Properties

Label 4-3888e2-1.1-c0e2-0-1
Degree $4$
Conductor $15116544$
Sign $1$
Analytic cond. $3.76501$
Root an. cond. $1.39296$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 2·13-s − 4·19-s − 25-s − 31-s − 2·37-s − 43-s + 49-s + 61-s − 67-s − 2·73-s + 2·79-s + 2·91-s − 2·97-s − 103-s − 2·109-s − 121-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 7-s − 2·13-s − 4·19-s − 25-s − 31-s − 2·37-s − 43-s + 49-s + 61-s − 67-s − 2·73-s + 2·79-s + 2·91-s − 2·97-s − 103-s − 2·109-s − 121-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15116544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15116544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15116544\)    =    \(2^{8} \cdot 3^{10}\)
Sign: $1$
Analytic conductor: \(3.76501\)
Root analytic conductor: \(1.39296\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 15116544,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.01814828836\)
\(L(\frac12)\) \(\approx\) \(0.01814828836\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
7$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_2$ \( ( 1 + T + T^{2} )^{2} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_1$ \( ( 1 + T )^{4} \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
37$C_2$ \( ( 1 + T + T^{2} )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
67$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2$ \( ( 1 + T + T^{2} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )^{2} \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 + T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.886808015529885984808044328872, −8.402467183063853393728792728529, −8.252037828279487126816364464705, −7.74440841320050397953276222343, −7.22939508447414411011579154741, −6.88121592284180718574654588969, −6.80933246713742258843350578098, −6.26321941633441879256100865509, −6.00489340793297580582579977728, −5.45078450852989825533104866316, −5.12933924509255600012966557161, −4.62913795408109624020504261532, −4.23420722478004079727463646490, −3.88429480254012451373613415065, −3.54376519921051401387797530369, −2.74842833700036690538867205464, −2.53149522541700497962983290257, −1.94309415356894074357782550771, −1.73211871609483328761125436127, −0.06820835859080096726495461965, 0.06820835859080096726495461965, 1.73211871609483328761125436127, 1.94309415356894074357782550771, 2.53149522541700497962983290257, 2.74842833700036690538867205464, 3.54376519921051401387797530369, 3.88429480254012451373613415065, 4.23420722478004079727463646490, 4.62913795408109624020504261532, 5.12933924509255600012966557161, 5.45078450852989825533104866316, 6.00489340793297580582579977728, 6.26321941633441879256100865509, 6.80933246713742258843350578098, 6.88121592284180718574654588969, 7.22939508447414411011579154741, 7.74440841320050397953276222343, 8.252037828279487126816364464705, 8.402467183063853393728792728529, 8.886808015529885984808044328872

Graph of the $Z$-function along the critical line