Properties

Label 4-2352e2-1.1-c1e2-0-44
Degree $4$
Conductor $5531904$
Sign $1$
Analytic cond. $352.718$
Root an. cond. $4.33368$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 6·5-s + 6·9-s + 18·15-s − 6·17-s + 17·25-s − 9·27-s + 14·37-s − 12·41-s − 8·43-s − 36·45-s + 6·47-s + 18·51-s − 6·59-s − 10·67-s − 51·75-s + 2·79-s + 9·81-s − 24·83-s + 36·85-s + 18·89-s + 18·101-s − 34·109-s − 42·111-s − 5·121-s + 36·123-s − 18·125-s + ⋯
L(s)  = 1  − 1.73·3-s − 2.68·5-s + 2·9-s + 4.64·15-s − 1.45·17-s + 17/5·25-s − 1.73·27-s + 2.30·37-s − 1.87·41-s − 1.21·43-s − 5.36·45-s + 0.875·47-s + 2.52·51-s − 0.781·59-s − 1.22·67-s − 5.88·75-s + 0.225·79-s + 81-s − 2.63·83-s + 3.90·85-s + 1.90·89-s + 1.79·101-s − 3.25·109-s − 3.98·111-s − 0.454·121-s + 3.24·123-s − 1.60·125-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5531904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5531904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5531904\)    =    \(2^{8} \cdot 3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(352.718\)
Root analytic conductor: \(4.33368\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 5531904,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T + p T^{2} \)
7 \( 1 \)
good5$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 5 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 35 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 19 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 79 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
61$C_2^2$ \( 1 + 25 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 146 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.846627195615937834471654949274, −8.260881621114192979309572123975, −7.76067301561830944874172980745, −7.74965789236081186774395995966, −7.27062063980197453505704949253, −6.77760590509000362233881941072, −6.50001199665982583334120459203, −6.28367676954311908126695486635, −5.47522858693247873179393504889, −5.28179898313075499340992032338, −4.51024131722509948981894231522, −4.45026094027893276220404624101, −4.20950183504054508342572519817, −3.62627962375111411256766350452, −3.18093684708761575735433762568, −2.50368180196714403235931239629, −1.60956179076699655136018697458, −0.879943412796931761594590900225, 0, 0, 0.879943412796931761594590900225, 1.60956179076699655136018697458, 2.50368180196714403235931239629, 3.18093684708761575735433762568, 3.62627962375111411256766350452, 4.20950183504054508342572519817, 4.45026094027893276220404624101, 4.51024131722509948981894231522, 5.28179898313075499340992032338, 5.47522858693247873179393504889, 6.28367676954311908126695486635, 6.50001199665982583334120459203, 6.77760590509000362233881941072, 7.27062063980197453505704949253, 7.74965789236081186774395995966, 7.76067301561830944874172980745, 8.260881621114192979309572123975, 8.846627195615937834471654949274

Graph of the $Z$-function along the critical line