L(s) = 1 | − 2-s − 4-s + 2·5-s + 3·8-s + 9-s − 2·10-s − 4·13-s − 16-s + 4·17-s − 18-s − 2·20-s + 3·25-s + 4·26-s − 4·29-s − 5·32-s − 4·34-s − 36-s − 20·37-s + 6·40-s + 20·41-s + 2·45-s − 14·49-s − 3·50-s + 4·52-s − 20·53-s + 4·58-s − 4·61-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s + 0.894·5-s + 1.06·8-s + 1/3·9-s − 0.632·10-s − 1.10·13-s − 1/4·16-s + 0.970·17-s − 0.235·18-s − 0.447·20-s + 3/5·25-s + 0.784·26-s − 0.742·29-s − 0.883·32-s − 0.685·34-s − 1/6·36-s − 3.28·37-s + 0.948·40-s + 3.12·41-s + 0.298·45-s − 2·49-s − 0.424·50-s + 0.554·52-s − 2.74·53-s + 0.525·58-s − 0.512·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5589254281\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5589254281\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_2$ | \( 1 + T + p T^{2} \) |
| 3 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
| 5 | $C_1$ | \( ( 1 - T )^{2} \) |
good | 7 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 13 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 17 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 53 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 59 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 71 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 89 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.64617876135106218873747419153, −12.26787268519799195488690762647, −11.16070118695890574879383709815, −10.67892245123374144028858824682, −10.00510556501914029619044642425, −9.523451675812284265792380668213, −9.265565204604989643425731491439, −8.330811446905088069540074876671, −7.66488013441745380243230842523, −7.12360478295630625617848815878, −6.13587545605028508104380795249, −5.23920392624592057055772361749, −4.68831052899409581492283307982, −3.39274372810076015084631955767, −1.82346513010869405208007428430,
1.82346513010869405208007428430, 3.39274372810076015084631955767, 4.68831052899409581492283307982, 5.23920392624592057055772361749, 6.13587545605028508104380795249, 7.12360478295630625617848815878, 7.66488013441745380243230842523, 8.330811446905088069540074876671, 9.265565204604989643425731491439, 9.523451675812284265792380668213, 10.00510556501914029619044642425, 10.67892245123374144028858824682, 11.16070118695890574879383709815, 12.26787268519799195488690762647, 12.64617876135106218873747419153