L(s) = 1 | − 12·2-s + 54·3-s − 20·4-s + 250·5-s − 648·6-s + 686·7-s + 672·8-s + 2.18e3·9-s − 3.00e3·10-s − 1.09e4·11-s − 1.08e3·12-s − 2.79e3·13-s − 8.23e3·14-s + 1.35e4·15-s − 2.73e3·16-s − 8.28e3·17-s − 2.62e4·18-s − 8.09e3·19-s − 5.00e3·20-s + 3.70e4·21-s + 1.31e5·22-s − 9.09e4·23-s + 3.62e4·24-s + 4.68e4·25-s + 3.35e4·26-s + 7.87e4·27-s − 1.37e4·28-s + ⋯ |
L(s) = 1 | − 1.06·2-s + 1.15·3-s − 0.156·4-s + 0.894·5-s − 1.22·6-s + 0.755·7-s + 0.464·8-s + 9-s − 0.948·10-s − 2.48·11-s − 0.180·12-s − 0.352·13-s − 0.801·14-s + 1.03·15-s − 0.166·16-s − 0.408·17-s − 1.06·18-s − 0.270·19-s − 0.139·20-s + 0.872·21-s + 2.63·22-s − 1.55·23-s + 0.535·24-s + 3/5·25-s + 0.374·26-s + 0.769·27-s − 0.118·28-s + ⋯ |
Λ(s)=(=(11025s/2ΓC(s)2L(s)Λ(8−s)
Λ(s)=(=(11025s/2ΓC(s+7/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
11025
= 32⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
1075.86 |
Root analytic conductor: |
5.72716 |
Motivic weight: |
7 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 11025, ( :7/2,7/2), 1)
|
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1−p3T)2 |
| 5 | C1 | (1−p3T)2 |
| 7 | C1 | (1−p3T)2 |
good | 2 | D4 | 1+3p2T+41p2T2+3p9T3+p14T4 |
| 11 | D4 | 1+10976T+68803686T2+10976p7T3+p14T4 |
| 13 | D4 | 1+2796T+126859566T2+2796p7T3+p14T4 |
| 17 | D4 | 1+8284T+47624614pT2+8284p7T3+p14T4 |
| 19 | D4 | 1+8096T+1803475414T2+8096p7T3+p14T4 |
| 23 | D4 | 1+90976T+7977553070T2+90976p7T3+p14T4 |
| 29 | D4 | 1+12532T+31965988526T2+12532p7T3+p14T4 |
| 31 | D4 | 1+117960T+9090248910T2+117960p7T3+p14T4 |
| 37 | D4 | 1+174212T+106259379454T2+174212p7T3+p14T4 |
| 41 | D4 | 1+492700T+358124883062T2+492700p7T3+p14T4 |
| 43 | D4 | 1+661176T+502549980726T2+661176p7T3+p14T4 |
| 47 | D4 | 1+1675408T+1714888352190T2+1675408p7T3+p14T4 |
| 53 | D4 | 1+555436T−793299419970T2+555436p7T3+p14T4 |
| 59 | D4 | 1+3121176T+6648375612854T2+3121176p7T3+p14T4 |
| 61 | D4 | 1+511588T+1747585779726T2+511588p7T3+p14T4 |
| 67 | D4 | 1+252728T+12123587827590T2+252728p7T3+p14T4 |
| 71 | D4 | 1+1099336T+18156240823806T2+1099336p7T3+p14T4 |
| 73 | D4 | 1−5012588T+28363475914198T2−5012588p7T3+p14T4 |
| 79 | D4 | 1−83648T+38379183136222T2−83648p7T3+p14T4 |
| 83 | D4 | 1+4404184T+30645544257030T2+4404184p7T3+p14T4 |
| 89 | D4 | 1+4381564T+93146164629590T2+4381564p7T3+p14T4 |
| 97 | D4 | 1+8539828T+4428577747174T2+8539828p7T3+p14T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.23107327955428078505588443207, −11.41012945784341050027251651536, −10.62583505301402662394441528983, −10.34688336473285712867502854354, −9.701101184568594692011608215984, −9.621349777941533985981367704140, −8.595108553937894798103835727892, −8.465802402483926236510824704457, −7.916065177931350363735154918886, −7.56292576532902279117260788537, −6.64404285394586224726158658695, −5.79593439519103874850396460804, −4.86391845645128256096464571519, −4.79404598866282585148191269664, −3.45991199962996539324213027092, −2.70658491673205986314339038043, −2.01088633621629174042378525279, −1.58871829284713238397027166937, 0, 0,
1.58871829284713238397027166937, 2.01088633621629174042378525279, 2.70658491673205986314339038043, 3.45991199962996539324213027092, 4.79404598866282585148191269664, 4.86391845645128256096464571519, 5.79593439519103874850396460804, 6.64404285394586224726158658695, 7.56292576532902279117260788537, 7.916065177931350363735154918886, 8.465802402483926236510824704457, 8.595108553937894798103835727892, 9.621349777941533985981367704140, 9.701101184568594692011608215984, 10.34688336473285712867502854354, 10.62583505301402662394441528983, 11.41012945784341050027251651536, 12.23107327955428078505588443207