L(s) = 1 | + 16·7-s + 28·17-s − 304·23-s + 138·25-s − 448·31-s + 140·41-s + 672·47-s − 494·49-s − 144·71-s − 588·73-s + 928·79-s − 532·89-s + 1.98e3·97-s − 2.35e3·103-s + 3.42e3·113-s + 448·119-s + 2.41e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s − 4.86e3·161-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 0.863·7-s + 0.399·17-s − 2.75·23-s + 1.10·25-s − 2.59·31-s + 0.533·41-s + 2.08·47-s − 1.44·49-s − 0.240·71-s − 0.942·73-s + 1.32·79-s − 0.633·89-s + 2.08·97-s − 2.24·103-s + 2.84·113-s + 0.345·119-s + 1.81·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s − 2.38·161-s + 0.000480·163-s + 0.000463·167-s + ⋯ |
Λ(s)=(=(82944s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(82944s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
82944
= 210⋅34
|
Sign: |
1
|
Analytic conductor: |
288.746 |
Root analytic conductor: |
4.12220 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 82944, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
2.087481135 |
L(21) |
≈ |
2.087481135 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C22 | 1−138T2+p6T4 |
| 7 | C2 | (1−8T+p3T2)2 |
| 11 | C22 | 1−2410T2+p6T4 |
| 13 | C22 | 1−1594T2+p6T4 |
| 17 | C2 | (1−14T+p3T2)2 |
| 19 | C22 | 1−12346T2+p6T4 |
| 23 | C2 | (1+152T+p3T2)2 |
| 29 | C22 | 1−23578T2+p6T4 |
| 31 | C2 | (1+224T+p3T2)2 |
| 37 | C22 | 1−42058T2+p6T4 |
| 41 | C2 | (1−70T+p3T2)2 |
| 43 | C22 | 1+33878T2+p6T4 |
| 47 | C2 | (1−336T+p3T2)2 |
| 53 | C22 | 1−296746T2+p6T4 |
| 59 | C22 | 1−125130T2+p6T4 |
| 61 | C22 | 1−444890T2+p6T4 |
| 67 | C22 | 1−571034T2+p6T4 |
| 71 | C2 | (1+72T+p3T2)2 |
| 73 | C2 | (1+294T+p3T2)2 |
| 79 | C2 | (1−464T+p3T2)2 |
| 83 | C22 | 1−846522T2+p6T4 |
| 89 | C2 | (1+266T+p3T2)2 |
| 97 | C2 | (1−994T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.50905026458588040193845583089, −11.08809667607036098817194099997, −10.83158076103272159622626065689, −10.11595206648191875139813179680, −9.882038112594304649892676144748, −9.132515518959106249642898717489, −8.799322300174788621536040335678, −8.198969339855747519934614788121, −7.72570470739018124956570362382, −7.39109806090272817479364518718, −6.76704944160135269780785338037, −5.84985551904905678596625356553, −5.80721919713589773528495381596, −5.00570808115154024738561017517, −4.37683703969393919930731561558, −3.84827417093282664065670377297, −3.16123559013333408038601033295, −2.09989410743420151210019375166, −1.71875524449671354734302091813, −0.54128679824374338364716470310,
0.54128679824374338364716470310, 1.71875524449671354734302091813, 2.09989410743420151210019375166, 3.16123559013333408038601033295, 3.84827417093282664065670377297, 4.37683703969393919930731561558, 5.00570808115154024738561017517, 5.80721919713589773528495381596, 5.84985551904905678596625356553, 6.76704944160135269780785338037, 7.39109806090272817479364518718, 7.72570470739018124956570362382, 8.198969339855747519934614788121, 8.799322300174788621536040335678, 9.132515518959106249642898717489, 9.882038112594304649892676144748, 10.11595206648191875139813179680, 10.83158076103272159622626065689, 11.08809667607036098817194099997, 11.50905026458588040193845583089