L(s) = 1 | − 3·2-s − 3·3-s + 4·4-s − 5-s + 9·6-s − 5·7-s − 3·8-s + 6·9-s + 3·10-s − 6·11-s − 12·12-s + 15·14-s + 3·15-s + 3·16-s − 6·17-s − 18·18-s − 12·19-s − 4·20-s + 15·21-s + 18·22-s + 3·23-s + 9·24-s − 9·27-s − 20·28-s − 9·30-s − 6·31-s − 6·32-s + ⋯ |
L(s) = 1 | − 2.12·2-s − 1.73·3-s + 2·4-s − 0.447·5-s + 3.67·6-s − 1.88·7-s − 1.06·8-s + 2·9-s + 0.948·10-s − 1.80·11-s − 3.46·12-s + 4.00·14-s + 0.774·15-s + 3/4·16-s − 1.45·17-s − 4.24·18-s − 2.75·19-s − 0.894·20-s + 3.27·21-s + 3.83·22-s + 0.625·23-s + 1.83·24-s − 1.73·27-s − 3.77·28-s − 1.64·30-s − 1.07·31-s − 1.06·32-s + ⋯ |
Λ(s)=(=(11025s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(11025s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
11025
= 32⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
0.702963 |
Root analytic conductor: |
0.915657 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 11025, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | 1+pT+pT2 |
| 5 | C2 | 1+T+T2 |
| 7 | C2 | 1+5T+pT2 |
good | 2 | C22 | 1+3T+5T2+3pT3+p2T4 |
| 11 | C22 | 1+6T+23T2+6pT3+p2T4 |
| 13 | C22 | 1−14T2+p2T4 |
| 17 | C22 | 1+6T+19T2+6pT3+p2T4 |
| 19 | C22 | 1+12T+67T2+12pT3+p2T4 |
| 23 | C22 | 1−3T+26T2−3pT3+p2T4 |
| 29 | C22 | 1−55T2+p2T4 |
| 31 | C22 | 1+6T+43T2+6pT3+p2T4 |
| 37 | C22 | 1+4T−21T2+4pT3+p2T4 |
| 41 | C2 | (1+3T+pT2)2 |
| 43 | C2 | (1−T+pT2)2 |
| 47 | C22 | 1−pT2+p2T4 |
| 53 | C22 | 1+pT2+p2T4 |
| 59 | C22 | 1−pT2+p2T4 |
| 61 | C22 | 1+9T+88T2+9pT3+p2T4 |
| 67 | C22 | 1−13T+102T2−13pT3+p2T4 |
| 71 | C22 | 1−94T2+p2T4 |
| 73 | C22 | 1−6T+85T2−6pT3+p2T4 |
| 79 | C22 | 1−16T+177T2−16pT3+p2T4 |
| 83 | C2 | (1+9T+pT2)2 |
| 89 | C22 | 1+3T−80T2+3pT3+p2T4 |
| 97 | C22 | 1−86T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.86030469335877291228631811314, −12.81278060750407138636131065364, −12.70460821430385747282035445610, −11.68384543798572901545518948867, −10.88671961733396961010145934687, −10.79937734987930125606157001943, −10.20478907525436304041427489254, −10.07409954279382640044032862993, −8.983541384324832939876145785173, −8.974408970577501580761814618917, −8.102770939601159033698036488876, −7.43357468040600120656989299546, −6.59014411661458313488026358895, −6.57616908830316756187719347272, −5.65540329908988067541756759561, −4.82403773402819725151125010044, −3.81214811365540460137061738021, −2.37166676432777566319260691004, 0, 0,
2.37166676432777566319260691004, 3.81214811365540460137061738021, 4.82403773402819725151125010044, 5.65540329908988067541756759561, 6.57616908830316756187719347272, 6.59014411661458313488026358895, 7.43357468040600120656989299546, 8.102770939601159033698036488876, 8.974408970577501580761814618917, 8.983541384324832939876145785173, 10.07409954279382640044032862993, 10.20478907525436304041427489254, 10.79937734987930125606157001943, 10.88671961733396961010145934687, 11.68384543798572901545518948867, 12.70460821430385747282035445610, 12.81278060750407138636131065364, 12.86030469335877291228631811314