L(s) = 1 | − 4·5-s − 6·9-s − 2·17-s + 5·25-s − 10·29-s + 12·37-s − 8·41-s + 24·45-s − 14·49-s − 14·53-s + 10·61-s − 16·73-s + 27·81-s + 8·85-s + 32·89-s + 16·97-s − 2·101-s + 40·109-s − 14·113-s − 22·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s + 40·145-s + 149-s + ⋯ |
L(s) = 1 | − 1.78·5-s − 2·9-s − 0.485·17-s + 25-s − 1.85·29-s + 1.97·37-s − 1.24·41-s + 3.57·45-s − 2·49-s − 1.92·53-s + 1.28·61-s − 1.87·73-s + 3·81-s + 0.867·85-s + 3.39·89-s + 1.62·97-s − 0.199·101-s + 3.83·109-s − 1.31·113-s − 2·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 3.32·145-s + 0.0819·149-s + ⋯ |
Λ(s)=(=(29246464s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(29246464s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
29246464
= 210⋅134
|
Sign: |
1
|
Analytic conductor: |
1864.77 |
Root analytic conductor: |
6.57138 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 29246464, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.5867179880 |
L(21) |
≈ |
0.5867179880 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | | 1 |
good | 3 | C2 | (1+pT2)2 |
| 5 | C22 | 1+4T+11T2+4pT3+p2T4 |
| 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1+pT2)2 |
| 17 | C22 | 1+2T−13T2+2pT3+p2T4 |
| 19 | C2 | (1+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C22 | 1+10T+71T2+10pT3+p2T4 |
| 31 | C2 | (1+pT2)2 |
| 37 | C22 | 1−12T+107T2−12pT3+p2T4 |
| 41 | C22 | 1+8T+23T2+8pT3+p2T4 |
| 43 | C2 | (1+pT2)2 |
| 47 | C2 | (1+pT2)2 |
| 53 | C22 | 1+14T+143T2+14pT3+p2T4 |
| 59 | C2 | (1+pT2)2 |
| 61 | C22 | 1−10T+39T2−10pT3+p2T4 |
| 67 | C2 | (1+pT2)2 |
| 71 | C2 | (1+pT2)2 |
| 73 | C22 | 1+16T+183T2+16pT3+p2T4 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1−16T+pT2)2 |
| 97 | C2 | (1−8T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.047267363032367249238689036218, −8.009443536192604823779096498288, −7.70276162878071649176394814594, −7.66454290419827783715394538691, −6.76154468922796015742242014365, −6.71140093837909891543444052754, −6.18626943713450779423155043873, −5.84596837556311646541770333038, −5.48831457194904525585714366812, −5.06271233566061882317080150927, −4.49591275935552160989500507141, −4.47767317041287295168331492622, −3.67080431120527926069607542902, −3.57625342560398635037056326806, −3.02643055368253838528120263197, −2.93338382182881838519913474230, −1.95192677058092351707406748068, −1.91554975604067973069524470670, −0.66691342743865919612805953123, −0.30897783444820330366712468730,
0.30897783444820330366712468730, 0.66691342743865919612805953123, 1.91554975604067973069524470670, 1.95192677058092351707406748068, 2.93338382182881838519913474230, 3.02643055368253838528120263197, 3.57625342560398635037056326806, 3.67080431120527926069607542902, 4.47767317041287295168331492622, 4.49591275935552160989500507141, 5.06271233566061882317080150927, 5.48831457194904525585714366812, 5.84596837556311646541770333038, 6.18626943713450779423155043873, 6.71140093837909891543444052754, 6.76154468922796015742242014365, 7.66454290419827783715394538691, 7.70276162878071649176394814594, 8.009443536192604823779096498288, 8.047267363032367249238689036218