Properties

Label 416.2.w.b.257.1
Level $416$
Weight $2$
Character 416.257
Analytic conductor $3.322$
Analytic rank $0$
Dimension $4$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(225,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.w (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 257.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 416.257
Dual form 416.2.w.b.225.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.267949i q^{5} +(1.50000 - 2.59808i) q^{9} +(3.23205 + 1.59808i) q^{13} +(2.96410 - 5.13397i) q^{17} +4.92820 q^{25} +(0.767949 + 1.33013i) q^{29} +(-3.69615 + 2.13397i) q^{37} +(4.03590 - 2.33013i) q^{41} +(-0.696152 - 0.401924i) q^{45} +(-3.50000 - 6.06218i) q^{49} -3.53590 q^{53} +(-7.69615 + 13.3301i) q^{61} +(0.428203 - 0.866025i) q^{65} +13.1962i q^{73} +(-4.50000 - 7.79423i) q^{81} +(-1.37564 - 0.794229i) q^{85} +(-13.8564 + 8.00000i) q^{89} +(-6.92820 - 4.00000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{9} + 6 q^{13} - 2 q^{17} - 8 q^{25} + 10 q^{29} + 6 q^{37} + 30 q^{41} + 18 q^{45} - 14 q^{49} - 28 q^{53} - 10 q^{61} - 26 q^{65} - 18 q^{81} - 54 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0 0
\(5\) 0.267949i 0.119831i −0.998203 0.0599153i \(-0.980917\pi\)
0.998203 0.0599153i \(-0.0190830\pi\)
\(6\) 0 0
\(7\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(8\) 0 0
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 0 0
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 0 0
\(13\) 3.23205 + 1.59808i 0.896410 + 0.443227i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.96410 5.13397i 0.718900 1.24517i −0.242536 0.970143i \(-0.577979\pi\)
0.961436 0.275029i \(-0.0886875\pi\)
\(18\) 0 0
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 4.92820 0.985641
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.767949 + 1.33013i 0.142605 + 0.246998i 0.928477 0.371391i \(-0.121119\pi\)
−0.785872 + 0.618389i \(0.787786\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.69615 + 2.13397i −0.607644 + 0.350823i −0.772043 0.635571i \(-0.780765\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.03590 2.33013i 0.630301 0.363905i −0.150567 0.988600i \(-0.548110\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(44\) 0 0
\(45\) −0.696152 0.401924i −0.103776 0.0599153i
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −3.50000 6.06218i −0.500000 0.866025i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.53590 −0.485693 −0.242846 0.970065i \(-0.578081\pi\)
−0.242846 + 0.970065i \(0.578081\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(60\) 0 0
\(61\) −7.69615 + 13.3301i −0.985391 + 1.70675i −0.345207 + 0.938527i \(0.612191\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.428203 0.866025i 0.0531121 0.107417i
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(72\) 0 0
\(73\) 13.1962i 1.54449i 0.635323 + 0.772246i \(0.280867\pi\)
−0.635323 + 0.772246i \(0.719133\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) −1.37564 0.794229i −0.149210 0.0861462i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −13.8564 + 8.00000i −1.46878 + 0.847998i −0.999388 0.0349934i \(-0.988859\pi\)
−0.469389 + 0.882992i \(0.655526\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −6.92820 4.00000i −0.703452 0.406138i 0.105180 0.994453i \(-0.466458\pi\)
−0.808632 + 0.588315i \(0.799792\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.16025 15.8660i −0.911479 1.57873i −0.811976 0.583691i \(-0.801608\pi\)
−0.0995037 0.995037i \(-0.531726\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) 0 0
\(109\) 20.0000i 1.91565i 0.287348 + 0.957826i \(0.407226\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.42820 + 5.93782i −0.322498 + 0.558583i −0.981003 0.193993i \(-0.937856\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 9.00000 6.00000i 0.832050 0.554700i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.50000 + 9.52628i −0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.66025i 0.237940i
\(126\) 0 0
\(127\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 19.9641 + 11.5263i 1.70565 + 0.984757i 0.939793 + 0.341743i \(0.111017\pi\)
0.765855 + 0.643013i \(0.222316\pi\)
\(138\) 0 0
\(139\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0.356406 0.205771i 0.0295979 0.0170884i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −19.1603 11.0622i −1.56967 0.906249i −0.996207 0.0870170i \(-0.972267\pi\)
−0.573462 0.819232i \(-0.694400\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) −8.89230 15.4019i −0.718900 1.24517i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 21.3923 1.70729 0.853646 0.520854i \(-0.174386\pi\)
0.853646 + 0.520854i \(0.174386\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(168\) 0 0
\(169\) 7.89230 + 10.3301i 0.607100 + 0.794625i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.0000 22.5167i 0.988372 1.71191i 0.362500 0.931984i \(-0.381923\pi\)
0.625871 0.779926i \(-0.284744\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 0 0
\(181\) 8.32051 0.618458 0.309229 0.950988i \(-0.399929\pi\)
0.309229 + 0.950988i \(0.399929\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.571797 + 0.990381i 0.0420393 + 0.0728143i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0 0
\(193\) −20.8923 + 12.0622i −1.50386 + 0.868255i −0.503871 + 0.863779i \(0.668091\pi\)
−0.999990 + 0.00447566i \(0.998575\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 24.2487 14.0000i 1.72765 0.997459i 0.828201 0.560431i \(-0.189365\pi\)
0.899448 0.437028i \(-0.143969\pi\)
\(198\) 0 0
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −0.624356 1.08142i −0.0436069 0.0755293i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 17.7846 11.8564i 1.19632 0.797548i
\(222\) 0 0
\(223\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(224\) 0 0
\(225\) 7.39230 12.8038i 0.492820 0.853590i
\(226\) 0 0
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0 0
\(229\) 4.00000i 0.264327i 0.991228 + 0.132164i \(0.0421925\pi\)
−0.991228 + 0.132164i \(0.957808\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 26.0000 1.70332 0.851658 0.524097i \(-0.175597\pi\)
0.851658 + 0.524097i \(0.175597\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 19.0359 + 10.9904i 1.22621 + 0.707953i 0.966235 0.257663i \(-0.0829523\pi\)
0.259975 + 0.965615i \(0.416286\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.62436 + 0.937822i −0.103776 + 0.0599153i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.3564 23.1340i −0.833150 1.44306i −0.895528 0.445005i \(-0.853202\pi\)
0.0623783 0.998053i \(-0.480131\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 4.60770 0.285209
\(262\) 0 0
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 0 0
\(265\) 0.947441i 0.0582008i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.0000 + 22.5167i −0.792624 + 1.37287i 0.131713 + 0.991288i \(0.457952\pi\)
−0.924337 + 0.381577i \(0.875381\pi\)
\(270\) 0 0
\(271\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7.62436 13.2058i 0.458103 0.793458i −0.540758 0.841178i \(-0.681862\pi\)
0.998861 + 0.0477206i \(0.0151957\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.6603i 1.47111i 0.677466 + 0.735554i \(0.263078\pi\)
−0.677466 + 0.735554i \(0.736922\pi\)
\(282\) 0 0
\(283\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.07180 15.7128i −0.533635 0.924283i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −27.2321 15.7224i −1.59091 0.918514i −0.993151 0.116841i \(-0.962723\pi\)
−0.597763 0.801673i \(-0.703944\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.57180 + 2.06218i 0.204520 + 0.118080i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −26.0000 −1.46961 −0.734803 0.678280i \(-0.762726\pi\)
−0.734803 + 0.678280i \(0.762726\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.05256i 0.283780i 0.989882 + 0.141890i \(0.0453179\pi\)
−0.989882 + 0.141890i \(0.954682\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 15.9282 + 7.87564i 0.883538 + 0.436862i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) 0 0
\(333\) 12.8038i 0.701647i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 36.7128 1.99987 0.999937 0.0112091i \(-0.00356804\pi\)
0.999937 + 0.0112091i \(0.00356804\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) −31.1769 + 18.0000i −1.66886 + 0.963518i −0.700609 + 0.713545i \(0.747088\pi\)
−0.968253 + 0.249973i \(0.919578\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −18.5718 + 10.7224i −0.988477 + 0.570697i −0.904819 0.425797i \(-0.859994\pi\)
−0.0836583 + 0.996495i \(0.526660\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −9.50000 16.4545i −0.500000 0.866025i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.53590 0.185077
\(366\) 0 0
\(367\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(368\) 0 0
\(369\) 13.9808i 0.727809i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −19.0885 + 33.0622i −0.988363 + 1.71189i −0.362446 + 0.932005i \(0.618058\pi\)
−0.625917 + 0.779890i \(0.715275\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.356406 + 5.52628i 0.0183559 + 0.284618i
\(378\) 0 0
\(379\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −34.3205 −1.74012 −0.870059 0.492947i \(-0.835920\pi\)
−0.870059 + 0.492947i \(0.835920\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −10.3923 6.00000i −0.521575 0.301131i 0.216004 0.976392i \(-0.430698\pi\)
−0.737579 + 0.675261i \(0.764031\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.8205 + 10.8660i −0.939851 + 0.542623i −0.889914 0.456129i \(-0.849236\pi\)
−0.0499376 + 0.998752i \(0.515902\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −2.08846 + 1.20577i −0.103776 + 0.0599153i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −21.8205 12.5981i −1.07895 0.622935i −0.148340 0.988936i \(-0.547393\pi\)
−0.930614 + 0.366002i \(0.880726\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(420\) 0 0
\(421\) 39.9808i 1.94854i 0.225377 + 0.974272i \(0.427639\pi\)
−0.225377 + 0.974272i \(0.572361\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 14.6077 25.3013i 0.708577 1.22729i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(432\) 0 0
\(433\) −1.89230 + 3.27757i −0.0909384 + 0.157510i −0.907906 0.419173i \(-0.862320\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) −21.0000 −1.00000
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 2.14359 + 3.71281i 0.101616 + 0.176004i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 34.6410 + 20.0000i 1.63481 + 0.943858i 0.982581 + 0.185837i \(0.0594997\pi\)
0.652230 + 0.758021i \(0.273834\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 34.9641 20.1865i 1.63555 0.944286i 0.653213 0.757174i \(-0.273421\pi\)
0.982339 0.187112i \(-0.0599128\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −19.8397 11.4545i −0.924029 0.533488i −0.0391109 0.999235i \(-0.512453\pi\)
−0.884918 + 0.465746i \(0.845786\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5.30385 + 9.18653i −0.242846 + 0.420622i
\(478\) 0 0
\(479\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(480\) 0 0
\(481\) −15.3564 + 0.990381i −0.700192 + 0.0451575i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.07180 + 1.85641i −0.0486678 + 0.0842951i
\(486\) 0 0
\(487\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 9.10512 0.410074
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(504\) 0 0
\(505\) −4.25129 + 2.45448i −0.189180 + 0.109223i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −26.5526 + 15.3301i −1.17692 + 0.679496i −0.955300 0.295637i \(-0.904468\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 23.6410 1.03573 0.517866 0.855462i \(-0.326727\pi\)
0.517866 + 0.855462i \(0.326727\pi\)
\(522\) 0 0
\(523\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.7679 1.08142i 0.726301 0.0468413i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 46.3731i 1.99373i −0.0790969 0.996867i \(-0.525204\pi\)
0.0790969 0.996867i \(-0.474796\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.35898 0.229554
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 23.0885 + 39.9904i 0.985391 + 1.70675i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 40.6244 23.4545i 1.72131 0.993798i 0.805056 0.593199i \(-0.202135\pi\)
0.916253 0.400599i \(-0.131198\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(564\) 0 0
\(565\) 1.59103 + 0.918584i 0.0669353 + 0.0386451i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −13.0000 22.5167i −0.544988 0.943948i −0.998608 0.0527519i \(-0.983201\pi\)
0.453619 0.891196i \(-0.350133\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 25.7321i 1.07124i −0.844459 0.535620i \(-0.820078\pi\)
0.844459 0.535620i \(-0.179922\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −1.60770 2.41154i −0.0664700 0.0997050i
\(586\) 0 0
\(587\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 31.8372i 1.30740i 0.756756 + 0.653698i \(0.226783\pi\)
−0.756756 + 0.653698i \(0.773217\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −23.2846 40.3301i −0.949799 1.64510i −0.745845 0.666120i \(-0.767954\pi\)
−0.203954 0.978980i \(-0.565379\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.55256 + 1.47372i 0.103776 + 0.0599153i
\(606\) 0 0
\(607\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 41.0885 23.7224i 1.65955 0.958140i 0.686624 0.727013i \(-0.259092\pi\)
0.972924 0.231127i \(-0.0742412\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 42.3564 + 24.4545i 1.70520 + 0.984500i 0.940294 + 0.340365i \(0.110551\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 23.9282 0.957128
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 25.3013i 1.00883i
\(630\) 0 0
\(631\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.62436 25.1865i −0.0643593 0.997927i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −15.9641 + 27.6506i −0.630544 + 1.09213i 0.356897 + 0.934144i \(0.383835\pi\)
−0.987441 + 0.157991i \(0.949498\pi\)
\(642\) 0 0
\(643\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −13.0000 22.5167i −0.508729 0.881145i −0.999949 0.0101092i \(-0.996782\pi\)
0.491220 0.871036i \(-0.336551\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 34.2846 + 19.7942i 1.33757 + 0.772246i
\(658\) 0 0
\(659\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(660\) 0 0
\(661\) 42.6962 24.6506i 1.66069 0.958799i 0.688301 0.725426i \(-0.258357\pi\)
0.972387 0.233373i \(-0.0749763\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 21.8923 + 37.9186i 0.843886 + 1.46165i 0.886585 + 0.462566i \(0.153071\pi\)
−0.0426985 + 0.999088i \(0.513595\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.00000 −0.0768662 −0.0384331 0.999261i \(-0.512237\pi\)
−0.0384331 + 0.999261i \(0.512237\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 3.08846 5.34936i 0.118004 0.204389i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −11.4282 5.65064i −0.435380 0.215272i
\(690\) 0 0
\(691\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 27.6269i 1.04644i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 10.0000 0.377695 0.188847 0.982006i \(-0.439525\pi\)
0.188847 + 0.982006i \(0.439525\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −41.5526 23.9904i −1.56054 0.900978i −0.997202 0.0747503i \(-0.976184\pi\)
−0.563337 0.826227i \(-0.690483\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.78461 + 6.55514i 0.140557 + 0.243452i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 44.7654i 1.65345i −0.562609 0.826723i \(-0.690202\pi\)
0.562609 0.826723i \(-0.309798\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(744\) 0 0
\(745\) −2.96410 + 5.13397i −0.108596 + 0.188094i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 9.00000 + 15.5885i 0.327111 + 0.566572i 0.981937 0.189207i \(-0.0605917\pi\)
−0.654827 + 0.755779i \(0.727258\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −34.6410 20.0000i −1.25574 0.724999i −0.283493 0.958974i \(-0.591493\pi\)
−0.972243 + 0.233975i \(0.924827\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −4.12693 + 2.38269i −0.149210 + 0.0861462i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −20.7846 + 12.0000i −0.749512 + 0.432731i −0.825518 0.564376i \(-0.809117\pi\)
0.0760054 + 0.997107i \(0.475783\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 38.1051 + 22.0000i 1.37055 + 0.791285i 0.990997 0.133887i \(-0.0427458\pi\)
0.379549 + 0.925172i \(0.376079\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.73205i 0.204586i
\(786\) 0 0
\(787\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −46.1769 + 30.7846i −1.63979 + 1.09319i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 11.0000 19.0526i 0.389640 0.674876i −0.602761 0.797922i \(-0.705933\pi\)
0.992401 + 0.123045i \(0.0392661\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 48.0000i 1.69600i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 21.7487 + 37.6699i 0.764644 + 1.32440i 0.940435 + 0.339975i \(0.110418\pi\)
−0.175791 + 0.984428i \(0.556248\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −24.2487 + 14.0000i −0.846286 + 0.488603i −0.859396 0.511311i \(-0.829160\pi\)
0.0131101 + 0.999914i \(0.495827\pi\)
\(822\) 0 0
\(823\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 22.1603 + 38.3827i 0.769657 + 1.33309i 0.937749 + 0.347314i \(0.112906\pi\)
−0.168091 + 0.985771i \(0.553760\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −41.4974 −1.43780
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(840\) 0 0
\(841\) 13.3205 23.0718i 0.459328 0.795579i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.76795 2.11474i 0.0952203 0.0727492i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 57.8372i 1.98031i −0.139986 0.990153i \(-0.544706\pi\)
0.139986 0.990153i \(-0.455294\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −35.9282 −1.22728 −0.613642 0.789584i \(-0.710296\pi\)
−0.613642 + 0.789584i \(0.710296\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) −6.03332 3.48334i −0.205139 0.118437i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −20.7846 + 12.0000i −0.703452 + 0.406138i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −38.3038 22.1147i −1.29343 0.746762i −0.314169 0.949367i \(-0.601726\pi\)
−0.979260 + 0.202606i \(0.935059\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 26.3564 + 45.6506i 0.887970 + 1.53801i 0.842271 + 0.539054i \(0.181218\pi\)
0.0456985 + 0.998955i \(0.485449\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −10.4808 + 18.1532i −0.349165 + 0.604771i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.22947i 0.0741102i
\(906\) 0 0
\(907\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(908\) 0 0
\(909\) −54.9615 −1.82296
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −18.2154 + 10.5167i −0.598918 + 0.345786i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −17.1795 9.91858i −0.563641 0.325418i 0.190965 0.981597i \(-0.438838\pi\)
−0.754606 + 0.656179i \(0.772172\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −22.5692 −0.737304 −0.368652 0.929567i \(-0.620181\pi\)
−0.368652 + 0.929567i \(0.620181\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 20.0000i 0.651981i −0.945373 0.325991i \(-0.894302\pi\)
0.945373 0.325991i \(-0.105698\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(948\) 0 0
\(949\) −21.0885 + 42.6506i −0.684560 + 1.38450i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −13.0000 + 22.5167i −0.421111 + 0.729386i −0.996048 0.0888114i \(-0.971693\pi\)
0.574937 + 0.818198i \(0.305026\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.23205 + 5.59808i 0.104043 + 0.180208i
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −43.0359 + 24.8468i −1.37684 + 0.794919i −0.991778 0.127971i \(-0.959153\pi\)
−0.385063 + 0.922890i \(0.625820\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 51.9615 + 30.0000i 1.65900 + 0.957826i
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) −3.75129 6.49742i −0.119526 0.207025i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 20.6962 35.8468i 0.655454 1.13528i −0.326326 0.945257i \(-0.605811\pi\)
0.981780 0.190022i \(-0.0608559\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.w.b.257.1 yes 4
4.3 odd 2 CM 416.2.w.b.257.1 yes 4
8.3 odd 2 832.2.w.f.257.2 4
8.5 even 2 832.2.w.f.257.2 4
13.2 odd 12 5408.2.a.r.1.2 2
13.4 even 6 inner 416.2.w.b.225.2 4
13.11 odd 12 5408.2.a.bc.1.1 2
52.11 even 12 5408.2.a.bc.1.1 2
52.15 even 12 5408.2.a.r.1.2 2
52.43 odd 6 inner 416.2.w.b.225.2 4
104.43 odd 6 832.2.w.f.641.1 4
104.69 even 6 832.2.w.f.641.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.w.b.225.2 4 13.4 even 6 inner
416.2.w.b.225.2 4 52.43 odd 6 inner
416.2.w.b.257.1 yes 4 1.1 even 1 trivial
416.2.w.b.257.1 yes 4 4.3 odd 2 CM
832.2.w.f.257.2 4 8.3 odd 2
832.2.w.f.257.2 4 8.5 even 2
832.2.w.f.641.1 4 104.43 odd 6
832.2.w.f.641.1 4 104.69 even 6
5408.2.a.r.1.2 2 13.2 odd 12
5408.2.a.r.1.2 2 52.15 even 12
5408.2.a.bc.1.1 2 13.11 odd 12
5408.2.a.bc.1.1 2 52.11 even 12