L(s) = 1 | − 2·3-s + 4·7-s + 9-s + 4·13-s − 8·19-s − 8·21-s + 25-s + 4·27-s − 8·31-s + 4·37-s − 8·39-s − 20·43-s − 2·49-s + 16·57-s + 4·61-s + 4·63-s + 4·67-s + 4·73-s − 2·75-s + 16·79-s − 11·81-s + 16·91-s + 16·93-s + 4·97-s + 28·103-s + 4·109-s − 8·111-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1.51·7-s + 1/3·9-s + 1.10·13-s − 1.83·19-s − 1.74·21-s + 1/5·25-s + 0.769·27-s − 1.43·31-s + 0.657·37-s − 1.28·39-s − 3.04·43-s − 2/7·49-s + 2.11·57-s + 0.512·61-s + 0.503·63-s + 0.488·67-s + 0.468·73-s − 0.230·75-s + 1.80·79-s − 1.22·81-s + 1.67·91-s + 1.65·93-s + 0.406·97-s + 2.75·103-s + 0.383·109-s − 0.759·111-s + ⋯ |
Λ(s)=(=(3600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(3600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
3600
= 24⋅32⋅52
|
Sign: |
1
|
Analytic conductor: |
0.229539 |
Root analytic conductor: |
0.692172 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 3600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.6180626677 |
L(21) |
≈ |
0.6180626677 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+2T+pT2 |
| 5 | C1×C1 | (1−T)(1+T) |
good | 7 | C2 | (1−2T+pT2)2 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−2T+pT2)2 |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+4T+pT2)2 |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1+10T+pT2)2 |
| 47 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C2 | (1−2T+pT2)2 |
| 71 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 73 | C2 | (1−2T+pT2)2 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.64919926214782333798361971460, −11.66835822739294093715813029994, −11.50854453196989171707939391081, −10.83473950301065015207539180976, −10.66869217043212474435745329357, −9.749524176059453166876684221310, −8.552217550781204179646223792184, −8.536040373596851277524077678909, −7.64589778281564359800589548721, −6.57891116465648258947670054106, −6.21444115782927123192608967686, −5.19647848534431193907436500640, −4.78130792717525308450176413839, −3.71119793411816721603957340078, −1.81793015252092636076156145980,
1.81793015252092636076156145980, 3.71119793411816721603957340078, 4.78130792717525308450176413839, 5.19647848534431193907436500640, 6.21444115782927123192608967686, 6.57891116465648258947670054106, 7.64589778281564359800589548721, 8.536040373596851277524077678909, 8.552217550781204179646223792184, 9.749524176059453166876684221310, 10.66869217043212474435745329357, 10.83473950301065015207539180976, 11.50854453196989171707939391081, 11.66835822739294093715813029994, 12.64919926214782333798361971460