L(s) = 1 | + 2·3-s + 4-s − 2·7-s + 3·9-s + 4·11-s + 2·12-s − 3·16-s + 4·17-s + 4·19-s − 4·21-s − 8·23-s + 4·27-s − 2·28-s − 4·29-s + 12·31-s + 8·33-s + 3·36-s − 4·37-s − 4·41-s + 4·44-s − 8·47-s − 6·48-s + 3·49-s + 8·51-s + 16·53-s + 8·57-s − 4·61-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1/2·4-s − 0.755·7-s + 9-s + 1.20·11-s + 0.577·12-s − 3/4·16-s + 0.970·17-s + 0.917·19-s − 0.872·21-s − 1.66·23-s + 0.769·27-s − 0.377·28-s − 0.742·29-s + 2.15·31-s + 1.39·33-s + 1/2·36-s − 0.657·37-s − 0.624·41-s + 0.603·44-s − 1.16·47-s − 0.866·48-s + 3/7·49-s + 1.12·51-s + 2.19·53-s + 1.05·57-s − 0.512·61-s + ⋯ |
Λ(s)=(=(275625s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(275625s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
275625
= 32⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
17.5740 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 275625, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.141491924 |
L(21) |
≈ |
3.141491924 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1−T)2 |
| 5 | | 1 |
| 7 | C1 | (1+T)2 |
good | 2 | C22 | 1−T2+p2T4 |
| 11 | C4 | 1−4T+6T2−4pT3+p2T4 |
| 13 | C22 | 1+6T2+p2T4 |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | D4 | 1−4T+22T2−4pT3+p2T4 |
| 23 | C2 | (1+4T+pT2)2 |
| 29 | C2 | (1+2T+pT2)2 |
| 31 | D4 | 1−12T+78T2−12pT3+p2T4 |
| 37 | D4 | 1+4T−2T2+4pT3+p2T4 |
| 41 | C2 | (1+2T+pT2)2 |
| 43 | C22 | 1+6T2+p2T4 |
| 47 | D4 | 1+8T+30T2+8pT3+p2T4 |
| 53 | D4 | 1−16T+150T2−16pT3+p2T4 |
| 59 | C22 | 1+38T2+p2T4 |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | C2 | (1−4T+pT2)2 |
| 71 | D4 | 1−20T+222T2−20pT3+p2T4 |
| 73 | D4 | 1−16T+190T2−16pT3+p2T4 |
| 79 | D4 | 1−8T+94T2−8pT3+p2T4 |
| 83 | D4 | 1−16T+150T2−16pT3+p2T4 |
| 89 | C2 | (1+2T+pT2)2 |
| 97 | D4 | 1+8T+190T2+8pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.28299398728800897049558528258, −10.39010313504787535454496522042, −9.950960302441261767004383990112, −9.868084733126321368304859486514, −9.269254249531983603936081662591, −9.022742741780680793134051674963, −8.302662917073549728740059517430, −7.995355329640417161264884598639, −7.63336443622346506727556439854, −6.78153876579360587710267337064, −6.71373771480295834420418654362, −6.28769649091711699777333965213, −5.48696862629181682043759596209, −4.97165091885064165462761536384, −4.05644795091330065926893331078, −3.75937823312199115821787225357, −3.29003001980827580184157311209, −2.52400202601718389199352352664, −2.00819675316936200586395952175, −1.05542103816238995373673142966,
1.05542103816238995373673142966, 2.00819675316936200586395952175, 2.52400202601718389199352352664, 3.29003001980827580184157311209, 3.75937823312199115821787225357, 4.05644795091330065926893331078, 4.97165091885064165462761536384, 5.48696862629181682043759596209, 6.28769649091711699777333965213, 6.71373771480295834420418654362, 6.78153876579360587710267337064, 7.63336443622346506727556439854, 7.995355329640417161264884598639, 8.302662917073549728740059517430, 9.022742741780680793134051674963, 9.269254249531983603936081662591, 9.868084733126321368304859486514, 9.950960302441261767004383990112, 10.39010313504787535454496522042, 11.28299398728800897049558528258