L(s) = 1 | − 3·3-s − 6·5-s + 6·9-s + 18·15-s − 6·17-s + 17·25-s − 9·27-s + 14·37-s − 12·41-s − 8·43-s − 36·45-s + 6·47-s + 18·51-s − 6·59-s − 10·67-s − 51·75-s + 2·79-s + 9·81-s − 24·83-s + 36·85-s + 18·89-s + 18·101-s − 34·109-s − 42·111-s − 5·121-s + 36·123-s − 18·125-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 2.68·5-s + 2·9-s + 4.64·15-s − 1.45·17-s + 17/5·25-s − 1.73·27-s + 2.30·37-s − 1.87·41-s − 1.21·43-s − 5.36·45-s + 0.875·47-s + 2.52·51-s − 0.781·59-s − 1.22·67-s − 5.88·75-s + 0.225·79-s + 81-s − 2.63·83-s + 3.90·85-s + 1.90·89-s + 1.79·101-s − 3.25·109-s − 3.98·111-s − 0.454·121-s + 3.24·123-s − 1.60·125-s + ⋯ |
Λ(s)=(=(5531904s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(5531904s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
5531904
= 28⋅32⋅74
|
Sign: |
1
|
Analytic conductor: |
352.718 |
Root analytic conductor: |
4.33368 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 5531904, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+pT+pT2 |
| 7 | | 1 |
good | 5 | C2 | (1+3T+pT2)2 |
| 11 | C22 | 1+5T2+p2T4 |
| 13 | C2 | (1−pT2)2 |
| 17 | C2 | (1+3T+pT2)2 |
| 19 | C22 | 1−35T2+p2T4 |
| 23 | C22 | 1−19T2+p2T4 |
| 29 | C2 | (1−pT2)2 |
| 31 | C2 | (1−11T+pT2)(1+11T+pT2) |
| 37 | C2 | (1−7T+pT2)2 |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C2 | (1−3T+pT2)2 |
| 53 | C22 | 1−79T2+p2T4 |
| 59 | C2 | (1+3T+pT2)2 |
| 61 | C22 | 1+25T2+p2T4 |
| 67 | C2 | (1+5T+pT2)2 |
| 71 | C22 | 1−34T2+p2T4 |
| 73 | C22 | 1+T2+p2T4 |
| 79 | C2 | (1−T+pT2)2 |
| 83 | C2 | (1+12T+pT2)2 |
| 89 | C2 | (1−9T+pT2)2 |
| 97 | C22 | 1−146T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.846627195615937834471654949274, −8.260881621114192979309572123975, −7.76067301561830944874172980745, −7.74965789236081186774395995966, −7.27062063980197453505704949253, −6.77760590509000362233881941072, −6.50001199665982583334120459203, −6.28367676954311908126695486635, −5.47522858693247873179393504889, −5.28179898313075499340992032338, −4.51024131722509948981894231522, −4.45026094027893276220404624101, −4.20950183504054508342572519817, −3.62627962375111411256766350452, −3.18093684708761575735433762568, −2.50368180196714403235931239629, −1.60956179076699655136018697458, −0.879943412796931761594590900225, 0, 0,
0.879943412796931761594590900225, 1.60956179076699655136018697458, 2.50368180196714403235931239629, 3.18093684708761575735433762568, 3.62627962375111411256766350452, 4.20950183504054508342572519817, 4.45026094027893276220404624101, 4.51024131722509948981894231522, 5.28179898313075499340992032338, 5.47522858693247873179393504889, 6.28367676954311908126695486635, 6.50001199665982583334120459203, 6.77760590509000362233881941072, 7.27062063980197453505704949253, 7.74965789236081186774395995966, 7.76067301561830944874172980745, 8.260881621114192979309572123975, 8.846627195615937834471654949274