Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [416,2,Mod(225,416)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(416, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("416.225");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 416 = 2^{5} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 416.w (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.32177672409\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\zeta_{12})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{4} - x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{9}]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{6}]$ |
Embedding invariants
Embedding label | 257.1 | ||
Root | \(-0.866025 - 0.500000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 416.257 |
Dual form | 416.2.w.b.225.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).
\(n\) | \(261\) | \(287\) | \(353\) |
\(\chi(n)\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | − | 0.267949i | − | 0.119831i | −0.998203 | − | 0.0599153i | \(-0.980917\pi\) | ||
0.998203 | − | 0.0599153i | \(-0.0190830\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 1.50000 | − | 2.59808i | 0.500000 | − | 0.866025i | ||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 3.23205 | + | 1.59808i | 0.896410 | + | 0.443227i | ||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 2.96410 | − | 5.13397i | 0.718900 | − | 1.24517i | −0.242536 | − | 0.970143i | \(-0.577979\pi\) |
0.961436 | − | 0.275029i | \(-0.0886875\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 4.92820 | 0.985641 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0.767949 | + | 1.33013i | 0.142605 | + | 0.246998i | 0.928477 | − | 0.371391i | \(-0.121119\pi\) |
−0.785872 | + | 0.618389i | \(0.787786\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −3.69615 | + | 2.13397i | −0.607644 | + | 0.350823i | −0.772043 | − | 0.635571i | \(-0.780765\pi\) |
0.164399 | + | 0.986394i | \(0.447432\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 4.03590 | − | 2.33013i | 0.630301 | − | 0.363905i | −0.150567 | − | 0.988600i | \(-0.548110\pi\) |
0.780869 | + | 0.624695i | \(0.214777\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | −0.696152 | − | 0.401924i | −0.103776 | − | 0.0599153i | ||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −3.50000 | − | 6.06218i | −0.500000 | − | 0.866025i | ||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −3.53590 | −0.485693 | −0.242846 | − | 0.970065i | \(-0.578081\pi\) | ||||
−0.242846 | + | 0.970065i | \(0.578081\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −7.69615 | + | 13.3301i | −0.985391 | + | 1.70675i | −0.345207 | + | 0.938527i | \(0.612191\pi\) |
−0.640184 | + | 0.768221i | \(0.721142\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0.428203 | − | 0.866025i | 0.0531121 | − | 0.107417i | ||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 13.1962i | 1.54449i | 0.635323 | + | 0.772246i | \(0.280867\pi\) | ||||
−0.635323 | + | 0.772246i | \(0.719133\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | −4.50000 | − | 7.79423i | −0.500000 | − | 0.866025i | ||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | −1.37564 | − | 0.794229i | −0.149210 | − | 0.0861462i | ||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −13.8564 | + | 8.00000i | −1.46878 | + | 0.847998i | −0.999388 | − | 0.0349934i | \(-0.988859\pi\) |
−0.469389 | + | 0.882992i | \(0.655526\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −6.92820 | − | 4.00000i | −0.703452 | − | 0.406138i | 0.105180 | − | 0.994453i | \(-0.466458\pi\) |
−0.808632 | + | 0.588315i | \(0.799792\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −9.16025 | − | 15.8660i | −0.911479 | − | 1.57873i | −0.811976 | − | 0.583691i | \(-0.801608\pi\) |
−0.0995037 | − | 0.995037i | \(-0.531726\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 20.0000i | 1.91565i | 0.287348 | + | 0.957826i | \(0.407226\pi\) | ||||
−0.287348 | + | 0.957826i | \(0.592774\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −3.42820 | + | 5.93782i | −0.322498 | + | 0.558583i | −0.981003 | − | 0.193993i | \(-0.937856\pi\) |
0.658505 | + | 0.752577i | \(0.271189\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 9.00000 | − | 6.00000i | 0.832050 | − | 0.554700i | ||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −5.50000 | + | 9.52628i | −0.500000 | + | 0.866025i | ||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | − | 2.66025i | − | 0.237940i | ||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 19.9641 | + | 11.5263i | 1.70565 | + | 0.984757i | 0.939793 | + | 0.341743i | \(0.111017\pi\) |
0.765855 | + | 0.643013i | \(0.222316\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0.356406 | − | 0.205771i | 0.0295979 | − | 0.0170884i | ||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −19.1603 | − | 11.0622i | −1.56967 | − | 0.906249i | −0.996207 | − | 0.0870170i | \(-0.972267\pi\) |
−0.573462 | − | 0.819232i | \(-0.694400\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | −8.89230 | − | 15.4019i | −0.718900 | − | 1.24517i | ||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 21.3923 | 1.70729 | 0.853646 | − | 0.520854i | \(-0.174386\pi\) | ||||
0.853646 | + | 0.520854i | \(0.174386\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 7.89230 | + | 10.3301i | 0.607100 | + | 0.794625i | ||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 13.0000 | − | 22.5167i | 0.988372 | − | 1.71191i | 0.362500 | − | 0.931984i | \(-0.381923\pi\) |
0.625871 | − | 0.779926i | \(-0.284744\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 8.32051 | 0.618458 | 0.309229 | − | 0.950988i | \(-0.399929\pi\) | ||||
0.309229 | + | 0.950988i | \(0.399929\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0.571797 | + | 0.990381i | 0.0420393 | + | 0.0728143i | ||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −20.8923 | + | 12.0622i | −1.50386 | + | 0.868255i | −0.503871 | + | 0.863779i | \(0.668091\pi\) |
−0.999990 | + | 0.00447566i | \(0.998575\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 24.2487 | − | 14.0000i | 1.72765 | − | 0.997459i | 0.828201 | − | 0.560431i | \(-0.189365\pi\) |
0.899448 | − | 0.437028i | \(-0.143969\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −0.624356 | − | 1.08142i | −0.0436069 | − | 0.0755293i | ||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 17.7846 | − | 11.8564i | 1.19632 | − | 0.797548i | ||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 7.39230 | − | 12.8038i | 0.492820 | − | 0.853590i | ||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 4.00000i | 0.264327i | 0.991228 | + | 0.132164i | \(0.0421925\pi\) | ||||
−0.991228 | + | 0.132164i | \(0.957808\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 26.0000 | 1.70332 | 0.851658 | − | 0.524097i | \(-0.175597\pi\) | ||||
0.851658 | + | 0.524097i | \(0.175597\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 19.0359 | + | 10.9904i | 1.22621 | + | 0.707953i | 0.966235 | − | 0.257663i | \(-0.0829523\pi\) |
0.259975 | + | 0.965615i | \(0.416286\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | −1.62436 | + | 0.937822i | −0.103776 | + | 0.0599153i | ||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −13.3564 | − | 23.1340i | −0.833150 | − | 1.44306i | −0.895528 | − | 0.445005i | \(-0.853202\pi\) |
0.0623783 | − | 0.998053i | \(-0.480131\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 4.60770 | 0.285209 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0.947441i | 0.0582008i | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −13.0000 | + | 22.5167i | −0.792624 | + | 1.37287i | 0.131713 | + | 0.991288i | \(0.457952\pi\) |
−0.924337 | + | 0.381577i | \(0.875381\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 7.62436 | − | 13.2058i | 0.458103 | − | 0.793458i | −0.540758 | − | 0.841178i | \(-0.681862\pi\) |
0.998861 | + | 0.0477206i | \(0.0151957\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 24.6603i | 1.47111i | 0.677466 | + | 0.735554i | \(0.263078\pi\) | ||||
−0.677466 | + | 0.735554i | \(0.736922\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −9.07180 | − | 15.7128i | −0.533635 | − | 0.924283i | ||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −27.2321 | − | 15.7224i | −1.59091 | − | 0.918514i | −0.993151 | − | 0.116841i | \(-0.962723\pi\) |
−0.597763 | − | 0.801673i | \(-0.703944\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 3.57180 | + | 2.06218i | 0.204520 | + | 0.118080i | ||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −26.0000 | −1.46961 | −0.734803 | − | 0.678280i | \(-0.762726\pi\) | ||||
−0.734803 | + | 0.678280i | \(0.762726\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 5.05256i | 0.283780i | 0.989882 | + | 0.141890i | \(0.0453179\pi\) | ||||
−0.989882 | + | 0.141890i | \(0.954682\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 15.9282 | + | 7.87564i | 0.883538 | + | 0.436862i | ||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 12.8038i | 0.701647i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 36.7128 | 1.99987 | 0.999937 | − | 0.0112091i | \(-0.00356804\pi\) | ||||
0.999937 | + | 0.0112091i | \(0.00356804\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −31.1769 | + | 18.0000i | −1.66886 | + | 0.963518i | −0.700609 | + | 0.713545i | \(0.747088\pi\) |
−0.968253 | + | 0.249973i | \(0.919578\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −18.5718 | + | 10.7224i | −0.988477 | + | 0.570697i | −0.904819 | − | 0.425797i | \(-0.859994\pi\) |
−0.0836583 | + | 0.996495i | \(0.526660\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −9.50000 | − | 16.4545i | −0.500000 | − | 0.866025i | ||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 3.53590 | 0.185077 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | − | 13.9808i | − | 0.727809i | ||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −19.0885 | + | 33.0622i | −0.988363 | + | 1.71189i | −0.362446 | + | 0.932005i | \(0.618058\pi\) |
−0.625917 | + | 0.779890i | \(0.715275\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0.356406 | + | 5.52628i | 0.0183559 | + | 0.284618i | ||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −34.3205 | −1.74012 | −0.870059 | − | 0.492947i | \(-0.835920\pi\) | ||||
−0.870059 | + | 0.492947i | \(0.835920\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −10.3923 | − | 6.00000i | −0.521575 | − | 0.301131i | 0.216004 | − | 0.976392i | \(-0.430698\pi\) |
−0.737579 | + | 0.675261i | \(0.764031\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −18.8205 | + | 10.8660i | −0.939851 | + | 0.542623i | −0.889914 | − | 0.456129i | \(-0.849236\pi\) |
−0.0499376 | + | 0.998752i | \(0.515902\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | −2.08846 | + | 1.20577i | −0.103776 | + | 0.0599153i | ||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −21.8205 | − | 12.5981i | −1.07895 | − | 0.622935i | −0.148340 | − | 0.988936i | \(-0.547393\pi\) |
−0.930614 | + | 0.366002i | \(0.880726\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 39.9808i | 1.94854i | 0.225377 | + | 0.974272i | \(0.427639\pi\) | ||||
−0.225377 | + | 0.974272i | \(0.572361\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 14.6077 | − | 25.3013i | 0.708577 | − | 1.22729i | ||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −1.89230 | + | 3.27757i | −0.0909384 | + | 0.157510i | −0.907906 | − | 0.419173i | \(-0.862320\pi\) |
0.816968 | + | 0.576683i | \(0.195653\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | −21.0000 | −1.00000 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 2.14359 | + | 3.71281i | 0.101616 | + | 0.176004i | ||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 34.6410 | + | 20.0000i | 1.63481 | + | 0.943858i | 0.982581 | + | 0.185837i | \(0.0594997\pi\) |
0.652230 | + | 0.758021i | \(0.273834\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 34.9641 | − | 20.1865i | 1.63555 | − | 0.944286i | 0.653213 | − | 0.757174i | \(-0.273421\pi\) |
0.982339 | − | 0.187112i | \(-0.0599128\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −19.8397 | − | 11.4545i | −0.924029 | − | 0.533488i | −0.0391109 | − | 0.999235i | \(-0.512453\pi\) |
−0.884918 | + | 0.465746i | \(0.845786\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | −5.30385 | + | 9.18653i | −0.242846 | + | 0.420622i | ||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −15.3564 | + | 0.990381i | −0.700192 | + | 0.0451575i | ||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | −1.07180 | + | 1.85641i | −0.0486678 | + | 0.0842951i | ||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 9.10512 | 0.410074 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −4.25129 | + | 2.45448i | −0.189180 | + | 0.109223i | ||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −26.5526 | + | 15.3301i | −1.17692 | + | 0.679496i | −0.955300 | − | 0.295637i | \(-0.904468\pi\) |
−0.221621 | + | 0.975133i | \(0.571135\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 23.6410 | 1.03573 | 0.517866 | − | 0.855462i | \(-0.326727\pi\) | ||||
0.517866 | + | 0.855462i | \(0.326727\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 11.5000 | − | 19.9186i | 0.500000 | − | 0.866025i | ||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 16.7679 | − | 1.08142i | 0.726301 | − | 0.0468413i | ||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | − | 46.3731i | − | 1.99373i | −0.0790969 | − | 0.996867i | \(-0.525204\pi\) | ||
0.0790969 | − | 0.996867i | \(-0.474796\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 5.35898 | 0.229554 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 23.0885 | + | 39.9904i | 0.985391 | + | 1.70675i | ||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 40.6244 | − | 23.4545i | 1.72131 | − | 0.993798i | 0.805056 | − | 0.593199i | \(-0.202135\pi\) |
0.916253 | − | 0.400599i | \(-0.131198\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 1.59103 | + | 0.918584i | 0.0669353 | + | 0.0386451i | ||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −13.0000 | − | 22.5167i | −0.544988 | − | 0.943948i | −0.998608 | − | 0.0527519i | \(-0.983201\pi\) |
0.453619 | − | 0.891196i | \(-0.350133\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − | 25.7321i | − | 1.07124i | −0.844459 | − | 0.535620i | \(-0.820078\pi\) | ||
0.844459 | − | 0.535620i | \(-0.179922\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | −1.60770 | − | 2.41154i | −0.0664700 | − | 0.0997050i | ||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 31.8372i | 1.30740i | 0.756756 | + | 0.653698i | \(0.226783\pi\) | ||||
−0.756756 | + | 0.653698i | \(0.773217\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −23.2846 | − | 40.3301i | −0.949799 | − | 1.64510i | −0.745845 | − | 0.666120i | \(-0.767954\pi\) |
−0.203954 | − | 0.978980i | \(-0.565379\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 2.55256 | + | 1.47372i | 0.103776 | + | 0.0599153i | ||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 41.0885 | − | 23.7224i | 1.65955 | − | 0.958140i | 0.686624 | − | 0.727013i | \(-0.259092\pi\) |
0.972924 | − | 0.231127i | \(-0.0742412\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 42.3564 | + | 24.4545i | 1.70520 | + | 0.984500i | 0.940294 | + | 0.340365i | \(0.110551\pi\) |
0.764911 | + | 0.644136i | \(0.222783\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 23.9282 | 0.957128 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 25.3013i | 1.00883i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −1.62436 | − | 25.1865i | −0.0643593 | − | 0.997927i | ||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −15.9641 | + | 27.6506i | −0.630544 | + | 1.09213i | 0.356897 | + | 0.934144i | \(0.383835\pi\) |
−0.987441 | + | 0.157991i | \(0.949498\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −13.0000 | − | 22.5167i | −0.508729 | − | 0.881145i | −0.999949 | − | 0.0101092i | \(-0.996782\pi\) |
0.491220 | − | 0.871036i | \(-0.336551\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 34.2846 | + | 19.7942i | 1.33757 | + | 0.772246i | ||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 42.6962 | − | 24.6506i | 1.66069 | − | 0.958799i | 0.688301 | − | 0.725426i | \(-0.258357\pi\) |
0.972387 | − | 0.233373i | \(-0.0749763\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 21.8923 | + | 37.9186i | 0.843886 | + | 1.46165i | 0.886585 | + | 0.462566i | \(0.153071\pi\) |
−0.0426985 | + | 0.999088i | \(0.513595\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −2.00000 | −0.0768662 | −0.0384331 | − | 0.999261i | \(-0.512237\pi\) | ||||
−0.0384331 | + | 0.999261i | \(0.512237\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 3.08846 | − | 5.34936i | 0.118004 | − | 0.204389i | ||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −11.4282 | − | 5.65064i | −0.435380 | − | 0.215272i | ||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − | 27.6269i | − | 1.04644i | ||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 10.0000 | 0.377695 | 0.188847 | − | 0.982006i | \(-0.439525\pi\) | ||||
0.188847 | + | 0.982006i | \(0.439525\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −41.5526 | − | 23.9904i | −1.56054 | − | 0.900978i | −0.997202 | − | 0.0747503i | \(-0.976184\pi\) |
−0.563337 | − | 0.826227i | \(-0.690483\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 3.78461 | + | 6.55514i | 0.140557 | + | 0.243452i | ||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −27.0000 | −1.00000 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − | 44.7654i | − | 1.65345i | −0.562609 | − | 0.826723i | \(-0.690202\pi\) | ||
0.562609 | − | 0.826723i | \(-0.309798\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −2.96410 | + | 5.13397i | −0.108596 | + | 0.188094i | ||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 9.00000 | + | 15.5885i | 0.327111 | + | 0.566572i | 0.981937 | − | 0.189207i | \(-0.0605917\pi\) |
−0.654827 | + | 0.755779i | \(0.727258\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −34.6410 | − | 20.0000i | −1.25574 | − | 0.724999i | −0.283493 | − | 0.958974i | \(-0.591493\pi\) |
−0.972243 | + | 0.233975i | \(0.924827\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | −4.12693 | + | 2.38269i | −0.149210 | + | 0.0861462i | ||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −20.7846 | + | 12.0000i | −0.749512 | + | 0.432731i | −0.825518 | − | 0.564376i | \(-0.809117\pi\) |
0.0760054 | + | 0.997107i | \(0.475783\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 38.1051 | + | 22.0000i | 1.37055 | + | 0.791285i | 0.990997 | − | 0.133887i | \(-0.0427458\pi\) |
0.379549 | + | 0.925172i | \(0.376079\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | − | 5.73205i | − | 0.204586i | ||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −46.1769 | + | 30.7846i | −1.63979 | + | 1.09319i | ||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 11.0000 | − | 19.0526i | 0.389640 | − | 0.674876i | −0.602761 | − | 0.797922i | \(-0.705933\pi\) |
0.992401 | + | 0.123045i | \(0.0392661\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 48.0000i | 1.69600i | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 21.7487 | + | 37.6699i | 0.764644 | + | 1.32440i | 0.940435 | + | 0.339975i | \(0.110418\pi\) |
−0.175791 | + | 0.984428i | \(0.556248\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −24.2487 | + | 14.0000i | −0.846286 | + | 0.488603i | −0.859396 | − | 0.511311i | \(-0.829160\pi\) |
0.0131101 | + | 0.999914i | \(0.495827\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 22.1603 | + | 38.3827i | 0.769657 | + | 1.33309i | 0.937749 | + | 0.347314i | \(0.112906\pi\) |
−0.168091 | + | 0.985771i | \(0.553760\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −41.4974 | −1.43780 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 13.3205 | − | 23.0718i | 0.459328 | − | 0.795579i | ||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 2.76795 | − | 2.11474i | 0.0952203 | − | 0.0727492i | ||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − | 57.8372i | − | 1.98031i | −0.139986 | − | 0.990153i | \(-0.544706\pi\) | ||
0.139986 | − | 0.990153i | \(-0.455294\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −35.9282 | −1.22728 | −0.613642 | − | 0.789584i | \(-0.710296\pi\) | ||||
−0.613642 | + | 0.789584i | \(0.710296\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −6.03332 | − | 3.48334i | −0.205139 | − | 0.118437i | ||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | −20.7846 | + | 12.0000i | −0.703452 | + | 0.406138i | ||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −38.3038 | − | 22.1147i | −1.29343 | − | 0.746762i | −0.314169 | − | 0.949367i | \(-0.601726\pi\) |
−0.979260 | + | 0.202606i | \(0.935059\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 26.3564 | + | 45.6506i | 0.887970 | + | 1.53801i | 0.842271 | + | 0.539054i | \(0.181218\pi\) |
0.0456985 | + | 0.998955i | \(0.485449\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −10.4808 | + | 18.1532i | −0.349165 | + | 0.604771i | ||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | − | 2.22947i | − | 0.0741102i | ||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | −54.9615 | −1.82296 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −18.2154 | + | 10.5167i | −0.598918 | + | 0.345786i | ||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −17.1795 | − | 9.91858i | −0.563641 | − | 0.325418i | 0.190965 | − | 0.981597i | \(-0.438838\pi\) |
−0.754606 | + | 0.656179i | \(0.772172\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −22.5692 | −0.737304 | −0.368652 | − | 0.929567i | \(-0.620181\pi\) | ||||
−0.368652 | + | 0.929567i | \(0.620181\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | − | 20.0000i | − | 0.651981i | −0.945373 | − | 0.325991i | \(-0.894302\pi\) | ||
0.945373 | − | 0.325991i | \(-0.105698\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −21.0885 | + | 42.6506i | −0.684560 | + | 1.38450i | ||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −13.0000 | + | 22.5167i | −0.421111 | + | 0.729386i | −0.996048 | − | 0.0888114i | \(-0.971693\pi\) |
0.574937 | + | 0.818198i | \(0.305026\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 31.0000 | 1.00000 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 3.23205 | + | 5.59808i | 0.104043 | + | 0.180208i | ||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −43.0359 | + | 24.8468i | −1.37684 | + | 0.794919i | −0.991778 | − | 0.127971i | \(-0.959153\pi\) |
−0.385063 | + | 0.922890i | \(0.625820\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 51.9615 | + | 30.0000i | 1.65900 | + | 0.957826i | ||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −3.75129 | − | 6.49742i | −0.119526 | − | 0.207025i | ||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 20.6962 | − | 35.8468i | 0.655454 | − | 1.13528i | −0.326326 | − | 0.945257i | \(-0.605811\pi\) |
0.981780 | − | 0.190022i | \(-0.0608559\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 416.2.w.b.257.1 | yes | 4 | |
4.3 | odd | 2 | CM | 416.2.w.b.257.1 | yes | 4 | |
8.3 | odd | 2 | 832.2.w.f.257.2 | 4 | |||
8.5 | even | 2 | 832.2.w.f.257.2 | 4 | |||
13.2 | odd | 12 | 5408.2.a.r.1.2 | 2 | |||
13.4 | even | 6 | inner | 416.2.w.b.225.2 | ✓ | 4 | |
13.11 | odd | 12 | 5408.2.a.bc.1.1 | 2 | |||
52.11 | even | 12 | 5408.2.a.bc.1.1 | 2 | |||
52.15 | even | 12 | 5408.2.a.r.1.2 | 2 | |||
52.43 | odd | 6 | inner | 416.2.w.b.225.2 | ✓ | 4 | |
104.43 | odd | 6 | 832.2.w.f.641.1 | 4 | |||
104.69 | even | 6 | 832.2.w.f.641.1 | 4 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
416.2.w.b.225.2 | ✓ | 4 | 13.4 | even | 6 | inner | |
416.2.w.b.225.2 | ✓ | 4 | 52.43 | odd | 6 | inner | |
416.2.w.b.257.1 | yes | 4 | 1.1 | even | 1 | trivial | |
416.2.w.b.257.1 | yes | 4 | 4.3 | odd | 2 | CM | |
832.2.w.f.257.2 | 4 | 8.3 | odd | 2 | |||
832.2.w.f.257.2 | 4 | 8.5 | even | 2 | |||
832.2.w.f.641.1 | 4 | 104.43 | odd | 6 | |||
832.2.w.f.641.1 | 4 | 104.69 | even | 6 | |||
5408.2.a.r.1.2 | 2 | 13.2 | odd | 12 | |||
5408.2.a.r.1.2 | 2 | 52.15 | even | 12 | |||
5408.2.a.bc.1.1 | 2 | 13.11 | odd | 12 | |||
5408.2.a.bc.1.1 | 2 | 52.11 | even | 12 |