L(s) = 1 | − 7-s − 2·13-s − 4·19-s − 25-s − 31-s − 2·37-s − 43-s + 49-s + 61-s − 67-s − 2·73-s + 2·79-s + 2·91-s − 2·97-s − 103-s − 2·109-s − 121-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 7-s − 2·13-s − 4·19-s − 25-s − 31-s − 2·37-s − 43-s + 49-s + 61-s − 67-s − 2·73-s + 2·79-s + 2·91-s − 2·97-s − 103-s − 2·109-s − 121-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
Λ(s)=(=(15116544s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(15116544s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
15116544
= 28⋅310
|
Sign: |
1
|
Analytic conductor: |
3.76501 |
Root analytic conductor: |
1.39296 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 15116544, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
0.01814828836 |
L(21) |
≈ |
0.01814828836 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C2 | (1−T+T2)(1+T+T2) |
| 7 | C1×C2 | (1+T)2(1−T+T2) |
| 11 | C2 | (1−T+T2)(1+T+T2) |
| 13 | C2 | (1+T+T2)2 |
| 17 | C1×C1 | (1−T)2(1+T)2 |
| 19 | C1 | (1+T)4 |
| 23 | C2 | (1−T+T2)(1+T+T2) |
| 29 | C2 | (1−T+T2)(1+T+T2) |
| 31 | C1×C2 | (1+T)2(1−T+T2) |
| 37 | C2 | (1+T+T2)2 |
| 41 | C2 | (1−T+T2)(1+T+T2) |
| 43 | C1×C2 | (1+T)2(1−T+T2) |
| 47 | C2 | (1−T+T2)(1+T+T2) |
| 53 | C1×C1 | (1−T)2(1+T)2 |
| 59 | C2 | (1−T+T2)(1+T+T2) |
| 61 | C1×C2 | (1−T)2(1+T+T2) |
| 67 | C1×C2 | (1+T)2(1−T+T2) |
| 71 | C1×C1 | (1−T)2(1+T)2 |
| 73 | C2 | (1+T+T2)2 |
| 79 | C2 | (1−T+T2)2 |
| 83 | C2 | (1−T+T2)(1+T+T2) |
| 89 | C1×C1 | (1−T)2(1+T)2 |
| 97 | C2 | (1+T+T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.886808015529885984808044328872, −8.402467183063853393728792728529, −8.252037828279487126816364464705, −7.74440841320050397953276222343, −7.22939508447414411011579154741, −6.88121592284180718574654588969, −6.80933246713742258843350578098, −6.26321941633441879256100865509, −6.00489340793297580582579977728, −5.45078450852989825533104866316, −5.12933924509255600012966557161, −4.62913795408109624020504261532, −4.23420722478004079727463646490, −3.88429480254012451373613415065, −3.54376519921051401387797530369, −2.74842833700036690538867205464, −2.53149522541700497962983290257, −1.94309415356894074357782550771, −1.73211871609483328761125436127, −0.06820835859080096726495461965,
0.06820835859080096726495461965, 1.73211871609483328761125436127, 1.94309415356894074357782550771, 2.53149522541700497962983290257, 2.74842833700036690538867205464, 3.54376519921051401387797530369, 3.88429480254012451373613415065, 4.23420722478004079727463646490, 4.62913795408109624020504261532, 5.12933924509255600012966557161, 5.45078450852989825533104866316, 6.00489340793297580582579977728, 6.26321941633441879256100865509, 6.80933246713742258843350578098, 6.88121592284180718574654588969, 7.22939508447414411011579154741, 7.74440841320050397953276222343, 8.252037828279487126816364464705, 8.402467183063853393728792728529, 8.886808015529885984808044328872