L(s) = 1 | − 2·2-s + 3·4-s + 5-s − 5·7-s − 4·8-s − 2·10-s + 5·11-s + 10·14-s + 5·16-s − 4·17-s − 8·19-s + 3·20-s − 10·22-s − 4·23-s + 5·25-s − 15·28-s − 5·29-s + 6·31-s − 6·32-s + 8·34-s − 5·35-s + 4·37-s + 16·38-s − 4·40-s − 2·43-s + 15·44-s + 8·46-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s + 0.447·5-s − 1.88·7-s − 1.41·8-s − 0.632·10-s + 1.50·11-s + 2.67·14-s + 5/4·16-s − 0.970·17-s − 1.83·19-s + 0.670·20-s − 2.13·22-s − 0.834·23-s + 25-s − 2.83·28-s − 0.928·29-s + 1.07·31-s − 1.06·32-s + 1.37·34-s − 0.845·35-s + 0.657·37-s + 2.59·38-s − 0.632·40-s − 0.304·43-s + 2.26·44-s + 1.17·46-s + ⋯ |
Λ(s)=(=(1285956s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1285956s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1285956
= 22⋅38⋅72
|
Sign: |
1
|
Analytic conductor: |
81.9936 |
Root analytic conductor: |
3.00915 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1285956, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.5436923444 |
L(21) |
≈ |
0.5436923444 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 3 | | 1 |
| 7 | C2 | 1+5T+pT2 |
good | 5 | C22 | 1−T−4T2−pT3+p2T4 |
| 11 | C22 | 1−5T+14T2−5pT3+p2T4 |
| 13 | C22 | 1−pT2+p2T4 |
| 17 | C22 | 1+4T−T2+4pT3+p2T4 |
| 19 | C2 | (1+T+pT2)(1+7T+pT2) |
| 23 | C22 | 1+4T−7T2+4pT3+p2T4 |
| 29 | C22 | 1+5T−4T2+5pT3+p2T4 |
| 31 | C2 | (1−3T+pT2)2 |
| 37 | C22 | 1−4T−21T2−4pT3+p2T4 |
| 41 | C22 | 1−pT2+p2T4 |
| 43 | C22 | 1+2T−39T2+2pT3+p2T4 |
| 47 | C2 | (1−6T+pT2)2 |
| 53 | C22 | 1+9T+28T2+9pT3+p2T4 |
| 59 | C2 | (1−11T+pT2)2 |
| 61 | C2 | (1+6T+pT2)2 |
| 67 | C2 | (1+2T+pT2)2 |
| 71 | C2 | (1+2T+pT2)2 |
| 73 | C2 | (1−7T+pT2)(1+17T+pT2) |
| 79 | C2 | (1−3T+pT2)2 |
| 83 | C22 | 1+7T−34T2+7pT3+p2T4 |
| 89 | C22 | 1+6T−53T2+6pT3+p2T4 |
| 97 | C22 | 1+7T−48T2+7pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.840462188827719874446867679209, −9.649022718894528597203314728578, −9.212879486606263588610389039542, −8.766752875597712008886375625666, −8.679389745117110926165653873899, −8.246795330553539931853325491137, −7.40192486737818341742223158679, −7.04444614829709831000873990967, −6.83237166736305553226023105055, −6.21493109140247131124802962384, −6.09797370327935468571856435792, −5.88960415092835783548164444614, −4.78199494654529479242810511242, −4.15497241411548340926350688589, −3.85728875618723341816388641216, −3.15630869334358871749293131531, −2.52381867671227407277573328748, −2.15700104508673027605128167644, −1.32990217166099898527693036394, −0.42027559159147366791037994264,
0.42027559159147366791037994264, 1.32990217166099898527693036394, 2.15700104508673027605128167644, 2.52381867671227407277573328748, 3.15630869334358871749293131531, 3.85728875618723341816388641216, 4.15497241411548340926350688589, 4.78199494654529479242810511242, 5.88960415092835783548164444614, 6.09797370327935468571856435792, 6.21493109140247131124802962384, 6.83237166736305553226023105055, 7.04444614829709831000873990967, 7.40192486737818341742223158679, 8.246795330553539931853325491137, 8.679389745117110926165653873899, 8.766752875597712008886375625666, 9.212879486606263588610389039542, 9.649022718894528597203314728578, 9.840462188827719874446867679209