Properties

Label 4-160e2-1.1-c6e2-0-1
Degree $4$
Conductor $25600$
Sign $1$
Analytic cond. $1354.87$
Root an. cond. $6.06701$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 88·5-s + 2.41e3·13-s + 1.07e4·17-s − 7.88e3·25-s + 2.92e4·37-s + 2.17e5·41-s + 2.66e5·53-s + 7.76e5·61-s + 2.12e5·65-s + 1.07e6·73-s − 5.31e5·81-s + 9.47e5·85-s − 3.93e5·97-s + 3.40e6·101-s − 3.78e6·113-s − 3.54e6·121-s − 2.06e6·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2.91e6·169-s + ⋯
L(s)  = 1  + 0.703·5-s + 1.09·13-s + 2.19·17-s − 0.504·25-s + 0.577·37-s + 3.15·41-s + 1.79·53-s + 3.42·61-s + 0.773·65-s + 2.77·73-s − 81-s + 1.54·85-s − 0.431·97-s + 3.30·101-s − 2.62·113-s − 2·121-s − 1.05·125-s + 0.603·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25600 ^{s/2} \, \Gamma_{\C}(s+3)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(25600\)    =    \(2^{10} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(1354.87\)
Root analytic conductor: \(6.06701\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 25600,\ (\ :3, 3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(5.062536509\)
\(L(\frac12)\) \(\approx\) \(5.062536509\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 - 88 T + p^{6} T^{2} \)
good3$C_2^2$ \( 1 + p^{12} T^{4} \)
7$C_2^2$ \( 1 + p^{12} T^{4} \)
11$C_2$ \( ( 1 + p^{6} T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4070 T + p^{6} T^{2} )( 1 + 1656 T + p^{6} T^{2} ) \)
17$C_2$ \( ( 1 - 9776 T + p^{6} T^{2} )( 1 - 990 T + p^{6} T^{2} ) \)
19$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
23$C_2^2$ \( 1 + p^{12} T^{4} \)
29$C_2$ \( ( 1 - 31878 T + p^{6} T^{2} )( 1 + 31878 T + p^{6} T^{2} ) \)
31$C_2$ \( ( 1 + p^{6} T^{2} )^{2} \)
37$C_2$ \( ( 1 - 84744 T + p^{6} T^{2} )( 1 + 55510 T + p^{6} T^{2} ) \)
41$C_2$ \( ( 1 - 108560 T + p^{6} T^{2} )^{2} \)
43$C_2^2$ \( 1 + p^{12} T^{4} \)
47$C_2^2$ \( 1 + p^{12} T^{4} \)
53$C_2$ \( ( 1 - 296296 T + p^{6} T^{2} )( 1 + 29430 T + p^{6} T^{2} ) \)
59$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
61$C_2$ \( ( 1 - 388440 T + p^{6} T^{2} )^{2} \)
67$C_2^2$ \( 1 + p^{12} T^{4} \)
71$C_2$ \( ( 1 + p^{6} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 650016 T + p^{6} T^{2} )( 1 - 427570 T + p^{6} T^{2} ) \)
79$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
83$C_2^2$ \( 1 + p^{12} T^{4} \)
89$C_2$ \( ( 1 - 1378962 T + p^{6} T^{2} )( 1 + 1378962 T + p^{6} T^{2} ) \)
97$C_2$ \( ( 1 - 1078704 T + p^{6} T^{2} )( 1 + 1472510 T + p^{6} T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.77826147724802193678895508889, −11.74903926950078118159650607705, −10.90651481536231729961307332732, −10.55828768908469105864198692976, −9.791716052827979083852667487119, −9.725819439488743672562265660110, −9.012873831689916744092270131356, −8.412016659401069092661961509591, −7.81898226038400046764804939245, −7.47050056225287782711781843014, −6.59675133087085575457141375008, −6.05947591637361310994492279519, −5.54478879738374444127527691169, −5.21273802763326736988995812034, −3.91723425199992899462021158853, −3.82596384975116021717640824623, −2.74794547442634824250810588265, −2.15379884661766649270034891376, −1.05311479467472686699189203650, −0.841774997991425983080826553616, 0.841774997991425983080826553616, 1.05311479467472686699189203650, 2.15379884661766649270034891376, 2.74794547442634824250810588265, 3.82596384975116021717640824623, 3.91723425199992899462021158853, 5.21273802763326736988995812034, 5.54478879738374444127527691169, 6.05947591637361310994492279519, 6.59675133087085575457141375008, 7.47050056225287782711781843014, 7.81898226038400046764804939245, 8.412016659401069092661961509591, 9.012873831689916744092270131356, 9.725819439488743672562265660110, 9.791716052827979083852667487119, 10.55828768908469105864198692976, 10.90651481536231729961307332732, 11.74903926950078118159650607705, 11.77826147724802193678895508889

Graph of the $Z$-function along the critical line