L(s) = 1 | + 9-s − 8·17-s − 12·29-s + 16·37-s − 20·41-s + 2·49-s + 24·53-s + 4·61-s + 16·73-s + 81-s − 20·89-s − 16·97-s − 4·101-s − 4·109-s − 24·113-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 8·153-s + 157-s + 163-s + 167-s − 26·169-s + ⋯ |
L(s) = 1 | + 1/3·9-s − 1.94·17-s − 2.22·29-s + 2.63·37-s − 3.12·41-s + 2/7·49-s + 3.29·53-s + 0.512·61-s + 1.87·73-s + 1/9·81-s − 2.11·89-s − 1.62·97-s − 0.398·101-s − 0.383·109-s − 2.25·113-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.646·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2·169-s + ⋯ |
Λ(s)=(=(360000s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(360000s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
360000
= 26⋅32⋅54
|
Sign: |
−1
|
Analytic conductor: |
22.9539 |
Root analytic conductor: |
2.18884 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 360000, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1×C1 | (1−T)(1+T) |
| 5 | | 1 |
good | 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1+pT2)2 |
| 17 | C2 | (1+4T+pT2)2 |
| 19 | C2 | (1+pT2)2 |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1+6T+pT2)2 |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C2 | (1−8T+pT2)2 |
| 41 | C2 | (1+10T+pT2)2 |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 53 | C2 | (1−12T+pT2)2 |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−8T+pT2)2 |
| 79 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 83 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 89 | C2 | (1+10T+pT2)2 |
| 97 | C2 | (1+8T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.425273316407858927756969056783, −8.204559252191821560558835851641, −7.37238433524374824283811858439, −7.18372888449204428119332901427, −6.58708874819826533674259473804, −6.30782253827108715004959607025, −5.36757388021193461608897977383, −5.36371477889983409574050795450, −4.48113990818320943365008579851, −3.96453757467671714692485940103, −3.70436878140437791475645367729, −2.56579130253629562111590352122, −2.27167150313420976169553892108, −1.34965769440900465302455436948, 0,
1.34965769440900465302455436948, 2.27167150313420976169553892108, 2.56579130253629562111590352122, 3.70436878140437791475645367729, 3.96453757467671714692485940103, 4.48113990818320943365008579851, 5.36371477889983409574050795450, 5.36757388021193461608897977383, 6.30782253827108715004959607025, 6.58708874819826533674259473804, 7.18372888449204428119332901427, 7.37238433524374824283811858439, 8.204559252191821560558835851641, 8.425273316407858927756969056783