L(s) = 1 | − 4·3-s + 4·5-s + 6·7-s + 6·9-s − 2·11-s − 16·15-s + 2·17-s − 6·19-s − 24·21-s + 2·23-s + 11·25-s + 4·27-s + 14·29-s + 8·33-s + 24·35-s + 24·45-s + 14·47-s + 18·49-s − 8·51-s + 16·53-s − 8·55-s + 24·57-s + 6·59-s + 2·61-s + 36·63-s − 8·69-s + 6·73-s + ⋯ |
L(s) = 1 | − 2.30·3-s + 1.78·5-s + 2.26·7-s + 2·9-s − 0.603·11-s − 4.13·15-s + 0.485·17-s − 1.37·19-s − 5.23·21-s + 0.417·23-s + 11/5·25-s + 0.769·27-s + 2.59·29-s + 1.39·33-s + 4.05·35-s + 3.57·45-s + 2.04·47-s + 18/7·49-s − 1.12·51-s + 2.19·53-s − 1.07·55-s + 3.17·57-s + 0.781·59-s + 0.256·61-s + 4.53·63-s − 0.963·69-s + 0.702·73-s + ⋯ |
Λ(s)=(=(409600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(409600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
409600
= 214⋅52
|
Sign: |
1
|
Analytic conductor: |
26.1164 |
Root analytic conductor: |
2.26062 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 409600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.575788268 |
L(21) |
≈ |
1.575788268 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1−4T+pT2 |
good | 3 | C2 | (1+2T+pT2)2 |
| 7 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 11 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 19 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 23 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 29 | C2 | (1−10T+pT2)(1−4T+pT2) |
| 31 | C22 | 1−58T2+p2T4 |
| 37 | C22 | 1−38T2+p2T4 |
| 41 | C22 | 1−66T2+p2T4 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C22 | 1−14T+98T2−14pT3+p2T4 |
| 53 | C2 | (1−8T+pT2)2 |
| 59 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 61 | C2 | (1−12T+pT2)(1+10T+pT2) |
| 67 | C22 | 1−118T2+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C2 | (1+2T+pT2)2 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C22 | 1+22T+242T2+22pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.71939659000990607735654071823, −10.58492815345916074848767081043, −10.11564257766476204471775399216, −9.956232091402147762700204742524, −8.789003204104276890135357857383, −8.675000093834449598913181619331, −8.384707588473095304354851238452, −7.64372194904857167935923136168, −6.84697119957715395753941088827, −6.78124025164253148360976191081, −5.96366063611134929173051975689, −5.81136509128689591171595016118, −5.35469621317564831575329942606, −5.05562347420124196102882738936, −4.64405349424528611062344707573, −4.21409684340139055725408044568, −2.60426345556077271494856877740, −2.42843520072922074682998445031, −1.35578562905217315664829285088, −0.915607802733132282268634140246,
0.915607802733132282268634140246, 1.35578562905217315664829285088, 2.42843520072922074682998445031, 2.60426345556077271494856877740, 4.21409684340139055725408044568, 4.64405349424528611062344707573, 5.05562347420124196102882738936, 5.35469621317564831575329942606, 5.81136509128689591171595016118, 5.96366063611134929173051975689, 6.78124025164253148360976191081, 6.84697119957715395753941088827, 7.64372194904857167935923136168, 8.384707588473095304354851238452, 8.675000093834449598913181619331, 8.789003204104276890135357857383, 9.956232091402147762700204742524, 10.11564257766476204471775399216, 10.58492815345916074848767081043, 10.71939659000990607735654071823