L(s) = 1 | + 3-s + 6·11-s − 4·13-s − 4·19-s + 6·23-s + 5·25-s − 27-s + 12·29-s + 8·31-s + 6·33-s − 2·37-s − 4·39-s − 24·41-s − 8·43-s + 12·47-s + 6·53-s − 4·57-s − 10·61-s − 8·67-s + 6·69-s + 12·71-s − 10·73-s + 5·75-s + 4·79-s − 81-s + 24·83-s + 12·87-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.80·11-s − 1.10·13-s − 0.917·19-s + 1.25·23-s + 25-s − 0.192·27-s + 2.22·29-s + 1.43·31-s + 1.04·33-s − 0.328·37-s − 0.640·39-s − 3.74·41-s − 1.21·43-s + 1.75·47-s + 0.824·53-s − 0.529·57-s − 1.28·61-s − 0.977·67-s + 0.722·69-s + 1.42·71-s − 1.17·73-s + 0.577·75-s + 0.450·79-s − 1/9·81-s + 2.63·83-s + 1.28·87-s + ⋯ |
Λ(s)=(=(345744s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(345744s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
345744
= 24⋅32⋅74
|
Sign: |
1
|
Analytic conductor: |
22.0449 |
Root analytic conductor: |
2.16684 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 345744, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.447793301 |
L(21) |
≈ |
2.447793301 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1−T+T2 |
| 7 | | 1 |
good | 5 | C22 | 1−pT2+p2T4 |
| 11 | C22 | 1−6T+25T2−6pT3+p2T4 |
| 13 | C2 | (1+2T+pT2)2 |
| 17 | C22 | 1−pT2+p2T4 |
| 19 | C22 | 1+4T−3T2+4pT3+p2T4 |
| 23 | C22 | 1−6T+13T2−6pT3+p2T4 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | C22 | 1−8T+33T2−8pT3+p2T4 |
| 37 | C22 | 1+2T−33T2+2pT3+p2T4 |
| 41 | C2 | (1+12T+pT2)2 |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C22 | 1−12T+97T2−12pT3+p2T4 |
| 53 | C22 | 1−6T−17T2−6pT3+p2T4 |
| 59 | C22 | 1−pT2+p2T4 |
| 61 | C22 | 1+10T+39T2+10pT3+p2T4 |
| 67 | C22 | 1+8T−3T2+8pT3+p2T4 |
| 71 | C2 | (1−6T+pT2)2 |
| 73 | C2 | (1−7T+pT2)(1+17T+pT2) |
| 79 | C2 | (1−17T+pT2)(1+13T+pT2) |
| 83 | C2 | (1−12T+pT2)2 |
| 89 | C22 | 1−12T+55T2−12pT3+p2T4 |
| 97 | C2 | (1−10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.59523025583029202558354503309, −10.47943702209173908529826735682, −10.16106844341492498816097585141, −9.458419761601227879363089501348, −9.116124051667141690885045631184, −8.702602132672200820601415364440, −8.443935749541386460275208542013, −7.978727741737425187783778722772, −7.19367553515283518122311309949, −6.80379843620544208445214810698, −6.55876832554089240168348208687, −6.18573546364636573254799723821, −5.02499277950116262149259163091, −4.94150342410443692419104271924, −4.40520587979508663278659154208, −3.63324610500658274442201888781, −3.15071750733572713514677841518, −2.58247034454246733586331312893, −1.77118414331097806789375930088, −0.914534402024743180882876203600,
0.914534402024743180882876203600, 1.77118414331097806789375930088, 2.58247034454246733586331312893, 3.15071750733572713514677841518, 3.63324610500658274442201888781, 4.40520587979508663278659154208, 4.94150342410443692419104271924, 5.02499277950116262149259163091, 6.18573546364636573254799723821, 6.55876832554089240168348208687, 6.80379843620544208445214810698, 7.19367553515283518122311309949, 7.978727741737425187783778722772, 8.443935749541386460275208542013, 8.702602132672200820601415364440, 9.116124051667141690885045631184, 9.458419761601227879363089501348, 10.16106844341492498816097585141, 10.47943702209173908529826735682, 10.59523025583029202558354503309