L(s) = 1 | − 2-s − 4-s + 3·8-s + 8·11-s − 16-s − 8·22-s − 10·25-s − 5·32-s + 24·43-s − 8·44-s − 7·49-s + 10·50-s + 7·64-s + 8·67-s − 24·86-s + 24·88-s + 7·98-s + 10·100-s + 40·107-s + 4·113-s + 26·121-s + 127-s + 3·128-s + 131-s − 8·134-s + 137-s + 139-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s + 1.06·8-s + 2.41·11-s − 1/4·16-s − 1.70·22-s − 2·25-s − 0.883·32-s + 3.65·43-s − 1.20·44-s − 49-s + 1.41·50-s + 7/8·64-s + 0.977·67-s − 2.58·86-s + 2.55·88-s + 0.707·98-s + 100-s + 3.86·107-s + 0.376·113-s + 2.36·121-s + 0.0887·127-s + 0.265·128-s + 0.0873·131-s − 0.691·134-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
Λ(s)=(=(254016s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(254016s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
254016
= 26⋅34⋅72
|
Sign: |
1
|
Analytic conductor: |
16.1962 |
Root analytic conductor: |
2.00610 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 254016, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.165430910 |
L(21) |
≈ |
1.165430910 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+pT2 |
| 3 | | 1 |
| 7 | C2 | 1+pT2 |
good | 5 | C2 | (1+pT2)2 |
| 11 | C2 | (1−4T+pT2)2 |
| 13 | C2 | (1+pT2)2 |
| 17 | C2 | (1−pT2)2 |
| 19 | C2 | (1−pT2)2 |
| 23 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 29 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2 | (1−pT2)2 |
| 43 | C2 | (1−12T+pT2)2 |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 59 | C2 | (1−pT2)2 |
| 61 | C2 | (1+pT2)2 |
| 67 | C2 | (1−4T+pT2)2 |
| 71 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 73 | C2 | (1−pT2)2 |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C2 | (1−pT2)2 |
| 89 | C2 | (1−pT2)2 |
| 97 | C2 | (1−pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.20961909287264512335255494150, −10.68269158535820971643676472078, −9.967431838943688016049105126496, −9.791990885502652367938957204653, −9.214816801595176800766717039881, −9.121566261915184788051845778858, −8.625903801365671790590457509253, −8.036103551643299844878937876337, −7.57992102978520621740334554130, −7.21622080974161626884662623880, −6.59623147254894945359251602149, −5.99081122971328745865502444770, −5.80431869535159251952096146703, −4.85560911127170109792540992087, −4.31315715256686274165587589135, −3.89518728377610978818893024479, −3.53264502831397871108854111783, −2.31471174308058104799078855800, −1.59107872405238015477568672891, −0.806097709578990692063738973092,
0.806097709578990692063738973092, 1.59107872405238015477568672891, 2.31471174308058104799078855800, 3.53264502831397871108854111783, 3.89518728377610978818893024479, 4.31315715256686274165587589135, 4.85560911127170109792540992087, 5.80431869535159251952096146703, 5.99081122971328745865502444770, 6.59623147254894945359251602149, 7.21622080974161626884662623880, 7.57992102978520621740334554130, 8.036103551643299844878937876337, 8.625903801365671790590457509253, 9.121566261915184788051845778858, 9.214816801595176800766717039881, 9.791990885502652367938957204653, 9.967431838943688016049105126496, 10.68269158535820971643676472078, 11.20961909287264512335255494150