L(s) = 1 | + 3-s − 2·7-s − 2·9-s + 2·13-s − 4·16-s − 2·21-s − 5·27-s + 4·31-s + 4·37-s + 2·39-s − 8·43-s − 4·48-s + 3·49-s − 16·61-s + 4·63-s + 4·67-s + 12·73-s − 10·79-s + 81-s − 4·91-s + 4·93-s + 14·97-s − 38·103-s + 10·109-s + 4·111-s + 8·112-s − 4·117-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.755·7-s − 2/3·9-s + 0.554·13-s − 16-s − 0.436·21-s − 0.962·27-s + 0.718·31-s + 0.657·37-s + 0.320·39-s − 1.21·43-s − 0.577·48-s + 3/7·49-s − 2.04·61-s + 0.503·63-s + 0.488·67-s + 1.40·73-s − 1.12·79-s + 1/9·81-s − 0.419·91-s + 0.414·93-s + 1.42·97-s − 3.74·103-s + 0.957·109-s + 0.379·111-s + 0.755·112-s − 0.369·117-s + ⋯ |
Λ(s)=(=(275625s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(275625s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
275625
= 32⋅54⋅72
|
Sign: |
−1
|
Analytic conductor: |
17.5740 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 275625, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | 1−T+pT2 |
| 5 | | 1 |
| 7 | C1 | (1+T)2 |
good | 2 | C2 | (1−pT+pT2)(1+pT+pT2) |
| 11 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 13 | C2 | (1−T+pT2)2 |
| 17 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 19 | C2 | (1+pT2)2 |
| 23 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 29 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 31 | C2 | (1−2T+pT2)2 |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 61 | C2 | (1+8T+pT2)2 |
| 67 | C2 | (1−2T+pT2)2 |
| 71 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 73 | C2 | (1−6T+pT2)2 |
| 79 | C2 | (1+5T+pT2)2 |
| 83 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 89 | C2 | (1+pT2)2 |
| 97 | C2 | (1−7T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.569343753087953468815992872802, −8.428704975511724884581109770971, −7.67053504463822546742181996665, −7.38451703018051703490900915946, −6.59661422823789620490429923129, −6.33345798756843332553352393681, −5.93898740434763322465740513982, −5.14936161735373762545181523253, −4.74217082052326318941224012916, −3.90430059874868075785507099311, −3.57752582126466520607951640819, −2.76472422088648867371864611007, −2.48112200668525509199201292270, −1.41698761693361156521107028690, 0,
1.41698761693361156521107028690, 2.48112200668525509199201292270, 2.76472422088648867371864611007, 3.57752582126466520607951640819, 3.90430059874868075785507099311, 4.74217082052326318941224012916, 5.14936161735373762545181523253, 5.93898740434763322465740513982, 6.33345798756843332553352393681, 6.59661422823789620490429923129, 7.38451703018051703490900915946, 7.67053504463822546742181996665, 8.428704975511724884581109770971, 8.569343753087953468815992872802