L(s) = 1 | + 2·2-s − 4-s − 8·8-s + 4·11-s − 7·16-s + 8·22-s + 12·23-s + 6·25-s + 4·29-s + 14·32-s + 6·37-s − 2·43-s − 4·44-s + 24·46-s + 12·50-s − 12·53-s + 8·58-s + 35·64-s + 14·67-s + 12·74-s + 22·79-s − 4·86-s − 32·88-s − 12·92-s − 6·100-s − 24·106-s + 4·107-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1/2·4-s − 2.82·8-s + 1.20·11-s − 7/4·16-s + 1.70·22-s + 2.50·23-s + 6/5·25-s + 0.742·29-s + 2.47·32-s + 0.986·37-s − 0.304·43-s − 0.603·44-s + 3.53·46-s + 1.69·50-s − 1.64·53-s + 1.05·58-s + 35/8·64-s + 1.71·67-s + 1.39·74-s + 2.47·79-s − 0.431·86-s − 3.41·88-s − 1.25·92-s − 3/5·100-s − 2.33·106-s + 0.386·107-s + ⋯ |
Λ(s)=(=(1750329s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1750329s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1750329
= 36⋅74
|
Sign: |
1
|
Analytic conductor: |
111.602 |
Root analytic conductor: |
3.25026 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1750329, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.453510555 |
L(21) |
≈ |
3.453510555 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 7 | | 1 |
good | 2 | C2 | (1−T+pT2)2 |
| 5 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C2 | (1−2T+pT2)2 |
| 13 | C2 | (1−T+pT2)(1+T+pT2) |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1−6T+pT2)2 |
| 29 | C2 | (1−2T+pT2)2 |
| 31 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 37 | C2 | (1−3T+pT2)2 |
| 41 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 43 | C2 | (1+T+pT2)2 |
| 47 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 53 | C2 | (1+6T+pT2)2 |
| 59 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 61 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 67 | C2 | (1−7T+pT2)2 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 79 | C2 | (1−11T+pT2)2 |
| 83 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 89 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 97 | C2 | (1−9T+pT2)(1+9T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.067909489204395286784670333572, −7.11526166228041896275075317849, −6.78261162248354124290134429986, −6.37671245558863001404255472344, −6.12925157788915884361808029641, −5.38139354530853751865276991486, −5.05817222407614461034531924213, −4.76511557511489897608661805160, −4.43082498076330884740103768112, −3.72686733644268071328326458986, −3.52186169060206671850993551259, −2.92845750765415073814212919525, −2.54451141824192601627591727152, −1.24852865204000807532187370775, −0.72695453395181431252401129496,
0.72695453395181431252401129496, 1.24852865204000807532187370775, 2.54451141824192601627591727152, 2.92845750765415073814212919525, 3.52186169060206671850993551259, 3.72686733644268071328326458986, 4.43082498076330884740103768112, 4.76511557511489897608661805160, 5.05817222407614461034531924213, 5.38139354530853751865276991486, 6.12925157788915884361808029641, 6.37671245558863001404255472344, 6.78261162248354124290134429986, 7.11526166228041896275075317849, 8.067909489204395286784670333572