Properties

Label 5408.2.a.r.1.2
Level 54085408
Weight 22
Character 5408.1
Self dual yes
Analytic conductor 43.18343.183
Analytic rank 00
Dimension 22
CM discriminant -4
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5408,2,Mod(1,5408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 5408=25132 5408 = 2^{5} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 43.183097413143.1830974131
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ12)+\Q(\zeta_{12})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x23 x^{2} - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 416)
Fricke sign: 1-1
Sato-Tate group: N(U(1))N(\mathrm{U}(1))

Embedding invariants

Embedding label 1.2
Root 1.73205-1.73205 of defining polynomial
Character χ\chi == 5408.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.267949q53.00000q9+5.92820q174.92820q251.53590q29+4.26795q37+4.66025q41+0.803848q457.00000q493.53590q53+15.3923q6113.1962q73+9.00000q811.58846q85+16.0000q89+8.00000q97+O(q100)q-0.267949 q^{5} -3.00000 q^{9} +5.92820 q^{17} -4.92820 q^{25} -1.53590 q^{29} +4.26795 q^{37} +4.66025 q^{41} +0.803848 q^{45} -7.00000 q^{49} -3.53590 q^{53} +15.3923 q^{61} -13.1962 q^{73} +9.00000 q^{81} -1.58846 q^{85} +16.0000 q^{89} +8.00000 q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q56q92q17+4q2510q29+12q378q41+12q4514q4914q53+10q6116q73+18q81+28q85+32q89+16q97+O(q100) 2 q - 4 q^{5} - 6 q^{9} - 2 q^{17} + 4 q^{25} - 10 q^{29} + 12 q^{37} - 8 q^{41} + 12 q^{45} - 14 q^{49} - 14 q^{53} + 10 q^{61} - 16 q^{73} + 18 q^{81} + 28 q^{85} + 32 q^{89} + 16 q^{97}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
44 0 0
55 −0.267949 −0.119831 −0.0599153 0.998203i 0.519083π-0.519083\pi
−0.0599153 + 0.998203i 0.519083π0.519083\pi
66 0 0
77 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
88 0 0
99 −3.00000 −1.00000
1010 0 0
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 0 0
1313 0 0
1414 0 0
1515 0 0
1616 0 0
1717 5.92820 1.43780 0.718900 0.695113i 0.244646π-0.244646\pi
0.718900 + 0.695113i 0.244646π0.244646\pi
1818 0 0
1919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 −4.92820 −0.985641
2626 0 0
2727 0 0
2828 0 0
2929 −1.53590 −0.285209 −0.142605 0.989780i 0.545548π-0.545548\pi
−0.142605 + 0.989780i 0.545548π0.545548\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 4.26795 0.701647 0.350823 0.936442i 0.385902π-0.385902\pi
0.350823 + 0.936442i 0.385902π0.385902\pi
3838 0 0
3939 0 0
4040 0 0
4141 4.66025 0.727809 0.363905 0.931436i 0.381443π-0.381443\pi
0.363905 + 0.931436i 0.381443π0.381443\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 0.803848 0.119831
4646 0 0
4747 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4848 0 0
4949 −7.00000 −1.00000
5050 0 0
5151 0 0
5252 0 0
5353 −3.53590 −0.485693 −0.242846 0.970065i 0.578081π-0.578081\pi
−0.242846 + 0.970065i 0.578081π0.578081\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 15.3923 1.97078 0.985391 0.170305i 0.0544754π-0.0544754\pi
0.985391 + 0.170305i 0.0544754π0.0544754\pi
6262 0 0
6363 0 0
6464 0 0
6565 0 0
6666 0 0
6767 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 −13.1962 −1.54449 −0.772246 0.635323i 0.780867π-0.780867\pi
−0.772246 + 0.635323i 0.780867π0.780867\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 0 0
8181 9.00000 1.00000
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 −1.58846 −0.172292
8686 0 0
8787 0 0
8888 0 0
8989 16.0000 1.69600 0.847998 0.529999i 0.177808π-0.177808\pi
0.847998 + 0.529999i 0.177808π0.177808\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 8.00000 0.812277 0.406138 0.913812i 0.366875π-0.366875\pi
0.406138 + 0.913812i 0.366875π0.366875\pi
9898 0 0
9999 0 0
100100 0 0
101101 −18.3205 −1.82296 −0.911479 0.411346i 0.865059π-0.865059\pi
−0.911479 + 0.411346i 0.865059π0.865059\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 20.0000 1.91565 0.957826 0.287348i 0.0927736π-0.0927736\pi
0.957826 + 0.287348i 0.0927736π0.0927736\pi
110110 0 0
111111 0 0
112112 0 0
113113 6.85641 0.644996 0.322498 0.946570i 0.395477π-0.395477\pi
0.322498 + 0.946570i 0.395477π0.395477\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −11.0000 −1.00000
122122 0 0
123123 0 0
124124 0 0
125125 2.66025 0.237940
126126 0 0
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 23.0526 1.96951 0.984757 0.173939i 0.0556494π-0.0556494\pi
0.984757 + 0.173939i 0.0556494π0.0556494\pi
138138 0 0
139139 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0.411543 0.0341768
146146 0 0
147147 0 0
148148 0 0
149149 22.1244 1.81250 0.906249 0.422744i 0.138933π-0.138933\pi
0.906249 + 0.422744i 0.138933π0.138933\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 −17.7846 −1.43780
154154 0 0
155155 0 0
156156 0 0
157157 21.3923 1.70729 0.853646 0.520854i 0.174386π-0.174386\pi
0.853646 + 0.520854i 0.174386π0.174386\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 0 0
170170 0 0
171171 0 0
172172 0 0
173173 26.0000 1.97674 0.988372 0.152057i 0.0485898π-0.0485898\pi
0.988372 + 0.152057i 0.0485898π0.0485898\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 −8.32051 −0.618458 −0.309229 0.950988i 0.600071π-0.600071\pi
−0.309229 + 0.950988i 0.600071π0.600071\pi
182182 0 0
183183 0 0
184184 0 0
185185 −1.14359 −0.0840787
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 24.1244 1.73651 0.868255 0.496119i 0.165242π-0.165242\pi
0.868255 + 0.496119i 0.165242π0.165242\pi
194194 0 0
195195 0 0
196196 0 0
197197 28.0000 1.99492 0.997459 0.0712470i 0.0226979π-0.0226979\pi
0.997459 + 0.0712470i 0.0226979π0.0226979\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 −1.24871 −0.0872138
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 0 0
225225 14.7846 0.985641
226226 0 0
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 −4.00000 −0.264327 −0.132164 0.991228i 0.542192π-0.542192\pi
−0.132164 + 0.991228i 0.542192π0.542192\pi
230230 0 0
231231 0 0
232232 0 0
233233 −26.0000 −1.70332 −0.851658 0.524097i 0.824403π-0.824403\pi
−0.851658 + 0.524097i 0.824403π0.824403\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 21.9808 1.41591 0.707953 0.706260i 0.249619π-0.249619\pi
0.707953 + 0.706260i 0.249619π0.249619\pi
242242 0 0
243243 0 0
244244 0 0
245245 1.87564 0.119831
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 −26.7128 −1.66630 −0.833150 0.553047i 0.813465π-0.813465\pi
−0.833150 + 0.553047i 0.813465π0.813465\pi
258258 0 0
259259 0 0
260260 0 0
261261 4.60770 0.285209
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 0.947441 0.0582008
266266 0 0
267267 0 0
268268 0 0
269269 26.0000 1.58525 0.792624 0.609711i 0.208714π-0.208714\pi
0.792624 + 0.609711i 0.208714π0.208714\pi
270270 0 0
271271 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 15.2487 0.916206 0.458103 0.888899i 0.348529π-0.348529\pi
0.458103 + 0.888899i 0.348529π0.348529\pi
278278 0 0
279279 0 0
280280 0 0
281281 −24.6603 −1.47111 −0.735554 0.677466i 0.763078π-0.763078\pi
−0.735554 + 0.677466i 0.763078π0.763078\pi
282282 0 0
283283 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 18.1436 1.06727
290290 0 0
291291 0 0
292292 0 0
293293 −31.4449 −1.83703 −0.918514 0.395388i 0.870610π-0.870610\pi
−0.918514 + 0.395388i 0.870610π0.870610\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 −4.12436 −0.236160
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 −26.0000 −1.46961 −0.734803 0.678280i 0.762726π-0.762726\pi
−0.734803 + 0.678280i 0.762726π0.762726\pi
314314 0 0
315315 0 0
316316 0 0
317317 5.05256 0.283780 0.141890 0.989882i 0.454682π-0.454682\pi
0.141890 + 0.989882i 0.454682π0.454682\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 −12.8038 −0.701647
334334 0 0
335335 0 0
336336 0 0
337337 −36.7128 −1.99987 −0.999937 0.0112091i 0.996432π-0.996432\pi
−0.999937 + 0.0112091i 0.996432π0.996432\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 36.0000 1.92704 0.963518 0.267644i 0.0862451π-0.0862451\pi
0.963518 + 0.267644i 0.0862451π0.0862451\pi
350350 0 0
351351 0 0
352352 0 0
353353 −21.4449 −1.14139 −0.570697 0.821160i 0.693327π-0.693327\pi
−0.570697 + 0.821160i 0.693327π0.693327\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 −19.0000 −1.00000
362362 0 0
363363 0 0
364364 0 0
365365 3.53590 0.185077
366366 0 0
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 0 0
369369 −13.9808 −0.727809
370370 0 0
371371 0 0
372372 0 0
373373 38.1769 1.97673 0.988363 0.152115i 0.0486083π-0.0486083\pi
0.988363 + 0.152115i 0.0486083π0.0486083\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 34.3205 1.74012 0.870059 0.492947i 0.164080π-0.164080\pi
0.870059 + 0.492947i 0.164080π0.164080\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −12.0000 −0.602263 −0.301131 0.953583i 0.597364π-0.597364\pi
−0.301131 + 0.953583i 0.597364π0.597364\pi
398398 0 0
399399 0 0
400400 0 0
401401 21.7321 1.08525 0.542623 0.839976i 0.317431π-0.317431\pi
0.542623 + 0.839976i 0.317431π0.317431\pi
402402 0 0
403403 0 0
404404 0 0
405405 −2.41154 −0.119831
406406 0 0
407407 0 0
408408 0 0
409409 25.1962 1.24587 0.622935 0.782274i 0.285940π-0.285940\pi
0.622935 + 0.782274i 0.285940π0.285940\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 39.9808 1.94854 0.974272 0.225377i 0.0723615π-0.0723615\pi
0.974272 + 0.225377i 0.0723615π0.0723615\pi
422422 0 0
423423 0 0
424424 0 0
425425 −29.2154 −1.41715
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 −3.78461 −0.181877 −0.0909384 0.995857i 0.528987π-0.528987\pi
−0.0909384 + 0.995857i 0.528987π0.528987\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 21.0000 1.00000
442442 0 0
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 −4.28719 −0.203232
446446 0 0
447447 0 0
448448 0 0
449449 40.0000 1.88772 0.943858 0.330350i 0.107167π-0.107167\pi
0.943858 + 0.330350i 0.107167π0.107167\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 40.3731 1.88857 0.944286 0.329125i 0.106754π-0.106754\pi
0.944286 + 0.329125i 0.106754π0.106754\pi
458458 0 0
459459 0 0
460460 0 0
461461 22.9090 1.06698 0.533488 0.845807i 0.320881π-0.320881\pi
0.533488 + 0.845807i 0.320881π0.320881\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 10.6077 0.485693
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 −2.14359 −0.0973356
486486 0 0
487487 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 −9.10512 −0.410074
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 4.90897 0.218446
506506 0 0
507507 0 0
508508 0 0
509509 −30.6603 −1.35899 −0.679496 0.733679i 0.737801π-0.737801\pi
−0.679496 + 0.733679i 0.737801π0.737801\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 23.6410 1.03573 0.517866 0.855462i 0.326727π-0.326727\pi
0.517866 + 0.855462i 0.326727π0.326727\pi
522522 0 0
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −23.0000 −1.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 46.3731 1.99373 0.996867 0.0790969i 0.0252036π-0.0252036\pi
0.996867 + 0.0790969i 0.0252036π0.0252036\pi
542542 0 0
543543 0 0
544544 0 0
545545 −5.35898 −0.229554
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 0 0
549549 −46.1769 −1.97078
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 −46.9090 −1.98760 −0.993798 0.111198i 0.964531π-0.964531\pi
−0.993798 + 0.111198i 0.964531π0.964531\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 −1.83717 −0.0772903
566566 0 0
567567 0 0
568568 0 0
569569 −26.0000 −1.08998 −0.544988 0.838444i 0.683466π-0.683466\pi
−0.544988 + 0.838444i 0.683466π0.683466\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −25.7321 −1.07124 −0.535620 0.844459i 0.679922π-0.679922\pi
−0.535620 + 0.844459i 0.679922π0.679922\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 −31.8372 −1.30740 −0.653698 0.756756i 0.726783π-0.726783\pi
−0.653698 + 0.756756i 0.726783π0.726783\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 46.5692 1.89960 0.949799 0.312861i 0.101287π-0.101287\pi
0.949799 + 0.312861i 0.101287π0.101287\pi
602602 0 0
603603 0 0
604604 0 0
605605 2.94744 0.119831
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 47.4449 1.91628 0.958140 0.286300i 0.0924254π-0.0924254\pi
0.958140 + 0.286300i 0.0924254π0.0924254\pi
614614 0 0
615615 0 0
616616 0 0
617617 −48.9090 −1.96900 −0.984500 0.175382i 0.943884π-0.943884\pi
−0.984500 + 0.175382i 0.943884π0.943884\pi
618618 0 0
619619 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 23.9282 0.957128
626626 0 0
627627 0 0
628628 0 0
629629 25.3013 1.00883
630630 0 0
631631 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 −31.9282 −1.26109 −0.630544 0.776153i 0.717168π-0.717168\pi
−0.630544 + 0.776153i 0.717168π0.717168\pi
642642 0 0
643643 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 26.0000 1.01746 0.508729 0.860927i 0.330115π-0.330115\pi
0.508729 + 0.860927i 0.330115π0.330115\pi
654654 0 0
655655 0 0
656656 0 0
657657 39.5885 1.54449
658658 0 0
659659 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 −49.3013 −1.91760 −0.958799 0.284087i 0.908310π-0.908310\pi
−0.958799 + 0.284087i 0.908310π0.908310\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 43.7846 1.68777 0.843886 0.536522i 0.180262π-0.180262\pi
0.843886 + 0.536522i 0.180262π0.180262\pi
674674 0 0
675675 0 0
676676 0 0
677677 −2.00000 −0.0768662 −0.0384331 0.999261i 0.512237π-0.512237\pi
−0.0384331 + 0.999261i 0.512237π0.512237\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 −6.17691 −0.236008
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 27.6269 1.04644
698698 0 0
699699 0 0
700700 0 0
701701 −10.0000 −0.377695 −0.188847 0.982006i 0.560475π-0.560475\pi
−0.188847 + 0.982006i 0.560475π0.560475\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −47.9808 −1.80196 −0.900978 0.433865i 0.857149π-0.857149\pi
−0.900978 + 0.433865i 0.857149π0.857149\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 7.56922 0.281114
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 −27.0000 −1.00000
730730 0 0
731731 0 0
732732 0 0
733733 −44.7654 −1.65345 −0.826723 0.562609i 0.809798π-0.809798\pi
−0.826723 + 0.562609i 0.809798π0.809798\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 −5.92820 −0.217193
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −18.0000 −0.654221 −0.327111 0.944986i 0.606075π-0.606075\pi
−0.327111 + 0.944986i 0.606075π0.606075\pi
758758 0 0
759759 0 0
760760 0 0
761761 −40.0000 −1.45000 −0.724999 0.688749i 0.758160π-0.758160\pi
−0.724999 + 0.688749i 0.758160π0.758160\pi
762762 0 0
763763 0 0
764764 0 0
765765 4.76537 0.172292
766766 0 0
767767 0 0
768768 0 0
769769 −24.0000 −0.865462 −0.432731 0.901523i 0.642450π-0.642450\pi
−0.432731 + 0.901523i 0.642450π0.642450\pi
770770 0 0
771771 0 0
772772 0 0
773773 −44.0000 −1.58257 −0.791285 0.611448i 0.790588π-0.790588\pi
−0.791285 + 0.611448i 0.790588π0.790588\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 −5.73205 −0.204586
786786 0 0
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 22.0000 0.779280 0.389640 0.920967i 0.372599π-0.372599\pi
0.389640 + 0.920967i 0.372599π0.372599\pi
798798 0 0
799799 0 0
800800 0 0
801801 −48.0000 −1.69600
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −43.4974 −1.52929 −0.764644 0.644453i 0.777085π-0.777085\pi
−0.764644 + 0.644453i 0.777085π0.777085\pi
810810 0 0
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 −28.0000 −0.977207 −0.488603 0.872506i 0.662493π-0.662493\pi
−0.488603 + 0.872506i 0.662493π0.662493\pi
822822 0 0
823823 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 44.3205 1.53931 0.769657 0.638457i 0.220427π-0.220427\pi
0.769657 + 0.638457i 0.220427π0.220427\pi
830830 0 0
831831 0 0
832832 0 0
833833 −41.4974 −1.43780
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 −26.6410 −0.918656
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 57.8372 1.98031 0.990153 0.139986i 0.0447058π-0.0447058\pi
0.990153 + 0.139986i 0.0447058π0.0447058\pi
854854 0 0
855855 0 0
856856 0 0
857857 35.9282 1.22728 0.613642 0.789584i 0.289704π-0.289704\pi
0.613642 + 0.789584i 0.289704π0.289704\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 −6.96668 −0.236874
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 −24.0000 −0.812277
874874 0 0
875875 0 0
876876 0 0
877877 44.2295 1.49352 0.746762 0.665092i 0.231608π-0.231608\pi
0.746762 + 0.665092i 0.231608π0.231608\pi
878878 0 0
879879 0 0
880880 0 0
881881 52.7128 1.77594 0.887970 0.459902i 0.152115π-0.152115\pi
0.887970 + 0.459902i 0.152115π0.152115\pi
882882 0 0
883883 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 −20.9615 −0.698330
902902 0 0
903903 0 0
904904 0 0
905905 2.22947 0.0741102
906906 0 0
907907 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
908908 0 0
909909 54.9615 1.82296
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 −21.0333 −0.691571
926926 0 0
927927 0 0
928928 0 0
929929 19.8372 0.650836 0.325418 0.945570i 0.394495π-0.394495\pi
0.325418 + 0.945570i 0.394495π0.394495\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −22.5692 −0.737304 −0.368652 0.929567i 0.620181π-0.620181\pi
−0.368652 + 0.929567i 0.620181π0.620181\pi
938938 0 0
939939 0 0
940940 0 0
941941 −20.0000 −0.651981 −0.325991 0.945373i 0.605698π-0.605698\pi
−0.325991 + 0.945373i 0.605698π0.605698\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 −26.0000 −0.842223 −0.421111 0.907009i 0.638360π-0.638360\pi
−0.421111 + 0.907009i 0.638360π0.638360\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −31.0000 −1.00000
962962 0 0
963963 0 0
964964 0 0
965965 −6.46410 −0.208087
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 −49.6936 −1.58984 −0.794919 0.606715i 0.792487π-0.792487\pi
−0.794919 + 0.606715i 0.792487π0.792487\pi
978978 0 0
979979 0 0
980980 0 0
981981 −60.0000 −1.91565
982982 0 0
983983 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 −7.50258 −0.239052
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −41.3923 −1.31091 −0.655454 0.755235i 0.727523π-0.727523\pi
−0.655454 + 0.755235i 0.727523π0.727523\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5408.2.a.r.1.2 2
4.3 odd 2 CM 5408.2.a.r.1.2 2
13.2 odd 12 416.2.w.b.225.2 4
13.7 odd 12 416.2.w.b.257.1 yes 4
13.12 even 2 5408.2.a.bc.1.1 2
52.7 even 12 416.2.w.b.257.1 yes 4
52.15 even 12 416.2.w.b.225.2 4
52.51 odd 2 5408.2.a.bc.1.1 2
104.59 even 12 832.2.w.f.257.2 4
104.67 even 12 832.2.w.f.641.1 4
104.85 odd 12 832.2.w.f.257.2 4
104.93 odd 12 832.2.w.f.641.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.w.b.225.2 4 13.2 odd 12
416.2.w.b.225.2 4 52.15 even 12
416.2.w.b.257.1 yes 4 13.7 odd 12
416.2.w.b.257.1 yes 4 52.7 even 12
832.2.w.f.257.2 4 104.59 even 12
832.2.w.f.257.2 4 104.85 odd 12
832.2.w.f.641.1 4 104.67 even 12
832.2.w.f.641.1 4 104.93 odd 12
5408.2.a.r.1.2 2 1.1 even 1 trivial
5408.2.a.r.1.2 2 4.3 odd 2 CM
5408.2.a.bc.1.1 2 13.12 even 2
5408.2.a.bc.1.1 2 52.51 odd 2