L(s) = 1 | − 2-s − 4-s + 2·5-s + 3·8-s + 9-s − 2·10-s − 4·13-s − 16-s + 4·17-s − 18-s − 2·20-s + 3·25-s + 4·26-s − 4·29-s − 5·32-s − 4·34-s − 36-s − 20·37-s + 6·40-s + 20·41-s + 2·45-s − 14·49-s − 3·50-s + 4·52-s − 20·53-s + 4·58-s − 4·61-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s + 0.894·5-s + 1.06·8-s + 1/3·9-s − 0.632·10-s − 1.10·13-s − 1/4·16-s + 0.970·17-s − 0.235·18-s − 0.447·20-s + 3/5·25-s + 0.784·26-s − 0.742·29-s − 0.883·32-s − 0.685·34-s − 1/6·36-s − 3.28·37-s + 0.948·40-s + 3.12·41-s + 0.298·45-s − 2·49-s − 0.424·50-s + 0.554·52-s − 2.74·53-s + 0.525·58-s − 0.512·61-s + ⋯ |
Λ(s)=(=(3600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(3600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
3600
= 24⋅32⋅52
|
Sign: |
1
|
Analytic conductor: |
0.229539 |
Root analytic conductor: |
0.692172 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 3600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.5589254281 |
L(21) |
≈ |
0.5589254281 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+pT2 |
| 3 | C1×C1 | (1−T)(1+T) |
| 5 | C1 | (1−T)2 |
good | 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1+2T+pT2)2 |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+2T+pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1+10T+pT2)2 |
| 41 | C2 | (1−10T+pT2)2 |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1+10T+pT2)2 |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 71 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.64617876135106218873747419153, −12.26787268519799195488690762647, −11.16070118695890574879383709815, −10.67892245123374144028858824682, −10.00510556501914029619044642425, −9.523451675812284265792380668213, −9.265565204604989643425731491439, −8.330811446905088069540074876671, −7.66488013441745380243230842523, −7.12360478295630625617848815878, −6.13587545605028508104380795249, −5.23920392624592057055772361749, −4.68831052899409581492283307982, −3.39274372810076015084631955767, −1.82346513010869405208007428430,
1.82346513010869405208007428430, 3.39274372810076015084631955767, 4.68831052899409581492283307982, 5.23920392624592057055772361749, 6.13587545605028508104380795249, 7.12360478295630625617848815878, 7.66488013441745380243230842523, 8.330811446905088069540074876671, 9.265565204604989643425731491439, 9.523451675812284265792380668213, 10.00510556501914029619044642425, 10.67892245123374144028858824682, 11.16070118695890574879383709815, 12.26787268519799195488690762647, 12.64617876135106218873747419153