L(s) = 1 | − 3-s + 4-s + 7-s + 9-s − 12-s − 4·13-s − 3·16-s + 3·19-s − 21-s + 2·25-s − 27-s + 28-s + 36-s − 12·37-s + 4·39-s − 8·43-s + 3·48-s − 6·49-s − 4·52-s − 3·57-s + 20·61-s + 63-s − 7·64-s − 8·67-s + 4·73-s − 2·75-s + 3·76-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/2·4-s + 0.377·7-s + 1/3·9-s − 0.288·12-s − 1.10·13-s − 3/4·16-s + 0.688·19-s − 0.218·21-s + 2/5·25-s − 0.192·27-s + 0.188·28-s + 1/6·36-s − 1.97·37-s + 0.640·39-s − 1.21·43-s + 0.433·48-s − 6/7·49-s − 0.554·52-s − 0.397·57-s + 2.56·61-s + 0.125·63-s − 7/8·64-s − 0.977·67-s + 0.468·73-s − 0.230·75-s + 0.344·76-s + ⋯ |
Λ(s)=(=(3591s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(3591s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
3591
= 33⋅7⋅19
|
Sign: |
1
|
Analytic conductor: |
0.228965 |
Root analytic conductor: |
0.691739 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 3591, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.7175329072 |
L(21) |
≈ |
0.7175329072 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | 1+T |
| 7 | C1×C2 | (1−T)(1+pT2) |
| 19 | C1×C2 | (1+T)(1−4T+pT2) |
good | 2 | C22 | 1−T2+p2T4 |
| 5 | C22 | 1−2T2+p2T4 |
| 11 | C22 | 1−2T2+p2T4 |
| 13 | C2 | (1+2T+pT2)2 |
| 17 | C22 | 1+22T2+p2T4 |
| 23 | C22 | 1−10T2+p2T4 |
| 29 | C22 | 1+6T2+p2T4 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2×C2 | (1+2T+pT2)(1+10T+pT2) |
| 41 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 43 | C2×C2 | (1−4T+pT2)(1+12T+pT2) |
| 47 | C22 | 1+14T2+p2T4 |
| 53 | C2 | (1−pT2)2 |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2×C2 | (1−14T+pT2)(1−6T+pT2) |
| 67 | C2×C2 | (1−4T+pT2)(1+12T+pT2) |
| 71 | C22 | 1−34T2+p2T4 |
| 73 | C2×C2 | (1−10T+pT2)(1+6T+pT2) |
| 79 | C2×C2 | (1−16T+pT2)(1+8T+pT2) |
| 83 | C22 | 1−106T2+p2T4 |
| 89 | C22 | 1−82T2+p2T4 |
| 97 | C2×C2 | (1−18T+pT2)(1−10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.40455669710029462914444723137, −11.95540212762440671293789634833, −11.50241564803008008621431292804, −10.96209673656104862541748065987, −10.23323249431693370205575833354, −9.799114190252748412073333481185, −8.962359067748700101158432842733, −8.271522425507048577984329398951, −7.32472320975423953442563815704, −7.00282080312508626852911634054, −6.20992784451237885601763112834, −5.15770247927932104238955318180, −4.79548037719004453433730782907, −3.43778539088294327646502733438, −2.08672222628823078726316203122,
2.08672222628823078726316203122, 3.43778539088294327646502733438, 4.79548037719004453433730782907, 5.15770247927932104238955318180, 6.20992784451237885601763112834, 7.00282080312508626852911634054, 7.32472320975423953442563815704, 8.271522425507048577984329398951, 8.962359067748700101158432842733, 9.799114190252748412073333481185, 10.23323249431693370205575833354, 10.96209673656104862541748065987, 11.50241564803008008621431292804, 11.95540212762440671293789634833, 12.40455669710029462914444723137