Properties

Label 4-525e2-1.1-c1e2-0-27
Degree $4$
Conductor $275625$
Sign $-1$
Analytic cond. $17.5740$
Root an. cond. $2.04747$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·7-s − 2·9-s + 2·13-s − 4·16-s − 2·21-s − 5·27-s + 4·31-s + 4·37-s + 2·39-s − 8·43-s − 4·48-s + 3·49-s − 16·61-s + 4·63-s + 4·67-s + 12·73-s − 10·79-s + 81-s − 4·91-s + 4·93-s + 14·97-s − 38·103-s + 10·109-s + 4·111-s + 8·112-s − 4·117-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.755·7-s − 2/3·9-s + 0.554·13-s − 16-s − 0.436·21-s − 0.962·27-s + 0.718·31-s + 0.657·37-s + 0.320·39-s − 1.21·43-s − 0.577·48-s + 3/7·49-s − 2.04·61-s + 0.503·63-s + 0.488·67-s + 1.40·73-s − 1.12·79-s + 1/9·81-s − 0.419·91-s + 0.414·93-s + 1.42·97-s − 3.74·103-s + 0.957·109-s + 0.379·111-s + 0.755·112-s − 0.369·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(275625\)    =    \(3^{2} \cdot 5^{4} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(17.5740\)
Root analytic conductor: \(2.04747\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 275625,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - T + p T^{2} \)
5 \( 1 \)
7$C_1$ \( ( 1 + T )^{2} \)
good2$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.569343753087953468815992872802, −8.428704975511724884581109770971, −7.67053504463822546742181996665, −7.38451703018051703490900915946, −6.59661422823789620490429923129, −6.33345798756843332553352393681, −5.93898740434763322465740513982, −5.14936161735373762545181523253, −4.74217082052326318941224012916, −3.90430059874868075785507099311, −3.57752582126466520607951640819, −2.76472422088648867371864611007, −2.48112200668525509199201292270, −1.41698761693361156521107028690, 0, 1.41698761693361156521107028690, 2.48112200668525509199201292270, 2.76472422088648867371864611007, 3.57752582126466520607951640819, 3.90430059874868075785507099311, 4.74217082052326318941224012916, 5.14936161735373762545181523253, 5.93898740434763322465740513982, 6.33345798756843332553352393681, 6.59661422823789620490429923129, 7.38451703018051703490900915946, 7.67053504463822546742181996665, 8.428704975511724884581109770971, 8.569343753087953468815992872802

Graph of the $Z$-function along the critical line