Properties

Label 4-105e2-1.1-c7e2-0-0
Degree $4$
Conductor $11025$
Sign $1$
Analytic cond. $1075.86$
Root an. cond. $5.72716$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·2-s + 54·3-s − 20·4-s + 250·5-s − 648·6-s + 686·7-s + 672·8-s + 2.18e3·9-s − 3.00e3·10-s − 1.09e4·11-s − 1.08e3·12-s − 2.79e3·13-s − 8.23e3·14-s + 1.35e4·15-s − 2.73e3·16-s − 8.28e3·17-s − 2.62e4·18-s − 8.09e3·19-s − 5.00e3·20-s + 3.70e4·21-s + 1.31e5·22-s − 9.09e4·23-s + 3.62e4·24-s + 4.68e4·25-s + 3.35e4·26-s + 7.87e4·27-s − 1.37e4·28-s + ⋯
L(s)  = 1  − 1.06·2-s + 1.15·3-s − 0.156·4-s + 0.894·5-s − 1.22·6-s + 0.755·7-s + 0.464·8-s + 9-s − 0.948·10-s − 2.48·11-s − 0.180·12-s − 0.352·13-s − 0.801·14-s + 1.03·15-s − 0.166·16-s − 0.408·17-s − 1.06·18-s − 0.270·19-s − 0.139·20-s + 0.872·21-s + 2.63·22-s − 1.55·23-s + 0.535·24-s + 3/5·25-s + 0.374·26-s + 0.769·27-s − 0.118·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(11025\)    =    \(3^{2} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1075.86\)
Root analytic conductor: \(5.72716\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 11025,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - p^{3} T )^{2} \)
5$C_1$ \( ( 1 - p^{3} T )^{2} \)
7$C_1$ \( ( 1 - p^{3} T )^{2} \)
good2$D_{4}$ \( 1 + 3 p^{2} T + 41 p^{2} T^{2} + 3 p^{9} T^{3} + p^{14} T^{4} \)
11$D_{4}$ \( 1 + 10976 T + 68803686 T^{2} + 10976 p^{7} T^{3} + p^{14} T^{4} \)
13$D_{4}$ \( 1 + 2796 T + 126859566 T^{2} + 2796 p^{7} T^{3} + p^{14} T^{4} \)
17$D_{4}$ \( 1 + 8284 T + 47624614 p T^{2} + 8284 p^{7} T^{3} + p^{14} T^{4} \)
19$D_{4}$ \( 1 + 8096 T + 1803475414 T^{2} + 8096 p^{7} T^{3} + p^{14} T^{4} \)
23$D_{4}$ \( 1 + 90976 T + 7977553070 T^{2} + 90976 p^{7} T^{3} + p^{14} T^{4} \)
29$D_{4}$ \( 1 + 12532 T + 31965988526 T^{2} + 12532 p^{7} T^{3} + p^{14} T^{4} \)
31$D_{4}$ \( 1 + 117960 T + 9090248910 T^{2} + 117960 p^{7} T^{3} + p^{14} T^{4} \)
37$D_{4}$ \( 1 + 174212 T + 106259379454 T^{2} + 174212 p^{7} T^{3} + p^{14} T^{4} \)
41$D_{4}$ \( 1 + 492700 T + 358124883062 T^{2} + 492700 p^{7} T^{3} + p^{14} T^{4} \)
43$D_{4}$ \( 1 + 661176 T + 502549980726 T^{2} + 661176 p^{7} T^{3} + p^{14} T^{4} \)
47$D_{4}$ \( 1 + 1675408 T + 1714888352190 T^{2} + 1675408 p^{7} T^{3} + p^{14} T^{4} \)
53$D_{4}$ \( 1 + 555436 T - 793299419970 T^{2} + 555436 p^{7} T^{3} + p^{14} T^{4} \)
59$D_{4}$ \( 1 + 3121176 T + 6648375612854 T^{2} + 3121176 p^{7} T^{3} + p^{14} T^{4} \)
61$D_{4}$ \( 1 + 511588 T + 1747585779726 T^{2} + 511588 p^{7} T^{3} + p^{14} T^{4} \)
67$D_{4}$ \( 1 + 252728 T + 12123587827590 T^{2} + 252728 p^{7} T^{3} + p^{14} T^{4} \)
71$D_{4}$ \( 1 + 1099336 T + 18156240823806 T^{2} + 1099336 p^{7} T^{3} + p^{14} T^{4} \)
73$D_{4}$ \( 1 - 5012588 T + 28363475914198 T^{2} - 5012588 p^{7} T^{3} + p^{14} T^{4} \)
79$D_{4}$ \( 1 - 83648 T + 38379183136222 T^{2} - 83648 p^{7} T^{3} + p^{14} T^{4} \)
83$D_{4}$ \( 1 + 4404184 T + 30645544257030 T^{2} + 4404184 p^{7} T^{3} + p^{14} T^{4} \)
89$D_{4}$ \( 1 + 4381564 T + 93146164629590 T^{2} + 4381564 p^{7} T^{3} + p^{14} T^{4} \)
97$D_{4}$ \( 1 + 8539828 T + 4428577747174 T^{2} + 8539828 p^{7} T^{3} + p^{14} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.23107327955428078505588443207, −11.41012945784341050027251651536, −10.62583505301402662394441528983, −10.34688336473285712867502854354, −9.701101184568594692011608215984, −9.621349777941533985981367704140, −8.595108553937894798103835727892, −8.465802402483926236510824704457, −7.916065177931350363735154918886, −7.56292576532902279117260788537, −6.64404285394586224726158658695, −5.79593439519103874850396460804, −4.86391845645128256096464571519, −4.79404598866282585148191269664, −3.45991199962996539324213027092, −2.70658491673205986314339038043, −2.01088633621629174042378525279, −1.58871829284713238397027166937, 0, 0, 1.58871829284713238397027166937, 2.01088633621629174042378525279, 2.70658491673205986314339038043, 3.45991199962996539324213027092, 4.79404598866282585148191269664, 4.86391845645128256096464571519, 5.79593439519103874850396460804, 6.64404285394586224726158658695, 7.56292576532902279117260788537, 7.916065177931350363735154918886, 8.465802402483926236510824704457, 8.595108553937894798103835727892, 9.621349777941533985981367704140, 9.701101184568594692011608215984, 10.34688336473285712867502854354, 10.62583505301402662394441528983, 11.41012945784341050027251651536, 12.23107327955428078505588443207

Graph of the $Z$-function along the critical line