Properties

Label 4-504e2-1.1-c1e2-0-14
Degree $4$
Conductor $254016$
Sign $1$
Analytic cond. $16.1962$
Root an. cond. $2.00610$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·8-s + 8·11-s − 16-s − 8·22-s − 10·25-s − 5·32-s + 24·43-s − 8·44-s − 7·49-s + 10·50-s + 7·64-s + 8·67-s − 24·86-s + 24·88-s + 7·98-s + 10·100-s + 40·107-s + 4·113-s + 26·121-s + 127-s + 3·128-s + 131-s − 8·134-s + 137-s + 139-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.06·8-s + 2.41·11-s − 1/4·16-s − 1.70·22-s − 2·25-s − 0.883·32-s + 3.65·43-s − 1.20·44-s − 49-s + 1.41·50-s + 7/8·64-s + 0.977·67-s − 2.58·86-s + 2.55·88-s + 0.707·98-s + 100-s + 3.86·107-s + 0.376·113-s + 2.36·121-s + 0.0887·127-s + 0.265·128-s + 0.0873·131-s − 0.691·134-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(254016\)    =    \(2^{6} \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(16.1962\)
Root analytic conductor: \(2.00610\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 254016,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.165430910\)
\(L(\frac12)\) \(\approx\) \(1.165430910\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
3 \( 1 \)
7$C_2$ \( 1 + p T^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2$ \( ( 1 - p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 - p T^{2} )^{2} \)
61$C_2$ \( ( 1 + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2$ \( ( 1 - p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - p T^{2} )^{2} \)
89$C_2$ \( ( 1 - p T^{2} )^{2} \)
97$C_2$ \( ( 1 - p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.20961909287264512335255494150, −10.68269158535820971643676472078, −9.967431838943688016049105126496, −9.791990885502652367938957204653, −9.214816801595176800766717039881, −9.121566261915184788051845778858, −8.625903801365671790590457509253, −8.036103551643299844878937876337, −7.57992102978520621740334554130, −7.21622080974161626884662623880, −6.59623147254894945359251602149, −5.99081122971328745865502444770, −5.80431869535159251952096146703, −4.85560911127170109792540992087, −4.31315715256686274165587589135, −3.89518728377610978818893024479, −3.53264502831397871108854111783, −2.31471174308058104799078855800, −1.59107872405238015477568672891, −0.806097709578990692063738973092, 0.806097709578990692063738973092, 1.59107872405238015477568672891, 2.31471174308058104799078855800, 3.53264502831397871108854111783, 3.89518728377610978818893024479, 4.31315715256686274165587589135, 4.85560911127170109792540992087, 5.80431869535159251952096146703, 5.99081122971328745865502444770, 6.59623147254894945359251602149, 7.21622080974161626884662623880, 7.57992102978520621740334554130, 8.036103551643299844878937876337, 8.625903801365671790590457509253, 9.121566261915184788051845778858, 9.214816801595176800766717039881, 9.791990885502652367938957204653, 9.967431838943688016049105126496, 10.68269158535820971643676472078, 11.20961909287264512335255494150

Graph of the $Z$-function along the critical line