Properties

Label 4-2352e2-1.1-c0e2-0-3
Degree $4$
Conductor $5531904$
Sign $1$
Analytic cond. $1.37780$
Root an. cond. $1.08342$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·19-s + 25-s − 27-s + 2·31-s + 2·37-s − 2·57-s + 75-s − 81-s + 2·93-s + 2·103-s − 2·109-s + 2·111-s + 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  + 3-s − 2·19-s + 25-s − 27-s + 2·31-s + 2·37-s − 2·57-s + 75-s − 81-s + 2·93-s + 2·103-s − 2·109-s + 2·111-s + 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5531904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5531904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5531904\)    =    \(2^{8} \cdot 3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(1.37780\)
Root analytic conductor: \(1.08342\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5531904,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.682731761\)
\(L(\frac12)\) \(\approx\) \(1.682731761\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - T + T^{2} \)
7 \( 1 \)
good5$C_2^2$ \( 1 - T^{2} + T^{4} \)
11$C_2^2$ \( 1 - T^{2} + T^{4} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
17$C_2^2$ \( 1 - T^{2} + T^{4} \)
19$C_2$ \( ( 1 + T + T^{2} )^{2} \)
23$C_2^2$ \( 1 - T^{2} + T^{4} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_2$ \( ( 1 - T + T^{2} )^{2} \)
37$C_2$ \( ( 1 - T + T^{2} )^{2} \)
41$C_2$ \( ( 1 + T^{2} )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2^2$ \( 1 - T^{2} + T^{4} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.347913553467959116379971356881, −8.829984375487463093238543542460, −8.620886641361845600039444231418, −8.191822468902443548097144435338, −8.059504669325826181063202993505, −7.51604790775848753725465989904, −7.18155410114895145859927380363, −6.51005196797831603293376521922, −6.28431738649007638057939817588, −6.12154568390454536581049972812, −5.37298834629383443464695512859, −4.92489926098771545132311834879, −4.44880349665391334457367252945, −4.12244356078066379432436476872, −3.73112614678026613213519520011, −2.85487618404965542030039888056, −2.84971420831768090795136390045, −2.29856121296980983520458619846, −1.71918953262364424806938255793, −0.845557552588317244927063311378, 0.845557552588317244927063311378, 1.71918953262364424806938255793, 2.29856121296980983520458619846, 2.84971420831768090795136390045, 2.85487618404965542030039888056, 3.73112614678026613213519520011, 4.12244356078066379432436476872, 4.44880349665391334457367252945, 4.92489926098771545132311834879, 5.37298834629383443464695512859, 6.12154568390454536581049972812, 6.28431738649007638057939817588, 6.51005196797831603293376521922, 7.18155410114895145859927380363, 7.51604790775848753725465989904, 8.059504669325826181063202993505, 8.191822468902443548097144435338, 8.620886641361845600039444231418, 8.829984375487463093238543542460, 9.347913553467959116379971356881

Graph of the $Z$-function along the critical line