L(s) = 1 | + 88·5-s + 2.41e3·13-s + 1.07e4·17-s − 7.88e3·25-s + 2.92e4·37-s + 2.17e5·41-s + 2.66e5·53-s + 7.76e5·61-s + 2.12e5·65-s + 1.07e6·73-s − 5.31e5·81-s + 9.47e5·85-s − 3.93e5·97-s + 3.40e6·101-s − 3.78e6·113-s − 3.54e6·121-s − 2.06e6·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2.91e6·169-s + ⋯ |
L(s) = 1 | + 0.703·5-s + 1.09·13-s + 2.19·17-s − 0.504·25-s + 0.577·37-s + 3.15·41-s + 1.79·53-s + 3.42·61-s + 0.773·65-s + 2.77·73-s − 81-s + 1.54·85-s − 0.431·97-s + 3.30·101-s − 2.62·113-s − 2·121-s − 1.05·125-s + 0.603·169-s + ⋯ |
Λ(s)=(=(25600s/2ΓC(s)2L(s)Λ(7−s)
Λ(s)=(=(25600s/2ΓC(s+3)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
25600
= 210⋅52
|
Sign: |
1
|
Analytic conductor: |
1354.87 |
Root analytic conductor: |
6.06701 |
Motivic weight: |
6 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 25600, ( :3,3), 1)
|
Particular Values
L(27) |
≈ |
5.062536509 |
L(21) |
≈ |
5.062536509 |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1−88T+p6T2 |
good | 3 | C22 | 1+p12T4 |
| 7 | C22 | 1+p12T4 |
| 11 | C2 | (1+p6T2)2 |
| 13 | C2 | (1−4070T+p6T2)(1+1656T+p6T2) |
| 17 | C2 | (1−9776T+p6T2)(1−990T+p6T2) |
| 19 | C1×C1 | (1−p3T)2(1+p3T)2 |
| 23 | C22 | 1+p12T4 |
| 29 | C2 | (1−31878T+p6T2)(1+31878T+p6T2) |
| 31 | C2 | (1+p6T2)2 |
| 37 | C2 | (1−84744T+p6T2)(1+55510T+p6T2) |
| 41 | C2 | (1−108560T+p6T2)2 |
| 43 | C22 | 1+p12T4 |
| 47 | C22 | 1+p12T4 |
| 53 | C2 | (1−296296T+p6T2)(1+29430T+p6T2) |
| 59 | C1×C1 | (1−p3T)2(1+p3T)2 |
| 61 | C2 | (1−388440T+p6T2)2 |
| 67 | C22 | 1+p12T4 |
| 71 | C2 | (1+p6T2)2 |
| 73 | C2 | (1−650016T+p6T2)(1−427570T+p6T2) |
| 79 | C1×C1 | (1−p3T)2(1+p3T)2 |
| 83 | C22 | 1+p12T4 |
| 89 | C2 | (1−1378962T+p6T2)(1+1378962T+p6T2) |
| 97 | C2 | (1−1078704T+p6T2)(1+1472510T+p6T2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.77826147724802193678895508889, −11.74903926950078118159650607705, −10.90651481536231729961307332732, −10.55828768908469105864198692976, −9.791716052827979083852667487119, −9.725819439488743672562265660110, −9.012873831689916744092270131356, −8.412016659401069092661961509591, −7.81898226038400046764804939245, −7.47050056225287782711781843014, −6.59675133087085575457141375008, −6.05947591637361310994492279519, −5.54478879738374444127527691169, −5.21273802763326736988995812034, −3.91723425199992899462021158853, −3.82596384975116021717640824623, −2.74794547442634824250810588265, −2.15379884661766649270034891376, −1.05311479467472686699189203650, −0.841774997991425983080826553616,
0.841774997991425983080826553616, 1.05311479467472686699189203650, 2.15379884661766649270034891376, 2.74794547442634824250810588265, 3.82596384975116021717640824623, 3.91723425199992899462021158853, 5.21273802763326736988995812034, 5.54478879738374444127527691169, 6.05947591637361310994492279519, 6.59675133087085575457141375008, 7.47050056225287782711781843014, 7.81898226038400046764804939245, 8.412016659401069092661961509591, 9.012873831689916744092270131356, 9.725819439488743672562265660110, 9.791716052827979083852667487119, 10.55828768908469105864198692976, 10.90651481536231729961307332732, 11.74903926950078118159650607705, 11.77826147724802193678895508889