Properties

Label 4-2e12-1.1-c9e2-0-0
Degree $4$
Conductor $4096$
Sign $1$
Analytic cond. $1086.51$
Root an. cond. $5.74127$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.26e3·9-s − 1.19e6·17-s + 3.90e6·25-s + 6.86e7·41-s − 8.07e7·49-s + 8.44e8·73-s − 3.76e8·81-s − 2.17e9·89-s − 3.47e9·97-s + 2.29e9·113-s + 3.54e8·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 3.90e9·153-s + 157-s + 163-s + 167-s + 2.12e10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 0.165·9-s − 3.47·17-s + 2·25-s + 3.79·41-s − 2·49-s + 3.48·73-s − 0.972·81-s − 3.68·89-s − 3.98·97-s + 1.32·113-s + 0.150·121-s − 0.575·153-s + 2·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4096 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4096 ^{s/2} \, \Gamma_{\C}(s+9/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4096\)    =    \(2^{12}\)
Sign: $1$
Analytic conductor: \(1086.51\)
Root analytic conductor: \(5.74127\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4096,\ (\ :9/2, 9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.524857123\)
\(L(\frac12)\) \(\approx\) \(1.524857123\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
good3$C_2^2$ \( 1 - 3266 T^{2} + p^{18} T^{4} \)
5$C_2$ \( ( 1 - p^{9} T^{2} )^{2} \)
7$C_2$ \( ( 1 + p^{9} T^{2} )^{2} \)
11$C_2^2$ \( 1 - 354349618 T^{2} + p^{18} T^{4} \)
13$C_2$ \( ( 1 - p^{9} T^{2} )^{2} \)
17$C_2$ \( ( 1 + 597510 T + p^{9} T^{2} )^{2} \)
19$C_2^2$ \( 1 + 335013705758 T^{2} + p^{18} T^{4} \)
23$C_2$ \( ( 1 + p^{9} T^{2} )^{2} \)
29$C_2$ \( ( 1 - p^{9} T^{2} )^{2} \)
31$C_2$ \( ( 1 + p^{9} T^{2} )^{2} \)
37$C_2$ \( ( 1 - p^{9} T^{2} )^{2} \)
41$C_2$ \( ( 1 - 34306362 T + p^{9} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 1000250360894414 T^{2} + p^{18} T^{4} \)
47$C_2$ \( ( 1 + p^{9} T^{2} )^{2} \)
53$C_2$ \( ( 1 - p^{9} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 10228968070290322 T^{2} + p^{18} T^{4} \)
61$C_2$ \( ( 1 - p^{9} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 50467064407716994 T^{2} + p^{18} T^{4} \)
71$C_2$ \( ( 1 + p^{9} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 422324930 T + p^{9} T^{2} )^{2} \)
79$C_2$ \( ( 1 + p^{9} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 352960460737558306 T^{2} + p^{18} T^{4} \)
89$C_2$ \( ( 1 + 1089849006 T + p^{9} T^{2} )^{2} \)
97$C_2$ \( ( 1 + 1738254710 T + p^{9} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.03053767191208780186927824832, −12.84807370069876657290302759418, −12.44569336412597739285527916548, −11.17959200870430913064695055609, −11.10182810663012250082376202368, −10.83605369447645095706114592366, −9.646495822014850831218031628157, −9.309392875949209074459744187050, −8.647711668414114287852455210837, −8.185301553968613984526440695682, −7.16589091104376074649291661184, −6.71951468053183707218970546615, −6.22661171593006831491305194470, −5.19643130760178539449584535426, −4.43973078790012342746311078659, −4.11444714593756977299677698945, −2.76251509808669956280400975647, −2.37513433198687195154446743481, −1.33148871414915706942241167858, −0.38656767958788163960738348630, 0.38656767958788163960738348630, 1.33148871414915706942241167858, 2.37513433198687195154446743481, 2.76251509808669956280400975647, 4.11444714593756977299677698945, 4.43973078790012342746311078659, 5.19643130760178539449584535426, 6.22661171593006831491305194470, 6.71951468053183707218970546615, 7.16589091104376074649291661184, 8.185301553968613984526440695682, 8.647711668414114287852455210837, 9.309392875949209074459744187050, 9.646495822014850831218031628157, 10.83605369447645095706114592366, 11.10182810663012250082376202368, 11.17959200870430913064695055609, 12.44569336412597739285527916548, 12.84807370069876657290302759418, 13.03053767191208780186927824832

Graph of the $Z$-function along the critical line