+151273640580272p6T11+5760096801308p9T12+15342161400p12T13+521944740p15T14+1025104p18T15+31907p21T16+34p24T17+p27T18)2 |
| 23 | 1−110982T2+269302639pT4−229175593427776T6+6286529227274876740T8−13⋯12T10+24⋯72T12−37⋯36T14+51⋯06T16−64⋯68T18+51⋯06p6T20−37⋯36p12T22+24⋯72p18T24−13⋯12p24T26+6286529227274876740p30T28−229175593427776p36T30+269302639p43T32−110982p48T34+p54T36 |
| 29 | (1+170T+107517T2+13932208T3+5725536020T4+21104110392pT5+214303413402420T6+19821854179339344T7+6349836904888612174T8+52⋯60T9+6349836904888612174p3T10+19821854179339344p6T11+214303413402420p9T12+21104110392p13T13+5725536020p15T14+13932208p18T15+107517p21T16+170p24T17+p27T18)2 |
| 31 | (1−168T+132023T2−22283328T3+10383373956T4−1488537215328T5+533181488401932T6−69306017242405312T7+20577323736403541598T8−23⋯28T9+20577323736403541598p3T10−69306017242405312p6T11+533181488401932p9T12−1488537215328p12T13+10383373956p15T14−22283328p18T15+132023p21T16−168p24T17+p27T18)2 |
| 37 | 1−351370T2+1777230925pT4−8668242846445296T6+90⋯36T8−79⋯84T10+60⋯28T12−40⋯80T14+24⋯82T16−12⋯60T18+24⋯82p6T20−40⋯80p12T22+60⋯28p18T24−79⋯84p24T26+90⋯36p30T28−8668242846445296p36T30+1777230925p43T32−351370p48T34+p54T36 |
| 41 | (1−118T+306417T2−18849056T3+42700765332T4+723627236344T5+3540593544233028T6+441956777709999008T7+22⋯22T8+46⋯84T9+22⋯22p3T10+441956777709999008p6T11+3540593544233028p9T12+723627236344p12T13+42700765332p15T14−18849056p18T15+306417p21T16−118p24T17+p27T18)2 |
| 43 | 1−817186T2+316383232561T4−77191645858921760T6+13⋯36T8−40⋯00pT10+17⋯36T12−14⋯84T14+10⋯26T16−79⋯40T18+10⋯26p6T20−14⋯84p12T22+17⋯36p18T24−40⋯00p25T26+13⋯36p30T28−77191645858921760p36T30+316383232561p42T32−817186p48T34+p54T36 |
| 47 | 1−976438T2+463777655113T4−142404872157421440T6+31⋯12T8−54⋯52T10+76⋯44T12−91⋯24T14+99⋯38T16−10⋯92T18+99⋯38p6T20−91⋯24p12T22+76⋯44p18T24−54⋯52p24T26+31⋯12p30T28−142404872157421440p36T30+463777655113p42T32−976438p48T34+p54T36 |
| 53 | 1−1520026T2+1135748878529T4−560763301886123248T6+20⋯80T8−61⋯76T10+15⋯04T12−31⋯68T14+58⋯86T16−92⋯44T18+58⋯86p6T20−31⋯68p12T22+15⋯04p18T24−61⋯76p24T26+20⋯80p30T28−560763301886123248p36T30+1135748878529p42T32−1520026p48T34+p54T36 |
| 59 | (1+878T+1236955T2+620099760T3+553755425508T4+199575505245768T5+172355456546221884T6+57782131388837538640T7+47⋯10T8+14⋯88T9+47⋯10p3T10+57782131388837538640p6T11+172355456546221884p9T12+199575505245768p12T13+553755425508p15T14+620099760p18T15+1236955p21T16+878p24T17+p27T18)2 |
| 61 | (1−390T+946533T2−375530288T3+444635912140T4−173806478525608T5+143980830611353404T6−52074599746897680592T7+37⋯62T8−12⋯24T9+37⋯62p3T10−52074599746897680592p6T11+143980830611353404p9T12−173806478525608p12T13+444635912140p15T14−375530288p18T15+946533p21T16−390p24T17+p27T18)2 |
| 67 | 1−2700338T2+3533629828065T4−2996289198536038944T6+18⋯84T8−93⋯28T10+40⋯16T12−15⋯12T14+53⋯34T16−37⋯72p2T18+53⋯34p6T20−15⋯12p12T22+40⋯16p18T24−93⋯28p24T26+18⋯84p30T28−2996289198536038944p36T30+3533629828065p42T32−2700338p48T34+p54T36 |
| 71 | (1−36T+1841615T2−165671520T3+1824835269476T4−185529115441136T5+1209991330264289612T6−12⋯60T7+58⋯46T8−53⋯36T9+58⋯46p3T10−12⋯60p6T11+1209991330264289612p9T12−185529115441136p12T13+1824835269476p15T14−165671520p18T15+1841615p21T16−36p24T17+p27T18)2 |
| 73 | 1−3778834T2+6933266462601T4−8143954384598370864T6+68⋯08T8−42⋯48T10+20⋯16T12−83⋯28T14+39⋯02pT16−10⋯12T18+39⋯02p7T20−83⋯28p12T22+20⋯16p18T24−42⋯48p24T26+68⋯08p30T28−8143954384598370864p36T30+6933266462601p42T32−3778834p48T34+p54T36 |
| 79 | (1+976T+1521351T2+945533696T3+1131624911108T4+585675447712192T5+718720167172114636T6+38⋯00T7+42⋯82T8+20⋯32T9+42⋯82p3T10+38⋯00p6T11+718720167172114636p9T12+585675447712192p12T13+1131624911108p15T14+945533696p18T15+1521351p21T16+976p24T17+p27T18)2 |
| 83 | 1−6128690T2+18682450854913T4−37665709554087804320T6+56⋯84T8−66⋯56T10+65⋯32T12−53⋯76T14+38⋯34T16−23⋯36T18+38⋯34p6T20−53⋯76p12T22+65⋯32p18T24−66⋯56p24T26+56⋯84p30T28−37665709554087804320p36T30+18682450854913p42T32−6128690p48T34+p54T36 |
| 89 | (1+146T+2947297T2+762766896T3+3967842683252T4+1157135497541624T5+3380357191051689636T6+94⋯00T7+22⋯90T8+65⋯52T9+22⋯90p3T10+94⋯00p6T11+3380357191051689636p9T12+1157135497541624p12T13+3967842683252p15T14+762766896p18T15+2947297p21T16+146p24T17+p27T18)2 |
| 97 | 1−10032834T2+49189296349913T4−15⋯60T6+37⋯44T8−70⋯40T10+11⋯68T12−14⋯16T14+16⋯66T16−16⋯20T18+16⋯66p6T20−14⋯16p12T22+11⋯68p18T24−70⋯40p24T26+37⋯44p30T28−15⋯60p36T30+49189296349913p42T32−10032834p48T34+p54T36 |
show more | |
show less | |
L(s)=p∏ j=1∏36(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−2.04287912447139866452109918824, −2.03100533737620034523866477034, −1.99956505739540436389608576615, −1.81827007740901905616334864977, −1.80057522012279434504127529012, −1.78986357142706454380351000185, −1.68337665011858957549486716786, −1.64107525756995137527010571881, −1.53383533941417040400256407281, −1.26017319592086144907705238861, −1.19996960607242203654792337848, −1.12495821068424846665622980358, −1.11742235247817751858929908923, −1.08181103263074801848321188096, −1.03871456211604109219934306147, −0.975184275689600752277835990328, −0.943445877885009947284375611725, −0.925763777207148723006615527972, −0.65147725929841221453964575064, −0.58321847852207006038296654096, −0.45502747907187983524832467085, −0.31813568550163827952201827658, −0.26011434798141376845353399424, −0.04386617744531522675128674035, −0.01662599838095411594775182872,
0.01662599838095411594775182872, 0.04386617744531522675128674035, 0.26011434798141376845353399424, 0.31813568550163827952201827658, 0.45502747907187983524832467085, 0.58321847852207006038296654096, 0.65147725929841221453964575064, 0.925763777207148723006615527972, 0.943445877885009947284375611725, 0.975184275689600752277835990328, 1.03871456211604109219934306147, 1.08181103263074801848321188096, 1.11742235247817751858929908923, 1.12495821068424846665622980358, 1.19996960607242203654792337848, 1.26017319592086144907705238861, 1.53383533941417040400256407281, 1.64107525756995137527010571881, 1.68337665011858957549486716786, 1.78986357142706454380351000185, 1.80057522012279434504127529012, 1.81827007740901905616334864977, 1.99956505739540436389608576615, 2.03100533737620034523866477034, 2.04287912447139866452109918824
Plot not available for L-functions of degree greater than 10.