L(s) = 1 | + 4·2-s + 12·4-s + 32·8-s + 18·9-s + 80·16-s + 72·18-s − 48·25-s − 80·29-s + 192·32-s + 216·36-s − 48·37-s − 192·50-s − 180·53-s − 320·58-s + 448·64-s + 576·72-s − 192·74-s + 243·81-s − 576·100-s − 720·106-s + 240·109-s + 60·113-s − 960·116-s + 242·121-s + 127-s + 1.02e3·128-s + 131-s + ⋯ |
L(s) = 1 | + 2·2-s + 3·4-s + 4·8-s + 2·9-s + 5·16-s + 4·18-s − 1.91·25-s − 2.75·29-s + 6·32-s + 6·36-s − 1.29·37-s − 3.83·50-s − 3.39·53-s − 5.51·58-s + 7·64-s + 8·72-s − 2.59·74-s + 3·81-s − 5.75·100-s − 6.79·106-s + 2.20·109-s + 0.530·113-s − 8.27·116-s + 2·121-s + 0.00787·127-s + 8·128-s + 0.00763·131-s + ⋯ |
Λ(s)=(=(38416s/2ΓC(s)2L(s)Λ(3−s)
Λ(s)=(=(38416s/2ΓC(s+1)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
38416
= 24⋅74
|
Sign: |
1
|
Analytic conductor: |
28.5221 |
Root analytic conductor: |
2.31097 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 38416, ( :1,1), 1)
|
Particular Values
L(23) |
≈ |
8.468897605 |
L(21) |
≈ |
8.468897605 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−pT)2 |
| 7 | | 1 |
good | 3 | C1×C1 | (1−pT)2(1+pT)2 |
| 5 | C22 | 1+48T2+p4T4 |
| 11 | C1×C1 | (1−pT)2(1+pT)2 |
| 13 | C22 | 1−240T2+p4T4 |
| 17 | C22 | 1−480T2+p4T4 |
| 19 | C1×C1 | (1−pT)2(1+pT)2 |
| 23 | C1×C1 | (1−pT)2(1+pT)2 |
| 29 | C2 | (1+40T+p2T2)2 |
| 31 | C1×C1 | (1−pT)2(1+pT)2 |
| 37 | C2 | (1+24T+p2T2)2 |
| 41 | C22 | 1+1440T2+p4T4 |
| 43 | C1×C1 | (1−pT)2(1+pT)2 |
| 47 | C1×C1 | (1−pT)2(1+pT)2 |
| 53 | C2 | (1+90T+p2T2)2 |
| 59 | C1×C1 | (1−pT)2(1+pT)2 |
| 61 | C22 | 1−2640T2+p4T4 |
| 67 | C1×C1 | (1−pT)2(1+pT)2 |
| 71 | C1×C1 | (1−pT)2(1+pT)2 |
| 73 | C22 | 1−10560T2+p4T4 |
| 79 | C1×C1 | (1−pT)2(1+pT)2 |
| 83 | C1×C1 | (1−pT)2(1+pT)2 |
| 89 | C22 | 1+12480T2+p4T4 |
| 97 | C22 | 1−18720T2+p4T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.50253558320000205952189427732, −12.39654354452379733516005459226, −11.66190909579143122276434895134, −11.20082057830641140824196950599, −10.84251826046443850059361702498, −10.19160565300150037263457094531, −9.754399874224431765245108184445, −9.317593332496501984542966825463, −7.999456689505247356627254791528, −7.73080274000703704474193975056, −7.12699510349989248123107152531, −6.85764733959052772624458418871, −5.97508869433613277027620250328, −5.70540597267753828594049404984, −4.78490339785699574423294206504, −4.46897164182764683599057966275, −3.65858846889893197942071872472, −3.43581985813052847828662029175, −1.86967472601457373171388787514, −1.79550254369905278159745837884,
1.79550254369905278159745837884, 1.86967472601457373171388787514, 3.43581985813052847828662029175, 3.65858846889893197942071872472, 4.46897164182764683599057966275, 4.78490339785699574423294206504, 5.70540597267753828594049404984, 5.97508869433613277027620250328, 6.85764733959052772624458418871, 7.12699510349989248123107152531, 7.73080274000703704474193975056, 7.999456689505247356627254791528, 9.317593332496501984542966825463, 9.754399874224431765245108184445, 10.19160565300150037263457094531, 10.84251826046443850059361702498, 11.20082057830641140824196950599, 11.66190909579143122276434895134, 12.39654354452379733516005459226, 12.50253558320000205952189427732