Properties

Label 588.2.i.f.373.1
Level $588$
Weight $2$
Character 588.373
Analytic conductor $4.695$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,2,Mod(361,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 373.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 588.373
Dual form 588.2.i.f.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{9} +(3.00000 + 5.19615i) q^{11} -2.00000 q^{13} +(-2.00000 + 3.46410i) q^{19} +(3.00000 - 5.19615i) q^{23} +(2.50000 + 4.33013i) q^{25} -1.00000 q^{27} +6.00000 q^{29} +(4.00000 + 6.92820i) q^{31} +(-3.00000 + 5.19615i) q^{33} +(-1.00000 + 1.73205i) q^{37} +(-1.00000 - 1.73205i) q^{39} -12.0000 q^{41} -4.00000 q^{43} +(6.00000 - 10.3923i) q^{47} +(3.00000 + 5.19615i) q^{53} -4.00000 q^{57} +(-5.00000 + 8.66025i) q^{61} +(-4.00000 - 6.92820i) q^{67} +6.00000 q^{69} +6.00000 q^{71} +(-5.00000 - 8.66025i) q^{73} +(-2.50000 + 4.33013i) q^{75} +(2.00000 - 3.46410i) q^{79} +(-0.500000 - 0.866025i) q^{81} +12.0000 q^{83} +(3.00000 + 5.19615i) q^{87} +(6.00000 - 10.3923i) q^{89} +(-4.00000 + 6.92820i) q^{93} +10.0000 q^{97} -6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - q^{9} + 6 q^{11} - 4 q^{13} - 4 q^{19} + 6 q^{23} + 5 q^{25} - 2 q^{27} + 12 q^{29} + 8 q^{31} - 6 q^{33} - 2 q^{37} - 2 q^{39} - 24 q^{41} - 8 q^{43} + 12 q^{47} + 6 q^{53} - 8 q^{57} - 10 q^{61}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 3.00000 + 5.19615i 0.904534 + 1.56670i 0.821541 + 0.570149i \(0.193114\pi\)
0.0829925 + 0.996550i \(0.473552\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) −2.00000 + 3.46410i −0.458831 + 0.794719i −0.998899 0.0469020i \(-0.985065\pi\)
0.540068 + 0.841621i \(0.318398\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.00000 5.19615i 0.625543 1.08347i −0.362892 0.931831i \(-0.618211\pi\)
0.988436 0.151642i \(-0.0484560\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 4.00000 + 6.92820i 0.718421 + 1.24434i 0.961625 + 0.274367i \(0.0884683\pi\)
−0.243204 + 0.969975i \(0.578198\pi\)
\(32\) 0 0
\(33\) −3.00000 + 5.19615i −0.522233 + 0.904534i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 + 1.73205i −0.164399 + 0.284747i −0.936442 0.350823i \(-0.885902\pi\)
0.772043 + 0.635571i \(0.219235\pi\)
\(38\) 0 0
\(39\) −1.00000 1.73205i −0.160128 0.277350i
\(40\) 0 0
\(41\) −12.0000 −1.87409 −0.937043 0.349215i \(-0.886448\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.00000 10.3923i 0.875190 1.51587i 0.0186297 0.999826i \(-0.494070\pi\)
0.856560 0.516047i \(-0.172597\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.00000 + 5.19615i 0.412082 + 0.713746i 0.995117 0.0987002i \(-0.0314685\pi\)
−0.583036 + 0.812447i \(0.698135\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) −5.00000 + 8.66025i −0.640184 + 1.10883i 0.345207 + 0.938527i \(0.387809\pi\)
−0.985391 + 0.170305i \(0.945525\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.00000 6.92820i −0.488678 0.846415i 0.511237 0.859440i \(-0.329187\pi\)
−0.999915 + 0.0130248i \(0.995854\pi\)
\(68\) 0 0
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) −5.00000 8.66025i −0.585206 1.01361i −0.994850 0.101361i \(-0.967680\pi\)
0.409644 0.912245i \(-0.365653\pi\)
\(74\) 0 0
\(75\) −2.50000 + 4.33013i −0.288675 + 0.500000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.00000 3.46410i 0.225018 0.389742i −0.731307 0.682048i \(-0.761089\pi\)
0.956325 + 0.292306i \(0.0944227\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.00000 + 5.19615i 0.321634 + 0.557086i
\(88\) 0 0
\(89\) 6.00000 10.3923i 0.635999 1.10158i −0.350304 0.936636i \(-0.613922\pi\)
0.986303 0.164946i \(-0.0527450\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −4.00000 + 6.92820i −0.414781 + 0.718421i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) −6.00000 10.3923i −0.597022 1.03407i −0.993258 0.115924i \(-0.963017\pi\)
0.396236 0.918149i \(-0.370316\pi\)
\(102\) 0 0
\(103\) 4.00000 6.92820i 0.394132 0.682656i −0.598858 0.800855i \(-0.704379\pi\)
0.992990 + 0.118199i \(0.0377120\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.00000 5.19615i 0.290021 0.502331i −0.683793 0.729676i \(-0.739671\pi\)
0.973814 + 0.227345i \(0.0730044\pi\)
\(108\) 0 0
\(109\) −7.00000 12.1244i −0.670478 1.16130i −0.977769 0.209687i \(-0.932756\pi\)
0.307290 0.951616i \(-0.400578\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.00000 1.73205i 0.0924500 0.160128i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −12.5000 + 21.6506i −1.13636 + 1.96824i
\(122\) 0 0
\(123\) −6.00000 10.3923i −0.541002 0.937043i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 0 0
\(129\) −2.00000 3.46410i −0.176090 0.304997i
\(130\) 0 0
\(131\) 6.00000 10.3923i 0.524222 0.907980i −0.475380 0.879781i \(-0.657689\pi\)
0.999602 0.0281993i \(-0.00897729\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.00000 5.19615i −0.256307 0.443937i 0.708942 0.705266i \(-0.249173\pi\)
−0.965250 + 0.261329i \(0.915839\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 12.0000 1.01058
\(142\) 0 0
\(143\) −6.00000 10.3923i −0.501745 0.869048i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.00000 5.19615i 0.245770 0.425685i −0.716578 0.697507i \(-0.754293\pi\)
0.962348 + 0.271821i \(0.0876260\pi\)
\(150\) 0 0
\(151\) −4.00000 6.92820i −0.325515 0.563809i 0.656101 0.754673i \(-0.272204\pi\)
−0.981617 + 0.190864i \(0.938871\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7.00000 + 12.1244i 0.558661 + 0.967629i 0.997609 + 0.0691164i \(0.0220180\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) 0 0
\(159\) −3.00000 + 5.19615i −0.237915 + 0.412082i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 8.00000 13.8564i 0.626608 1.08532i −0.361619 0.932326i \(-0.617776\pi\)
0.988227 0.152992i \(-0.0488907\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −2.00000 3.46410i −0.152944 0.264906i
\(172\) 0 0
\(173\) −6.00000 + 10.3923i −0.456172 + 0.790112i −0.998755 0.0498898i \(-0.984113\pi\)
0.542583 + 0.840002i \(0.317446\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3.00000 5.19615i −0.224231 0.388379i 0.731858 0.681457i \(-0.238654\pi\)
−0.956088 + 0.293079i \(0.905320\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) −10.0000 −0.739221
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.00000 + 5.19615i −0.217072 + 0.375980i −0.953912 0.300088i \(-0.902984\pi\)
0.736839 + 0.676068i \(0.236317\pi\)
\(192\) 0 0
\(193\) 5.00000 + 8.66025i 0.359908 + 0.623379i 0.987945 0.154805i \(-0.0494748\pi\)
−0.628037 + 0.778183i \(0.716141\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −8.00000 13.8564i −0.567105 0.982255i −0.996850 0.0793045i \(-0.974730\pi\)
0.429745 0.902950i \(-0.358603\pi\)
\(200\) 0 0
\(201\) 4.00000 6.92820i 0.282138 0.488678i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3.00000 + 5.19615i 0.208514 + 0.361158i
\(208\) 0 0
\(209\) −24.0000 −1.66011
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 3.00000 + 5.19615i 0.205557 + 0.356034i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 5.00000 8.66025i 0.337869 0.585206i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) −5.00000 −0.333333
\(226\) 0 0
\(227\) 12.0000 + 20.7846i 0.796468 + 1.37952i 0.921903 + 0.387421i \(0.126634\pi\)
−0.125435 + 0.992102i \(0.540033\pi\)
\(228\) 0 0
\(229\) 1.00000 1.73205i 0.0660819 0.114457i −0.831092 0.556136i \(-0.812283\pi\)
0.897173 + 0.441679i \(0.145617\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.00000 + 5.19615i −0.196537 + 0.340411i −0.947403 0.320043i \(-0.896303\pi\)
0.750867 + 0.660454i \(0.229636\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 4.00000 0.259828
\(238\) 0 0
\(239\) 18.0000 1.16432 0.582162 0.813073i \(-0.302207\pi\)
0.582162 + 0.813073i \(0.302207\pi\)
\(240\) 0 0
\(241\) −5.00000 8.66025i −0.322078 0.557856i 0.658838 0.752285i \(-0.271048\pi\)
−0.980917 + 0.194429i \(0.937715\pi\)
\(242\) 0 0
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.00000 6.92820i 0.254514 0.440831i
\(248\) 0 0
\(249\) 6.00000 + 10.3923i 0.380235 + 0.658586i
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 36.0000 2.26330
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.00000 + 10.3923i −0.374270 + 0.648254i −0.990217 0.139533i \(-0.955440\pi\)
0.615948 + 0.787787i \(0.288773\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −3.00000 + 5.19615i −0.185695 + 0.321634i
\(262\) 0 0
\(263\) 3.00000 + 5.19615i 0.184988 + 0.320408i 0.943572 0.331166i \(-0.107442\pi\)
−0.758585 + 0.651575i \(0.774109\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 12.0000 0.734388
\(268\) 0 0
\(269\) 12.0000 + 20.7846i 0.731653 + 1.26726i 0.956176 + 0.292791i \(0.0945841\pi\)
−0.224523 + 0.974469i \(0.572083\pi\)
\(270\) 0 0
\(271\) −8.00000 + 13.8564i −0.485965 + 0.841717i −0.999870 0.0161307i \(-0.994865\pi\)
0.513905 + 0.857847i \(0.328199\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15.0000 + 25.9808i −0.904534 + 1.56670i
\(276\) 0 0
\(277\) 11.0000 + 19.0526i 0.660926 + 1.14476i 0.980373 + 0.197153i \(0.0631696\pi\)
−0.319447 + 0.947604i \(0.603497\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 10.0000 + 17.3205i 0.594438 + 1.02960i 0.993626 + 0.112728i \(0.0359589\pi\)
−0.399188 + 0.916869i \(0.630708\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 5.00000 + 8.66025i 0.293105 + 0.507673i
\(292\) 0 0
\(293\) 12.0000 0.701047 0.350524 0.936554i \(-0.386004\pi\)
0.350524 + 0.936554i \(0.386004\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −3.00000 5.19615i −0.174078 0.301511i
\(298\) 0 0
\(299\) −6.00000 + 10.3923i −0.346989 + 0.601003i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 6.00000 10.3923i 0.344691 0.597022i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) −6.00000 10.3923i −0.340229 0.589294i 0.644246 0.764818i \(-0.277171\pi\)
−0.984475 + 0.175525i \(0.943838\pi\)
\(312\) 0 0
\(313\) 13.0000 22.5167i 0.734803 1.27272i −0.220006 0.975499i \(-0.570608\pi\)
0.954810 0.297218i \(-0.0960589\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.0000 25.9808i 0.842484 1.45922i −0.0453045 0.998973i \(-0.514426\pi\)
0.887788 0.460252i \(-0.152241\pi\)
\(318\) 0 0
\(319\) 18.0000 + 31.1769i 1.00781 + 1.74557i
\(320\) 0 0
\(321\) 6.00000 0.334887
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −5.00000 8.66025i −0.277350 0.480384i
\(326\) 0 0
\(327\) 7.00000 12.1244i 0.387101 0.670478i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −10.0000 + 17.3205i −0.549650 + 0.952021i 0.448649 + 0.893708i \(0.351905\pi\)
−0.998298 + 0.0583130i \(0.981428\pi\)
\(332\) 0 0
\(333\) −1.00000 1.73205i −0.0547997 0.0949158i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0 0
\(339\) −3.00000 5.19615i −0.162938 0.282216i
\(340\) 0 0
\(341\) −24.0000 + 41.5692i −1.29967 + 2.25110i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.00000 + 15.5885i 0.483145 + 0.836832i 0.999813 0.0193540i \(-0.00616095\pi\)
−0.516667 + 0.856186i \(0.672828\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.00000 + 5.19615i −0.158334 + 0.274242i −0.934268 0.356572i \(-0.883946\pi\)
0.775934 + 0.630814i \(0.217279\pi\)
\(360\) 0 0
\(361\) 1.50000 + 2.59808i 0.0789474 + 0.136741i
\(362\) 0 0
\(363\) −25.0000 −1.31216
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 16.0000 + 27.7128i 0.835193 + 1.44660i 0.893873 + 0.448320i \(0.147978\pi\)
−0.0586798 + 0.998277i \(0.518689\pi\)
\(368\) 0 0
\(369\) 6.00000 10.3923i 0.312348 0.541002i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 5.00000 8.66025i 0.258890 0.448411i −0.707055 0.707159i \(-0.749977\pi\)
0.965945 + 0.258748i \(0.0833099\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) −2.00000 3.46410i −0.102463 0.177471i
\(382\) 0 0
\(383\) −12.0000 + 20.7846i −0.613171 + 1.06204i 0.377531 + 0.925997i \(0.376773\pi\)
−0.990702 + 0.136047i \(0.956560\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.00000 3.46410i 0.101666 0.176090i
\(388\) 0 0
\(389\) −15.0000 25.9808i −0.760530 1.31728i −0.942578 0.333987i \(-0.891606\pi\)
0.182047 0.983290i \(-0.441728\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 12.0000 0.605320
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7.00000 12.1244i 0.351320 0.608504i −0.635161 0.772380i \(-0.719066\pi\)
0.986481 + 0.163876i \(0.0523996\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.00000 + 5.19615i −0.149813 + 0.259483i −0.931158 0.364615i \(-0.881200\pi\)
0.781345 + 0.624099i \(0.214534\pi\)
\(402\) 0 0
\(403\) −8.00000 13.8564i −0.398508 0.690237i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −12.0000 −0.594818
\(408\) 0 0
\(409\) 7.00000 + 12.1244i 0.346128 + 0.599511i 0.985558 0.169338i \(-0.0541630\pi\)
−0.639430 + 0.768849i \(0.720830\pi\)
\(410\) 0 0
\(411\) 3.00000 5.19615i 0.147979 0.256307i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2.00000 + 3.46410i 0.0979404 + 0.169638i
\(418\) 0 0
\(419\) 24.0000 1.17248 0.586238 0.810139i \(-0.300608\pi\)
0.586238 + 0.810139i \(0.300608\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 0 0
\(423\) 6.00000 + 10.3923i 0.291730 + 0.505291i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 6.00000 10.3923i 0.289683 0.501745i
\(430\) 0 0
\(431\) −3.00000 5.19615i −0.144505 0.250290i 0.784683 0.619897i \(-0.212826\pi\)
−0.929188 + 0.369607i \(0.879492\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.0000 + 20.7846i 0.574038 + 0.994263i
\(438\) 0 0
\(439\) 4.00000 6.92820i 0.190910 0.330665i −0.754642 0.656136i \(-0.772190\pi\)
0.945552 + 0.325471i \(0.105523\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −15.0000 + 25.9808i −0.712672 + 1.23438i 0.251179 + 0.967941i \(0.419182\pi\)
−0.963851 + 0.266443i \(0.914152\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 6.00000 0.283790
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) −36.0000 62.3538i −1.69517 2.93613i
\(452\) 0 0
\(453\) 4.00000 6.92820i 0.187936 0.325515i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.0000 19.0526i 0.514558 0.891241i −0.485299 0.874348i \(-0.661289\pi\)
0.999857 0.0168929i \(-0.00537742\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12.0000 −0.558896 −0.279448 0.960161i \(-0.590151\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(462\) 0 0
\(463\) −28.0000 −1.30127 −0.650635 0.759390i \(-0.725497\pi\)
−0.650635 + 0.759390i \(0.725497\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −7.00000 + 12.1244i −0.322543 + 0.558661i
\(472\) 0 0
\(473\) −12.0000 20.7846i −0.551761 0.955677i
\(474\) 0 0
\(475\) −20.0000 −0.917663
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) −6.00000 10.3923i −0.274147 0.474837i 0.695773 0.718262i \(-0.255062\pi\)
−0.969920 + 0.243426i \(0.921729\pi\)
\(480\) 0 0
\(481\) 2.00000 3.46410i 0.0911922 0.157949i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −16.0000 27.7128i −0.725029 1.25579i −0.958962 0.283535i \(-0.908493\pi\)
0.233933 0.972253i \(-0.424840\pi\)
\(488\) 0 0
\(489\) 16.0000 0.723545
\(490\) 0 0
\(491\) −18.0000 −0.812329 −0.406164 0.913800i \(-0.633134\pi\)
−0.406164 + 0.913800i \(0.633134\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 2.00000 3.46410i 0.0895323 0.155074i −0.817781 0.575529i \(-0.804796\pi\)
0.907314 + 0.420455i \(0.138129\pi\)
\(500\) 0 0
\(501\) 6.00000 + 10.3923i 0.268060 + 0.464294i
\(502\) 0 0
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −4.50000 7.79423i −0.199852 0.346154i
\(508\) 0 0
\(509\) 12.0000 20.7846i 0.531891 0.921262i −0.467416 0.884037i \(-0.654815\pi\)
0.999307 0.0372243i \(-0.0118516\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 2.00000 3.46410i 0.0883022 0.152944i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 72.0000 3.16656
\(518\) 0 0
\(519\) −12.0000 −0.526742
\(520\) 0 0
\(521\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(522\) 0 0
\(523\) −2.00000 + 3.46410i −0.0874539 + 0.151475i −0.906434 0.422347i \(-0.861206\pi\)
0.818980 + 0.573822i \(0.194540\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 24.0000 1.03956
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3.00000 5.19615i 0.129460 0.224231i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.00000 + 1.73205i −0.0429934 + 0.0744667i −0.886721 0.462304i \(-0.847023\pi\)
0.843728 + 0.536771i \(0.180356\pi\)
\(542\) 0 0
\(543\) −1.00000 1.73205i −0.0429141 0.0743294i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) 0 0
\(549\) −5.00000 8.66025i −0.213395 0.369611i
\(550\) 0 0
\(551\) −12.0000 + 20.7846i −0.511217 + 0.885454i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −21.0000 36.3731i −0.889799 1.54118i −0.840113 0.542411i \(-0.817511\pi\)
−0.0496855 0.998765i \(-0.515822\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.00000 + 5.19615i −0.125767 + 0.217834i −0.922032 0.387113i \(-0.873472\pi\)
0.796266 + 0.604947i \(0.206806\pi\)
\(570\) 0 0
\(571\) 20.0000 + 34.6410i 0.836974 + 1.44968i 0.892413 + 0.451219i \(0.149011\pi\)
−0.0554391 + 0.998462i \(0.517656\pi\)
\(572\) 0 0
\(573\) −6.00000 −0.250654
\(574\) 0 0
\(575\) 30.0000 1.25109
\(576\) 0 0
\(577\) −11.0000 19.0526i −0.457936 0.793168i 0.540916 0.841077i \(-0.318078\pi\)
−0.998852 + 0.0479084i \(0.984744\pi\)
\(578\) 0 0
\(579\) −5.00000 + 8.66025i −0.207793 + 0.359908i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −18.0000 + 31.1769i −0.745484 + 1.29122i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.0000 0.990586 0.495293 0.868726i \(-0.335061\pi\)
0.495293 + 0.868726i \(0.335061\pi\)
\(588\) 0 0
\(589\) −32.0000 −1.31854
\(590\) 0 0
\(591\) −3.00000 5.19615i −0.123404 0.213741i
\(592\) 0 0
\(593\) 24.0000 41.5692i 0.985562 1.70704i 0.346149 0.938179i \(-0.387489\pi\)
0.639413 0.768864i \(-0.279178\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.00000 13.8564i 0.327418 0.567105i
\(598\) 0 0
\(599\) −15.0000 25.9808i −0.612883 1.06155i −0.990752 0.135686i \(-0.956676\pi\)
0.377869 0.925859i \(-0.376657\pi\)
\(600\) 0 0
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 16.0000 27.7128i 0.649420 1.12483i −0.333842 0.942629i \(-0.608345\pi\)
0.983262 0.182199i \(-0.0583216\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12.0000 + 20.7846i −0.485468 + 0.840855i
\(612\) 0 0
\(613\) −19.0000 32.9090i −0.767403 1.32918i −0.938967 0.344008i \(-0.888215\pi\)
0.171564 0.985173i \(-0.445118\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) 0 0
\(619\) 10.0000 + 17.3205i 0.401934 + 0.696170i 0.993959 0.109749i \(-0.0350048\pi\)
−0.592025 + 0.805919i \(0.701671\pi\)
\(620\) 0 0
\(621\) −3.00000 + 5.19615i −0.120386 + 0.208514i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) 0 0
\(627\) −12.0000 20.7846i −0.479234 0.830057i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) 0 0
\(633\) −2.00000 3.46410i −0.0794929 0.137686i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −3.00000 + 5.19615i −0.118678 + 0.205557i
\(640\) 0 0
\(641\) 9.00000 + 15.5885i 0.355479 + 0.615707i 0.987200 0.159489i \(-0.0509845\pi\)
−0.631721 + 0.775196i \(0.717651\pi\)
\(642\) 0 0
\(643\) 4.00000 0.157745 0.0788723 0.996885i \(-0.474868\pi\)
0.0788723 + 0.996885i \(0.474868\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.0000 31.1769i −0.707653 1.22569i −0.965726 0.259565i \(-0.916421\pi\)
0.258073 0.966126i \(-0.416913\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.00000 15.5885i 0.352197 0.610023i −0.634437 0.772975i \(-0.718768\pi\)
0.986634 + 0.162951i \(0.0521013\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 10.0000 0.390137
\(658\) 0 0
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) 19.0000 + 32.9090i 0.739014 + 1.28001i 0.952940 + 0.303160i \(0.0980418\pi\)
−0.213925 + 0.976850i \(0.568625\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 18.0000 31.1769i 0.696963 1.20717i
\(668\) 0 0
\(669\) −4.00000 6.92820i −0.154649 0.267860i
\(670\) 0 0
\(671\) −60.0000 −2.31627
\(672\) 0 0
\(673\) −34.0000 −1.31060 −0.655302 0.755367i \(-0.727459\pi\)
−0.655302 + 0.755367i \(0.727459\pi\)
\(674\) 0 0
\(675\) −2.50000 4.33013i −0.0962250 0.166667i
\(676\) 0 0
\(677\) 6.00000 10.3923i 0.230599 0.399409i −0.727386 0.686229i \(-0.759265\pi\)
0.957984 + 0.286820i \(0.0925982\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −12.0000 + 20.7846i −0.459841 + 0.796468i
\(682\) 0 0
\(683\) 21.0000 + 36.3731i 0.803543 + 1.39178i 0.917270 + 0.398265i \(0.130387\pi\)
−0.113728 + 0.993512i \(0.536279\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 2.00000 0.0763048
\(688\) 0 0
\(689\) −6.00000 10.3923i −0.228582 0.395915i
\(690\) 0 0
\(691\) −2.00000 + 3.46410i −0.0760836 + 0.131781i −0.901557 0.432660i \(-0.857575\pi\)
0.825473 + 0.564441i \(0.190908\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) −4.00000 6.92820i −0.150863 0.261302i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 5.00000 8.66025i 0.187779 0.325243i −0.756730 0.653727i \(-0.773204\pi\)
0.944509 + 0.328484i \(0.106538\pi\)
\(710\) 0 0
\(711\) 2.00000 + 3.46410i 0.0750059 + 0.129914i
\(712\) 0 0
\(713\) 48.0000 1.79761
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 9.00000 + 15.5885i 0.336111 + 0.582162i
\(718\) 0 0
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 5.00000 8.66025i 0.185952 0.322078i
\(724\) 0 0
\(725\) 15.0000 + 25.9808i 0.557086 + 0.964901i
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −23.0000 + 39.8372i −0.849524 + 1.47142i 0.0321090 + 0.999484i \(0.489778\pi\)
−0.881633 + 0.471935i \(0.843556\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24.0000 41.5692i 0.884051 1.53122i
\(738\) 0 0
\(739\) −16.0000 27.7128i −0.588570 1.01943i −0.994420 0.105493i \(-0.966358\pi\)
0.405851 0.913939i \(-0.366975\pi\)
\(740\) 0 0
\(741\) 8.00000 0.293887
\(742\) 0 0
\(743\) 6.00000 0.220119 0.110059 0.993925i \(-0.464896\pi\)
0.110059 + 0.993925i \(0.464896\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −6.00000 + 10.3923i −0.219529 + 0.380235i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −16.0000 + 27.7128i −0.583848 + 1.01125i 0.411170 + 0.911559i \(0.365120\pi\)
−0.995018 + 0.0996961i \(0.968213\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 0 0
\(759\) 18.0000 + 31.1769i 0.653359 + 1.13165i
\(760\) 0 0
\(761\) −18.0000 + 31.1769i −0.652499 + 1.13016i 0.330015 + 0.943976i \(0.392946\pi\)
−0.982514 + 0.186187i \(0.940387\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −26.0000 −0.937584 −0.468792 0.883309i \(-0.655311\pi\)
−0.468792 + 0.883309i \(0.655311\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) 0 0
\(773\) 6.00000 + 10.3923i 0.215805 + 0.373785i 0.953521 0.301326i \(-0.0974291\pi\)
−0.737716 + 0.675111i \(0.764096\pi\)
\(774\) 0 0
\(775\) −20.0000 + 34.6410i −0.718421 + 1.24434i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 24.0000 41.5692i 0.859889 1.48937i
\(780\) 0 0
\(781\) 18.0000 + 31.1769i 0.644091 + 1.11560i
\(782\) 0 0
\(783\) −6.00000 −0.214423
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −2.00000 3.46410i −0.0712923 0.123482i 0.828176 0.560469i \(-0.189379\pi\)
−0.899468 + 0.436987i \(0.856046\pi\)
\(788\) 0 0
\(789\) −3.00000 + 5.19615i −0.106803 + 0.184988i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 10.0000 17.3205i 0.355110 0.615069i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −36.0000 −1.27519 −0.637593 0.770374i \(-0.720070\pi\)
−0.637593 + 0.770374i \(0.720070\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 6.00000 + 10.3923i 0.212000 + 0.367194i
\(802\) 0 0
\(803\) 30.0000 51.9615i 1.05868 1.83368i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −12.0000 + 20.7846i −0.422420 + 0.731653i
\(808\) 0 0
\(809\) 27.0000 + 46.7654i 0.949269 + 1.64418i 0.746968 + 0.664860i \(0.231509\pi\)
0.202301 + 0.979323i \(0.435158\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) −16.0000 −0.561144
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 8.00000 13.8564i 0.279885 0.484774i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −9.00000 + 15.5885i −0.314102 + 0.544041i −0.979246 0.202674i \(-0.935037\pi\)
0.665144 + 0.746715i \(0.268370\pi\)
\(822\) 0 0
\(823\) 2.00000 + 3.46410i 0.0697156 + 0.120751i 0.898776 0.438408i \(-0.144457\pi\)
−0.829060 + 0.559159i \(0.811124\pi\)
\(824\) 0 0
\(825\) −30.0000 −1.04447
\(826\) 0 0
\(827\) −6.00000 −0.208640 −0.104320 0.994544i \(-0.533267\pi\)
−0.104320 + 0.994544i \(0.533267\pi\)
\(828\) 0 0
\(829\) −11.0000 19.0526i −0.382046 0.661723i 0.609309 0.792933i \(-0.291447\pi\)
−0.991355 + 0.131210i \(0.958114\pi\)
\(830\) 0 0
\(831\) −11.0000 + 19.0526i −0.381586 + 0.660926i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −4.00000 6.92820i −0.138260 0.239474i
\(838\) 0 0
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) −9.00000 15.5885i −0.309976 0.536895i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −10.0000 + 17.3205i −0.343199 + 0.594438i
\(850\) 0 0
\(851\) 6.00000 + 10.3923i 0.205677 + 0.356244i
\(852\) 0 0
\(853\) −14.0000 −0.479351 −0.239675 0.970853i \(-0.577041\pi\)
−0.239675 + 0.970853i \(0.577041\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.00000 + 10.3923i 0.204956 + 0.354994i 0.950119 0.311888i \(-0.100962\pi\)
−0.745163 + 0.666883i \(0.767628\pi\)
\(858\) 0 0
\(859\) −2.00000 + 3.46410i −0.0682391 + 0.118194i −0.898126 0.439738i \(-0.855071\pi\)
0.829887 + 0.557931i \(0.188405\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.00000 5.19615i 0.102121 0.176879i −0.810437 0.585826i \(-0.800770\pi\)
0.912558 + 0.408946i \(0.134104\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 17.0000 0.577350
\(868\) 0 0
\(869\) 24.0000 0.814144
\(870\) 0 0
\(871\) 8.00000 + 13.8564i 0.271070 + 0.469506i
\(872\) 0 0
\(873\) −5.00000 + 8.66025i −0.169224 + 0.293105i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −7.00000 + 12.1244i −0.236373 + 0.409410i −0.959671 0.281126i \(-0.909292\pi\)
0.723298 + 0.690536i \(0.242625\pi\)
\(878\) 0 0
\(879\) 6.00000 + 10.3923i 0.202375 + 0.350524i
\(880\) 0 0
\(881\) −24.0000 −0.808581 −0.404290 0.914631i \(-0.632481\pi\)
−0.404290 + 0.914631i \(0.632481\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.0000 31.1769i 0.604381 1.04682i −0.387768 0.921757i \(-0.626754\pi\)
0.992149 0.125061i \(-0.0399128\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 3.00000 5.19615i 0.100504 0.174078i
\(892\) 0 0
\(893\) 24.0000 + 41.5692i 0.803129 + 1.39106i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −12.0000 −0.400668
\(898\) 0 0
\(899\) 24.0000 + 41.5692i 0.800445 + 1.38641i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 2.00000 + 3.46410i 0.0664089 + 0.115024i 0.897318 0.441384i \(-0.145512\pi\)
−0.830909 + 0.556408i \(0.812179\pi\)
\(908\) 0 0
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) 54.0000 1.78910 0.894550 0.446968i \(-0.147496\pi\)
0.894550 + 0.446968i \(0.147496\pi\)
\(912\) 0 0
\(913\) 36.0000 + 62.3538i 1.19143 + 2.06361i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 8.00000 13.8564i 0.263896 0.457081i −0.703378 0.710816i \(-0.748326\pi\)
0.967274 + 0.253735i \(0.0816592\pi\)
\(920\) 0 0
\(921\) −10.0000 17.3205i −0.329511 0.570730i
\(922\) 0 0
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) −10.0000 −0.328798
\(926\) 0 0
\(927\) 4.00000 + 6.92820i 0.131377 + 0.227552i
\(928\) 0 0
\(929\) 6.00000 10.3923i 0.196854 0.340960i −0.750653 0.660697i \(-0.770261\pi\)
0.947507 + 0.319736i \(0.103594\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 6.00000 10.3923i 0.196431 0.340229i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) 26.0000 0.848478
\(940\) 0 0
\(941\) −12.0000 20.7846i −0.391189 0.677559i 0.601418 0.798935i \(-0.294603\pi\)
−0.992607 + 0.121376i \(0.961269\pi\)
\(942\) 0 0
\(943\) −36.0000 + 62.3538i −1.17232 + 2.03052i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 15.0000 25.9808i 0.487435 0.844261i −0.512461 0.858710i \(-0.671266\pi\)
0.999896 + 0.0144491i \(0.00459946\pi\)
\(948\) 0 0
\(949\) 10.0000 + 17.3205i 0.324614 + 0.562247i
\(950\) 0 0
\(951\) 30.0000 0.972817
\(952\) 0 0
\(953\) 42.0000 1.36051 0.680257 0.732974i \(-0.261868\pi\)
0.680257 + 0.732974i \(0.261868\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −18.0000 + 31.1769i −0.581857 + 1.00781i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −16.5000 + 28.5788i −0.532258 + 0.921898i
\(962\) 0 0
\(963\) 3.00000 + 5.19615i 0.0966736 + 0.167444i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −28.0000 −0.900419 −0.450210 0.892923i \(-0.648651\pi\)
−0.450210 + 0.892923i \(0.648651\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6.00000 10.3923i 0.192549 0.333505i −0.753545 0.657396i \(-0.771658\pi\)
0.946094 + 0.323891i \(0.104991\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 5.00000 8.66025i 0.160128 0.277350i
\(976\) 0 0
\(977\) −3.00000 5.19615i −0.0959785 0.166240i 0.814038 0.580812i \(-0.197265\pi\)
−0.910017 + 0.414572i \(0.863931\pi\)
\(978\) 0 0
\(979\) 72.0000 2.30113
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) 0 0
\(983\) −24.0000 41.5692i −0.765481 1.32585i −0.939992 0.341197i \(-0.889168\pi\)
0.174511 0.984655i \(-0.444166\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.0000 + 20.7846i −0.381578 + 0.660912i
\(990\) 0 0
\(991\) 20.0000 + 34.6410i 0.635321 + 1.10041i 0.986447 + 0.164080i \(0.0524655\pi\)
−0.351126 + 0.936328i \(0.614201\pi\)
\(992\) 0 0
\(993\) −20.0000 −0.634681
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −5.00000 8.66025i −0.158352 0.274273i 0.775923 0.630828i \(-0.217285\pi\)
−0.934274 + 0.356555i \(0.883951\pi\)
\(998\) 0 0
\(999\) 1.00000 1.73205i 0.0316386 0.0547997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.i.f.373.1 2
3.2 odd 2 1764.2.k.d.1549.1 2
4.3 odd 2 2352.2.q.g.961.1 2
7.2 even 3 588.2.a.c.1.1 1
7.3 odd 6 588.2.i.c.361.1 2
7.4 even 3 inner 588.2.i.f.361.1 2
7.5 odd 6 84.2.a.b.1.1 1
7.6 odd 2 588.2.i.c.373.1 2
21.2 odd 6 1764.2.a.g.1.1 1
21.5 even 6 252.2.a.b.1.1 1
21.11 odd 6 1764.2.k.d.361.1 2
21.17 even 6 1764.2.k.e.361.1 2
21.20 even 2 1764.2.k.e.1549.1 2
28.3 even 6 2352.2.q.s.1537.1 2
28.11 odd 6 2352.2.q.g.1537.1 2
28.19 even 6 336.2.a.b.1.1 1
28.23 odd 6 2352.2.a.s.1.1 1
28.27 even 2 2352.2.q.s.961.1 2
35.12 even 12 2100.2.k.a.1849.1 2
35.19 odd 6 2100.2.a.a.1.1 1
35.33 even 12 2100.2.k.a.1849.2 2
56.5 odd 6 1344.2.a.f.1.1 1
56.19 even 6 1344.2.a.o.1.1 1
56.37 even 6 9408.2.a.co.1.1 1
56.51 odd 6 9408.2.a.r.1.1 1
63.5 even 6 2268.2.j.f.1513.1 2
63.40 odd 6 2268.2.j.i.1513.1 2
63.47 even 6 2268.2.j.f.757.1 2
63.61 odd 6 2268.2.j.i.757.1 2
84.23 even 6 7056.2.a.x.1.1 1
84.47 odd 6 1008.2.a.g.1.1 1
105.47 odd 12 6300.2.k.r.6049.2 2
105.68 odd 12 6300.2.k.r.6049.1 2
105.89 even 6 6300.2.a.p.1.1 1
112.5 odd 12 5376.2.c.i.2689.1 2
112.19 even 12 5376.2.c.x.2689.1 2
112.61 odd 12 5376.2.c.i.2689.2 2
112.75 even 12 5376.2.c.x.2689.2 2
140.19 even 6 8400.2.a.ct.1.1 1
168.5 even 6 4032.2.a.u.1.1 1
168.131 odd 6 4032.2.a.t.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.a.b.1.1 1 7.5 odd 6
252.2.a.b.1.1 1 21.5 even 6
336.2.a.b.1.1 1 28.19 even 6
588.2.a.c.1.1 1 7.2 even 3
588.2.i.c.361.1 2 7.3 odd 6
588.2.i.c.373.1 2 7.6 odd 2
588.2.i.f.361.1 2 7.4 even 3 inner
588.2.i.f.373.1 2 1.1 even 1 trivial
1008.2.a.g.1.1 1 84.47 odd 6
1344.2.a.f.1.1 1 56.5 odd 6
1344.2.a.o.1.1 1 56.19 even 6
1764.2.a.g.1.1 1 21.2 odd 6
1764.2.k.d.361.1 2 21.11 odd 6
1764.2.k.d.1549.1 2 3.2 odd 2
1764.2.k.e.361.1 2 21.17 even 6
1764.2.k.e.1549.1 2 21.20 even 2
2100.2.a.a.1.1 1 35.19 odd 6
2100.2.k.a.1849.1 2 35.12 even 12
2100.2.k.a.1849.2 2 35.33 even 12
2268.2.j.f.757.1 2 63.47 even 6
2268.2.j.f.1513.1 2 63.5 even 6
2268.2.j.i.757.1 2 63.61 odd 6
2268.2.j.i.1513.1 2 63.40 odd 6
2352.2.a.s.1.1 1 28.23 odd 6
2352.2.q.g.961.1 2 4.3 odd 2
2352.2.q.g.1537.1 2 28.11 odd 6
2352.2.q.s.961.1 2 28.27 even 2
2352.2.q.s.1537.1 2 28.3 even 6
4032.2.a.t.1.1 1 168.131 odd 6
4032.2.a.u.1.1 1 168.5 even 6
5376.2.c.i.2689.1 2 112.5 odd 12
5376.2.c.i.2689.2 2 112.61 odd 12
5376.2.c.x.2689.1 2 112.19 even 12
5376.2.c.x.2689.2 2 112.75 even 12
6300.2.a.p.1.1 1 105.89 even 6
6300.2.k.r.6049.1 2 105.68 odd 12
6300.2.k.r.6049.2 2 105.47 odd 12
7056.2.a.x.1.1 1 84.23 even 6
8400.2.a.ct.1.1 1 140.19 even 6
9408.2.a.r.1.1 1 56.51 odd 6
9408.2.a.co.1.1 1 56.37 even 6