L(s) = 1 | + 4-s − 2·5-s + 4·7-s − 3·9-s − 3·16-s + 12·17-s − 2·20-s + 3·25-s + 4·28-s − 8·35-s − 3·36-s − 4·37-s + 12·41-s − 16·43-s + 6·45-s − 24·47-s + 9·49-s − 24·59-s − 12·63-s − 7·64-s + 16·67-s + 12·68-s + 16·79-s + 6·80-s + 9·81-s − 24·85-s + 12·89-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 0.894·5-s + 1.51·7-s − 9-s − 3/4·16-s + 2.91·17-s − 0.447·20-s + 3/5·25-s + 0.755·28-s − 1.35·35-s − 1/2·36-s − 0.657·37-s + 1.87·41-s − 2.43·43-s + 0.894·45-s − 3.50·47-s + 9/7·49-s − 3.12·59-s − 1.51·63-s − 7/8·64-s + 1.95·67-s + 1.45·68-s + 1.80·79-s + 0.670·80-s + 81-s − 2.60·85-s + 1.27·89-s + ⋯ |
Λ(s)=(=(11025s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(11025s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
11025
= 32⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
0.702963 |
Root analytic conductor: |
0.915657 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 11025, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.082695022 |
L(21) |
≈ |
1.082695022 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | 1+pT2 |
| 5 | C1 | (1+T)2 |
| 7 | C2 | 1−4T+pT2 |
good | 2 | C22 | 1−T2+p2T4 |
| 11 | C22 | 1−10T2+p2T4 |
| 13 | C2 | (1−pT2)2 |
| 17 | C2 | (1−6T+pT2)2 |
| 19 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 23 | C22 | 1−34T2+p2T4 |
| 29 | C22 | 1−10T2+p2T4 |
| 31 | C22 | 1−50T2+p2T4 |
| 37 | C2 | (1+2T+pT2)2 |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C2 | (1+8T+pT2)2 |
| 47 | C2 | (1+12T+pT2)2 |
| 53 | C2 | (1−pT2)2 |
| 59 | C2 | (1+12T+pT2)2 |
| 61 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 67 | C2 | (1−8T+pT2)2 |
| 71 | C22 | 1−130T2+p2T4 |
| 73 | C22 | 1−98T2+p2T4 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C22 | 1−146T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.44085454038547082654550860093, −13.75691866366674629273059850121, −12.82009214947011327893698412020, −12.26108891185029541558057106982, −11.73201949777095029447336782148, −11.58250802746344809847045416066, −11.02441236922778163076569590742, −10.55467498088450060964845520155, −9.769668520548840763317123178411, −9.150575487050004757995450630884, −8.253625310433564150149755056434, −7.899835355812656162524348600013, −7.78988597368559588077758915153, −6.77936700043949431351337836028, −6.07563044325703369545735779630, −5.05964223157965452541194320082, −4.96741107106739787117608112172, −3.63401856002163203666662374263, −3.02106091710520419118583338891, −1.60623861147945947594658943182,
1.60623861147945947594658943182, 3.02106091710520419118583338891, 3.63401856002163203666662374263, 4.96741107106739787117608112172, 5.05964223157965452541194320082, 6.07563044325703369545735779630, 6.77936700043949431351337836028, 7.78988597368559588077758915153, 7.899835355812656162524348600013, 8.253625310433564150149755056434, 9.150575487050004757995450630884, 9.769668520548840763317123178411, 10.55467498088450060964845520155, 11.02441236922778163076569590742, 11.58250802746344809847045416066, 11.73201949777095029447336782148, 12.26108891185029541558057106982, 12.82009214947011327893698412020, 13.75691866366674629273059850121, 14.44085454038547082654550860093